
Recall H is a minor of G with model µ if

• µ assigns to vertices of H pairwise vertex-disjoint connected subgraphs
of G, and

• for each edge e = uv of H, µ(e) is a distinct edge of G not contained
in any of these subgraphs and with one end in µ(u) and the other end
in µ(v).

A root function is a function r : V (H) → 2V (G) such that r(v) ∩ r(w) = ∅
for distinct v, w ∈ V (H). We say H is rooted in r if r(v) ⊆ V (µ(v)) for
every v ∈ V (H). We most commonly deal with the case |r(v)| ≤ 1 for each
v ∈ V (H) (and indeed, rooted minors are usually defined in this way, as a
partial injective function from V (H) to V (G)); we will call such roots simple.

Let us note one important case, when H has no edges and |r(v)| = 2 for
each v ∈ V (H) (or, almost equivalently, the case H is a matching and r is a
simple root function). Then, we are looking of pairwise vertex-disjoint paths
with prescribed endpoints.

Our aim for the next two lectures is to give an algorithm to determine
whether a graph G embedded in a surface contains a fixed graph H rooted
in given r. Furthermore, we will prove that such a minor always exists when
G contains a respectful tangle of sufficiently large order θH and the distance
between any two root vertices is θH in the corresponding metric.

We say drawing of a graph in a surface with holes is normal if it intersects
the boundary of the surface only in vertices. We say a root function r is
normal if for each v, all vertices in r(v) are contained in the boundary of the
surface.

1 The disk case

Consider a graph G drawn normally in the disk, and let v1, v2, . . . , vm be
the vertices of G drawn in the cyclic order around the boundary of the disk.
Let H be an edgeless graph and let r be a normal root function. We say
r is topologically infeasible if there exist distinct u, v ∈ V (H) and indices
i1 < i2 < i3 < i4 such that vi1 , vi3 ∈ r(u) and vi2 , vi4 ∈ r(v), and topologically
feasible otherwise. Note that if H has a minor in G rooted in r, then r is
topologically feasible.

A G-slice is a simple G-normal curve c joining distinct points in the
boundary of the disk and otherwise disjoint from the boundary. The end-
points of c divide the boundary of the disk into two arcs, let Ac and Bc denote
the sets of vertices of G drawn in these two arcs (if the endpoints of c are
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root vertices, they are included both in Ac and Bc). We define r/c to be the
set of vertices v ∈ V (H) such that r(v) ∩ Ac 6= ∅ 6= r(v) ∩ Bc. We say that
r is connectivity-wise feasible if |G∩ c| ≥ |r/c| for every G-slice c. Note that
if H has a minor in G rooted in r, then r is connectivity-wise feasible.

Our first result is a converse to these necessary conditions (which can be
viewed as a disk version of Menger’s theorem).

Theorem 1. Let G be a graph G drawn normally in a disk Σ, let H be an
edgeless graph and let r be a normal root function assigning to each vertex of
H a non-empty set. If r is topologically and connectivity-wise feasible, then
H is a minor of G rooted in r.

Proof. We proceed by induction on |V (G)|. We can assume only root ver-
tices are contained in the boundary, as otherwise we can shift the non-root
vertices slightly away from the boundary without violating the topologic and
connectivity-wise feasibility.

Suppose first there exists a G-slice disjoint from G such that both disks
Σ1 and Σ2 into which it splits Σ intersect G. We have |G ∩ c| = 0, and thus
the connectivity-wise feasibility implies that for each v, r(v) is contained in
Σ1 or Σ2. Hence, we can find a minor in Σ1∩G1 and Σ2∩G2 by the induction
hypothesis. Therefore, we can assume no such G-slice exists.

Next, consider the case that there exists a G-slice c intersecting G in
exactly one vertex x such that x ∈ r(v) for some v ∈ V (H), and both disks Σ1

and Σ2 into which c splits Σ intersect G−v. We have |G∩c| = 0 and v ∈ r/c,
and thus by the connectivity-wise feasibility, for each w ∈ V (H) \ {v}, r(w)
is contained in Σ1 or Σ2. For i ∈ {1, 2}, let Gi = Σi ∩G, let Hi consist of v
and vertices w ∈ V (H) \ {v} such that r(w) ⊂ Σi, and let ri(v) = r(v) ∩ Σi

and ri(w) = r(w) for w ∈ V (Hi) \ {v}. Observe that ri is topologically and
connectivity-wise feasible in Gi, and thus by the induction hypothesis, Hi is
a minor of Gi rooted in ri. Connecting the two models, we obtain a minor
of G rooted in r. Therefore, we can assume no such G-slice exists.

Suppose c is a simple closed curve in Σ intersecting G in exactly one
vertex x, and at least one vertex of G is drawn in the open disk Λ bounded
by c. Let G′ be the subgraph of G obtained by deleting vertices and edges in
Λ. Note that r is topologically and connectivity-wise feasible in G′, and thus
G′ (and G) contains a minor of H rooted in r by the induction hypothesis.
Therefore, we can assume no such closed curve exists. It follows that the
boundary of each face of G is either a cycle or a path with both ends in the
boundary.

Let v1, v2, . . . , vm be the vertices of G drawn in order in the boundary of
Σ. For v ∈ V (H), let I(v) be the minimal interval {vi, vi+1, . . . , vj} containing
r(v). Let y be the vertex of H such that I(y) is minimal among all vertices of
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H. The minimality of I(y) and the topological feasibility implies I(y)∩r(v) =
∅ for every v ∈ V (H − y).

If |r(y)| = 1, then let r′ be the restriction of r to H − y, and note that
r′ is topologically and connectivity-wise feasible in G− r(y). The claim then
follows by the induction hypothesis, using the vertex in r(y) as the model
of y. Hence, we can assume |r(y)| ≥ 2. It follows r(y) contains two vertices
x1 and x2 consecutive in the boundary of Σ. Let P be the path forming
the boundary of the face containg the the arc of the boundary of Σ between
x1 and x2. Note that P intersects the boundary of Σ only in x1 and x2, as
otherwise there would exist a G-slice intersecting G in exactly one internal
vertex of P contained in the boundary of Σ; we dealt with this case before.
Let G/P be the graph obtained from G by contracting P to a single vertex p
drawn in the boundary of Σ, and let r/P be obtained by replacing x1 and x2
by p in r(y). Observe that r/P is topologically and connectivity-wise feasible
in G/P , and thus H has a minor rooted in r/P in G/P . Replacing p by P
in this model gives a minor of H in G rooted in r.

2 Highly linked case

Let G be a graph with a normal drawing in a surface Σ which is neither the
sphere nor the disk. The components of the boundary of Σ are called cuffs.
For an integer p, we say the drawing is p-generic if

• every G-normal curve with ends in different cuffs intersects G in at
least p points, and

• if a simple closed G-normal non-contractible curve c intersects G in less
than p points, then there exists a cuff k such that G∩ k ⊆ G∩ c and c
is homotopic to k.

Let H be an edgeless graph and let r be a normal root function in G. We say
r is topologically feasible if there exists a forest F drawn without crossings
in Σ such that for each v ∈ V (H), the forest F has a component Fv with
r(v) ⊆ V (Fv), and Fv 6= Fw for distinct v, w ∈ V (H). Note that the drawing
of F in this definition is independent of the drawing of G, they can intersect
arbitrarily.

Theorem 2. For every surface Σ and integer k, there exists p such that
the following holds. Let G be a graph with a normal drawing in a surface Σ
with at least two holes, such that at most k vertices of G are drawn in the
boundary of Σ, and each cuff contains at least one vertex of G. Let H be an
edgeless graph and let r be a normal root function assigning to each vertex
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of H a non-empty set. If r is topologically feasible and the drawing of G is
p-generic, then H is a minor of G rooted in r.

Proof. Let g be the genus of Σ and h the number of holes in Σ. We will
choose p� s� g, h, p suitably.

A G-net is a graph N drawn in Σ so that

• N ∩G = V (N) ∩ V (G), i.e., N and G intersect only in vertices,

• each cuff traces a cycle in N , and

• N has exactly one face and this face is homeomorphic to an open disk
Λ.

Choose such a G-net N with the smallest number of intersectins with G, and
subject to that with the smallest number of vertices. Clearly N is connected
and has minimum degree at least two. Moreover, since N has only one face,
every cycle in N is non-separating, and thus non-contractible.

Let N ′ be the multigraph obtained from N by suppressing all vertices
of degree two; note that N ′ can contain loops and parallel edges, but has
minimum degree at least three. Let g be the genus of Σ and h the number of
holes in Σ. Since N ′ has only one face, by Euler’s formula we have |E(N ′)| =
|V (N ′)|+(h+1)+g−2, and since |E(N ′)| ≥ 3

2
|V (N ′)|, this implies |V (N ′)| ≤

2(h+ g− 1) and |E(N ′)| ≤ 3(h+ g− 1). Hence, N has at most 2(h+ g− 1)
vertices of degree at least three, joined by at most 3(h+ g − 1) paths.

Let X be the set of vertices of N of degree at least three or belonging
to the boundary of Σ. Let S be the subgraph of N induced by X, vertices
at distance at most s from X, and paths of length at most 3s between the
vertices of X. Note that S has at most k+9s(h+g)� p vertices. Since every
cycle in N non-contractible and the drawing of G is p-generic, we conclude
that this cycle must trace a cuff. Moreover, any path in S has length less
than p, and thus each component of S contains at most one cuff. Hence, each
component of S is either a tree, or a unicyclic graph containing a cuff. In
particular, the surface with interior Σ − S is connected and homeomorphic
to the surface Σ with a bounded number of new holes.

Consider any vertex v drawn in the boundary of Σ, and let z be an
arbitrary vertex drawn in a different cuff. Note that if Z ⊆ V (G)\{v, z} has
size less than p, then no simple non-contractible curve can intersect G only
in vertices of Z, since the drawing of G is p-generic. Consequently, Z does
not separate v from z, and thus by Menger’s theorem, G contains p internally
vertex-disjoint paths from v to z. Out of these, all but |V (S)| intersect S
only in their endpoints, and from those internally disjoint from S, we can
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choose a set Pv of size at least (p− |V (S)|)/|V (S)| � s that leave v through
the same angle av among the incident edges of S.

Consider a drawing of the forest F in Σ certifying that r is topologically
feasible. Up to homeomorphism there are (for fixed Σ and k) only finitely
many options for the graph N ′ and the forest F , and for each combination of
N ′ and F , we can fix a drawing where they intersect a finite number of times.
Hence, there is a constant γ depending only on Σ and k such that F and N ′

intersect at most γ times; consequently, we have s� γ. Note that N − S is
a union of paths of length at least S, and thus we can shift F slightly so that
it is disjoint from S except for the vertices in the cuffs, edges of F only leave
each vertex v in the boundary of Σ through the angle av, and F intersects
N only in vertices.

Let G′ be the graph obtained from G by cutting along N , drawn in a
disk ∆ with interior homeomorpic to the face Λ. Cutting along N splits F
into a number of components, let H ′ be the edgeless graph whose vertices
are these components. For each component Q ∈ V (H ′), let r′(Q) consist of
the vertices in which Q intersects the boundary of G′. Note that to obtain a
minor of H in G rooted in r, it suffices to obtain a minor of H ′ in G′ rooted
in r′ and combine parts of the model corresponding to Q ∈ V (H ′) contained
in the same component of F . Due to the way r′ arises from the drawing of
F , it is topologically feasible. Hence, by Theorem 1, we only need to argue
it is connectivity-wise feasible.

Consider any G′-slice c, intersecting G′ in t vertices. Suppose for a con-
tradiction that t < |r′/c|. Note that |r′/c| ≤ |V (H ′)| ≤ k + 2γ � s. Let N1

be the graph obtained from N by adding c, with vertices at intersections with
G′ and possibly at ends of c. Then N1 has two faces, and thus it contains a
cycle C (necessarily containing c) separating them.

If C 6⊆ S ∪ c and C ∩X 6= ∅, then by the construction of S, C contains
a path R of length s consisting of vertices of N of degree two not belonging
to the boundary of Σ. Note that t < s and that N − R ∪ c is a G-net, con-
tradicting the choice of N intersecting G in the smallest number of vertices.

If C ∩ X = ∅, then C consists of a path R of vertices of degree two in
N and of c, and |r′/c| ≤ |V (R)|. Therefore, again N − R ∪ c is a G-net
contradicting the minimality of G.

Therefore, C ⊆ S ∪ c. Note that the only root vertices in C must belong
to some cuff k intersecting C. Since 0 ≤ t < |r′/c|, such a cuff must exist.
Note that C ∪ k intersects G in less than V (S) + s + k < p vertices. Since
the drawing of G is G-generic, C ∪ k contains a contractible cycle K. Let f
be the open disk bounded by K. The minimality of the G-net N implies f
contains no vertices and edges of N , and thus f is a face of N ∪ c bounded
by K. Since r′/c 6= ∅, the angle av for some v ∈ V (G)∩ k must be contained
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in f . However, then every path in Pv must intersect c and t ≥ s, which is a
contradiction.

Theorem 2 has a number of problematic assumptions. Excluding surfaces
with less than two holes and requiring a vertex on each cuff is annoying,
but relatively easy to work around. More substantial problem is that we
forbid non-contractible curves with less than p intersections with G that are
homotopic to a cuff k (but do not contain it); for applications, we will need
to relax this assumption and only forbid such curves with less than |G ∩ k|
intersections. We will do this (as well as obtaining the connection to the
respectful tangles) in the next lecture.
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