Theory of graph minors
Held on Thursdays 12:20 on the 2nd floor corridor.
Plan
- 24.2.: Introduction. Tangles, brambles, treewidth and minors.
- 3.3.: Grid minor theorem.
- 10.3.: Tangles in embedded graphs.
- 17.3.: Linking in the disk and in the general surfaces (weak version).
- 24.3.: Linking in the general surfaces, connection to respectful tangles.
- 31.3.: The flat grid theorem and testing existence of a minor.
- 7.4.: The basic ideas of the proof of the structure theorem.
- 14.4.: Aplication of the structure theorem: Decomposition to bounded treewidth graphs.
- 21.4.: Hadwiger's conjecture: Background, connectivity, relaxations.
- 28.4.: Hadwiger's conjecture: Recent average degree improvements.
- 5.5., 12.5., 19.5.: Reserve.
Notes from 2020
- Introduction. Tangles, treewidth and minors. Lecture notes, presentation, homework assignment.
- Towards the grid theorem: Statement, cleaning the grid, path-of-sets systems. Lecture notes, presentation, video of (most of) the lecture, homework assignment.
- Further ideas of the proof of the grid theorem: Doubling the path-of-sets system, cleaning lemma. Lecture notes, presentation, video of the lecture, homework assignment.
- Tangles in embedded graphs. Lecture notes, presentation, homework assignment.
- Linking in the disk and in the general surfaces (weak version). Lecture notes, presentation, homework assignment.
- Linking in the general surfaces, connection to respectful tangles. Lecture notes, presentation, homework assignment.
- The flat grid theorem and testing existence of a minor. Lecture notes, presentation, homework assignment.
- The basic ideas of the proof of the structure theorem. Lecture notes, presentation, homework assignment.
- Aplication of the structure theorem: Decomposition to bounded treewidth graphs. Lecture notes, presentation, homework assignment.
- Strengthening of the structure theorem, application: Bipartite minors in highly connected graphs. Lecture notes and the presentation.
- Exam assignment: The structure theorem for forbidden topological minors.
- Linkedness in highly connected graphs.
- Isomorphism testing with forbidden minors and topological minors.
- Partial results on Hadwiger hypothesis (Connectivity of the minimal counterexamples, conditional algorithm, fractional version and other relaxations, recent average degree improvements).
- Large grids and sublinear cuts in graphs with forbidden minors, bidimensionality.
Obsah přednášek (v minulých letech)
- Opakování, definice, hlavní myšlenky a ingredience důkazu strukturální věty.
- Stromová šířka a tangle.
- Velká stromová šířka vynucuje velkou zeď.
- Tangle a metrika na plochách.
- Plochy a linkování.
- Two Short Proofs Concerning Tree-Decompositions
- 2-linkage a jejich zobecnění (transakce).
- Rozšiřování vnoření.
- Strukturální věta.
- Testování existence minoru.
- Stromové rozklady a dobré uspořádáni.
- Plochy a dobré uspořádání.
- Wagnerova hypotéza.
Další materiály a zdroje
Doporučená literatura
- N. Robertson, P. Seymour: Graph Minors. I. - XXIII.
- N. Robertson, P. Seymour, R. Thomas: Quickly Excluding a Planar Graph, J. Comb. Theory, Ser. B (1994), 323-348.
- C. Thomassen: A simpler proof of the excluded minor theorem for higher surfaces, J.Combinatorial Theory B 70 (1997), 306-311.
- K. Kawarabayashi, P. Wollan: A simpler algorithm and shorter proof for the graph minor decomposition, STOC 2011, 451-458.
- M. Grohe, K. Kawarabayashi, D. Marx, P. Wollan: Finding topological subgraphs is fixed-parameter tractable, STOC 2011, 479-488.
- R. Diestel, T. Jensen, K. Gorbunov, C. Thomassen: Highly Connected Sets and the Excluded Grid Theorem, J. Comb. Theory, Ser. B (1999), 61-73.
- Julia Chuzhoy: Improved Bounds for the Flat Wall Theorem. SODA 2015: 256-275.
Další zdroje