Recall H is a minor of G with model pu if

e /1 assigns to vertices of H pairwise vertex-disjoint connected subgraphs
of GG, and

e for each edge e = uwv of H, u(e) is a distinct edge of G not contained
in any of these subgraphs and with one end in p(u) and the other end

in p(v).

A root function is a function r : V(H) — 2V(® such that r(v) Nr(w) = 0
for distinct v,w € V(H). We say H is rooted in r if r(v) C V(u(v)) for
every v € V(H). We most commonly deal with the case |r(v)| < 1 for each
v € V(H) (and indeed, rooted minors are usually defined in this way, as a
partial injective function from V(H) to V(G)); we will call such roots simple.

Let us note one important case, when H has no edges and |r(v)| = 2 for
each v € V(H) (or, almost equivalently, the case H is a matching and r is a
simple root function). Then, we are looking of pairwise vertex-disjoint paths
with prescribed endpoints.

Our aim for the next two lectures is to give an algorithm to determine
whether a graph G embedded in a surface contains a fixed graph H rooted
in given r. Furthermore, we will prove that such a minor always exists when
G contains a respectful tangle of sufficiently large order #5 and the distance
between any two root vertices is #y in the corresponding metric.

We say drawing of a graph in a surface with holes is normal if it intersects
the boundary of the surface only in vertices. We say a root function r is
normal if for each v, all vertices in r(v) are contained in the boundary of the
surface.

1 The disk case

Consider a graph GG drawn normally in the disk, and let vy, vg, ..., v, be
the vertices of G drawn in the cyclic order around the boundary of the disk.
Let H be an edgeless graph and let r be a normal root function. We say
r is topologically infeasible if there exist distinct u,v € V(H) and indices
i1 < iy < i3 < i4 such that v;,,v;, € r(u) and v;,,v;, € r(v), and topologically
feasible otherwise. Note that if H has a minor in G rooted in r, then r is
topologically feasible.

A G-slice is a simple G-normal curve ¢ joining distinct points in the
boundary of the disk and otherwise disjoint from the boundary. The end-
points of ¢ divide the boundary of the disk into two arcs, let A, and B, denote
the sets of vertices of G drawn in these two arcs (if the endpoints of ¢ are



root, vertices, they are included both in A. and B.). We define r/c to be the
set of vertices v € V(H) such that r(v) N A. # 0 # r(v) N B.. We say that
r is connectivity-wise feasible if |G N¢| > |r/c| for every G-slice c. Note that
if H has a minor in G rooted in r, then r is connectivity-wise feasible.

Our first result is a converse to these necessary conditions (which can be
viewed as a disk version of Menger’s theorem).

Theorem 1. Let G be a graph G drawn normally in a disk X, let H be an
edgeless graph and let r be a normal root function assigning to each vertex of
H a non-empty set. If r is topologically and connectivity-wise feasible, then
H is a minor of G rooted in .

Proof. We proceed by induction on |V(G)|. We can assume only root ver-
tices are contained in the boundary, as otherwise we can shift the non-root
vertices slightly away from the boundary without violating the topologic and
connectivity-wise feasibility.

Suppose first there exists a G-slice disjoint from G such that both disks
¥, and ¥, into which it splits ¥ intersect G. We have |G N ¢| = 0, and thus
the connectivity-wise feasibility implies that for each v, r(v) is contained in
Y1 or Y. Hence, we can find a minor in X1 NG, and 5N Gy by the induction
hypothesis. Therefore, we can assume no such G-slice exists.

Next, consider the case that there exists a G-slice ¢ intersecting G in
exactly one vertex z such that = € r(v) for some v € V(H), and both disks ¥,
and Y, into which ¢ splits ¥ intersect G—v. We have |GNe| =0 and v € r/c,
and thus by the connectivity-wise feasibility, for each w € V(H) \ {v}, r(w)
is contained in ¥, or 3,. For ¢ € {1,2}, let G; = 3; NG, let H; consist of v
and vertices w € V(H) \ {v} such that r(w) C ¥;, and let r;(v) = r(v) N %;
and r;(w) = r(w) for w € V(H;) \ {v}. Observe that r; is topologically and
connectivity-wise feasible in G;, and thus by the induction hypothesis, H; is
a minor of GG; rooted in r;. Connecting the two models, we obtain a minor
of GG rooted in r. Therefore, we can assume no such G-slice exists.

Suppose ¢ is a simple closed curve in ¥ intersecting GG in exactly one
vertex x, and at least one vertex of G is drawn in the open disk A bounded
by c¢. Let G’ be the subgraph of G obtained by deleting vertices and edges in
A. Note that r is topologically and connectivity-wise feasible in G’, and thus
G’ (and G) contains a minor of H rooted in r by the induction hypothesis.
Therefore, we can assume no such closed curve exists. It follows that the
boundary of each face of GG is either a cycle or a path with both ends in the
boundary.

Let vy, vg, ..., v, be the vertices of G drawn in order in the boundary of
Y. Forv € V(H), let I(v) be the minimal interval {v;, vi41, ..., v;} containing
r(v). Let y be the vertex of H such that /(y) is minimal among all vertices of
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H. The minimality of I(y) and the topological feasibility implies I (y)Nr(v) =
() for every v € V(H —y).

If |r(y)| = 1, then let " be the restriction of r to H — y, and note that
r’ is topologically and connectivity-wise feasible in G — r(y). The claim then
follows by the induction hypothesis, using the vertex in r(y) as the model
of y. Hence, we can assume |r(y)| > 2. It follows r(y) contains two vertices
x1 and 9 consecutive in the boundary of ¥. Let P be the path forming
the boundary of the face containg the the arc of the boundary of ¥ between
1 and x5. Note that P intersects the boundary of ¥ only in 7 and s, as
otherwise there would exist a G-slice intersecting GG in exactly one internal
vertex of P contained in the boundary of ¥; we dealt with this case before.
Let G/ P be the graph obtained from G by contracting P to a single vertex p
drawn in the boundary of ¥, and let /P be obtained by replacing x; and x
by pin 7(y). Observe that /P is topologically and connectivity-wise feasible
in G/P, and thus H has a minor rooted in /P in G/P. Replacing p by P
in this model gives a minor of H in G rooted in r. O

2 Highly linked case

Let G be a graph with a normal drawing in a surface ¥ which is neither the
sphere nor the disk. The components of the boundary of ¥ are called cuffs.
For an integer p, we say the drawing is p-generic if

e every G-normal curve with ends in different cuffs intersects G in at
least p points, and

e if a simple closed G-normal non-contractible curve ¢ intersects G in less
than p points, then there exists a cuff & such that GNk C GNc and ¢
is homotopic to k.

Let H be an edgeless graph and let  be a normal root function in G. We say
r is topologically feasible if there exists a forest F' drawn without crossings
in ¥ such that for each v € V(H), the forest F' has a component F, with
r(v) C V(F,), and F, # F, for distinct v,w € V(H). Note that the drawing
of F'in this definition is independent of the drawing of GG, they can intersect
arbitrarily.

Theorem 2. For every surface Y and integer k, there exists p such that
the following holds. Let G be a graph with a normal drawing in a surface 3
with at least two holes, such that at most k vertices of G are drawn in the
boundary of X2, and each cuff contains at least one vertex of G. Let H be an
edgeless graph and let r be a normal root function assigning to each vertex
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of H a non-empty set. If r is topologically feasible and the drawing of G is
p-generic, then H is a minor of G rooted in r.

Proof. Let g be the genus of ¥ and h the number of holes in . We will
choose p > s > g, h, p suitably.
A G-net is a graph N drawn in X so that

e NNG =V(N)NV(G), ie., N and G intersect only in vertices,
e cach cuff traces a cycle in N, and

e N has exactly one face and this face is homeomorphic to an open disk

A.

Choose such a G-net N with the smallest number of intersectins with G, and
subject to that with the smallest number of vertices. Clearly NV is connected
and has minimum degree at least two. Moreover, since N has only one face,
every cycle in NV is non-separating, and thus non-contractible.

Let N’ be the multigraph obtained from N by suppressing all vertices
of degree two; note that N’ can contain loops and parallel edges, but has
minimum degree at least three. Let g be the genus of ¥ and h the number of
holes in . Since N’ has only one face, by Euler’s formula we have |E(N’)|
[V(N")|4(h+1)+g—2, and since |[E(N")| > 3|V(N’)|, this implies |V (N')|
2(h+g—1)and |[E(N")| <3(h+g—1). Hence, N has at most 2(h+g — 1)
vertices of degree at least three, joined by at most 3(h + g — 1) paths.

Let X be the set of vertices of N of degree at least three or belonging
to the boundary of ¥. Let S be the subgraph of N induced by X, vertices
at distance at most s from X, and paths of length at most 3s between the
vertices of X. Note that S has at most k+9s(h+g) < p vertices. Since every
cycle in N non-contractible and the drawing of G is p-generic, we conclude
that this cycle must trace a cuff. Moreover, any path in S has length less
than p, and thus each component of S contains at most one cuff. Hence, each
component of S is either a tree, or a unicyclic graph containing a cuff. In
particular, the surface with interior ¥ — S is connected and homeomorphic
to the surface ¥ with a bounded number of new holes.

Consider any vertex v drawn in the boundary of X, and let z be an
arbitrary vertex drawn in a different cuff. Note that if Z C V(G)\ {v, z} has
size less than p, then no simple non-contractible curve can intersect GG only
in vertices of Z, since the drawing of GG is p-generic. Consequently, Z does
not separate v from z, and thus by Menger’s theorem, GG contains p internally
vertex-disjoint paths from v to z. Out of these, all but |V (S)| intersect S
only in their endpoints, and from those internally disjoint from S, we can
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choose a set P, of size at least (p — |V(5)])/|V(S)| > s that leave v through
the same angle a, among the incident edges of S.

Consider a drawing of the forest F' in X certifying that r is topologically
feasible. Up to homeomorphism there are (for fixed ¥ and k) only finitely
many options for the graph N’ and the forest F', and for each combination of
N’ and F', we can fix a drawing where they intersect a finite number of times.
Hence, there is a constant v depending only on ¥ and k such that F and N’
intersect at most v times; consequently, we have s > 7. Note that N — .S is
a union of paths of length at least S, and thus we can shift F' slightly so that
it is disjoint from S except for the vertices in the cuffs, edges of F' only leave
each vertex v in the boundary of ¥ through the angle a,, and F' intersects
N only in vertices.

Let G’ be the graph obtained from G by cutting along N, drawn in a
disk A with interior homeomorpic to the face A. Cutting along N splits F’
into a number of components, let H' be the edgeless graph whose vertices
are these components. For each component @) € V(H’), let 7'(Q) consist of
the vertices in which @ intersects the boundary of G'. Note that to obtain a
minor of H in G rooted in r, it suffices to obtain a minor of H' in G’ rooted
in " and combine parts of the model corresponding to @ € V(H') contained
in the same component of F. Due to the way »’ arises from the drawing of
F. it is topologically feasible. Hence, by Theorem 1, we only need to argue
it is connectivity-wise feasible.

Consider any G'-slice ¢, intersecting G’ in ¢ vertices. Suppose for a con-
tradiction that ¢ < |r'/c|. Note that |r'/c| < |V(H')| < k+ 2y < s. Let Ny
be the graph obtained from N by adding ¢, with vertices at intersections with
G’ and possibly at ends of ¢. Then N; has two faces, and thus it contains a
cycle C' (necessarily containing c¢) separating them.

If C Z SUcand CNX # (0, then by the construction of S, C' contains
a path R of length s consisting of vertices of N of degree two not belonging
to the boundary of 3. Note that ¢ < s and that N — R U c is a G-net, con-
tradicting the choice of NV intersecting GG in the smallest number of vertices.

If CNX =, then C consists of a path R of vertices of degree two in
N and of ¢, and |r'/c| < |[V(R)|. Therefore, again N — R U ¢ is a G-net
contradicting the minimality of G.

Therefore, C' C S Uc. Note that the only root vertices in C' must belong
to some cuff &k intersecting C'. Since 0 < ¢t < |r'/c|, such a cuff must exist.
Note that C'U k intersects G in less than V(S) 4+ s + k < p vertices. Since
the drawing of G is G-generic, C' U k contains a contractible cycle K. Let f
be the open disk bounded by K. The minimality of the G-net N implies f
contains no vertices and edges of N, and thus f is a face of NV U ¢ bounded
by K. Since r’'/c # (), the angle a, for some v € V(G) Nk must be contained
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in f. However, then every path in P, must intersect ¢ and t > s, which is a
contradiction. ]

Theorem 2 has a number of problematic assumptions. Excluding surfaces
with less than two holes and requiring a vertex on each cuff is annoying,
but relatively easy to work around. More substantial problem is that we
forbid non-contractible curves with less than p intersections with G that are
homotopic to a cuff £ (but do not contain it); for applications, we will need
to relax this assumption and only forbid such curves with less than |G N k|
intersections. We will do this (as well as obtaining the connection to the
respectful tangles) in the next lecture.



