
Recall the following definitions and results from the last lesson.
A set W ⊆ V (G) is a-well-linked in a graph G if for all disjoint subsets

A and B of W of the same size, G contains a flow from A to B of size |A|
and edge congestion at most a. We will also say W is (a, k)-well-linked if
this holds for subsets of size at most k. We say W is node-well-linked if G
contains a total (A−B)-linkage for any such subsets A and B. We say that
two disjoint sets X and Y in G are a-linked/node-linked if for all A ⊆ X and
B ⊆ Y of the same size, G contains a a flow from A to B of size |A| and edge
congestion at most a/a total (A−B)-linkage.

A brick of height h is a triple (G,A,B), where G is a graph and A and
B are disjoint subsets of vertices of G of size h. The brick is a-well-linked if
A∪B is a-well-linked in G, and node-linked if A and B are node-well-linked
in G and A and B are node-linked in G. A path-of-sets system of width
w and height h in a graph G is a sequence (H1, A1, B1), . . . , (Hw, Aw, Bw)
of vertex-disjoint bricks of height h such that Hi is an induced subgraph
of G for i ∈ {1, . . . , w}, and G contains total (Bi − Ai+1)-linkages Li for
i ∈ {1, . . . , w − 1} such that the paths in

⋃w−1
i=1 Li are pairwise disjoint and

disjoint from H1 ∪ . . . ∪ Hw except for their endpoints; we say Li is an i-
connector of the system. The system is a-well-linked or node-linked if its
bricks have these properties.

In a graph of bounded maximum degree, we can turn an a-well-linked
path-of-sets system into a node-linked one.

Lemma 1. Suppose (H1, A1, B1), . . . , (Hw, Aw, Bw) is an a-well-linked path-
of-sets system of height at least 16(∆a+1)2h in a graph G of maximum degree
at most ∆. Then there exist sets A′i ⊆ Ai and B′i ⊆ Bi of size h such that
(H1, A

′
1, B

′
1), . . . , (Hw, A

′
w, B

′
w) is a node-linked path-of-sets system.

We also argued that it suffices to find a sufficiently large and linked path-
of-sets system.

Corollary 2. If G has maximum degree ∆ and contains an a-well-linked
path-of-sets system of width 2n2 and height 32(∆a+1)2n(6n+9), then Wn �
G.

It will be convenient to work with graphs of maximum degree three, as
in these graphs edge-disjointness and vertex-disjointness of paths (almost)
coincides. In the homework assignment, we have seen that it is possible to
decrease the maximum degree to four while decreasing the treewidth only
polynomially. The argument also gives a large node-well-linked sets of ver-
tices. In fact, it is possible (by a significantly more difficult argument) to
decrease the degree to three and lose only a polylogarithic fraction of the
treewidth.
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Theorem 3 (Chekuri and Chuzhoy [1]). Every graph of treewidth t has a
subgraph G of maximum degree at most three containing a node-well-linked
set of Ω(t/polylog t) vertices of degree one.

Let us remark that it would be possible to make the argument below
work for graphs of maximum degree at most four, but at the cost of some
complications. We say that a path-of-sets system has maximum degree three
if the graph consisting of the union of the bricks and connectors of the system
has maximum degree at most three, and the vertices of A1 and Bw have
degree one. Hence, Theorem 3 can be restated as saying that every graph of
treewidth t contains a node-linked path-of-sets system of maximum degree
three, width 1, and height h = Ω(t/polylog t).

1 Splintering bricks and doubling the system

The grid theorem follows from the fact that we can double the width of a
path-of-sets system at the expense of decreasing its height by a constant
factor.

Theorem 4. If G contains a node-linked path-of-sets system of maximum
degree three, width w and height h, then G also contains a 64-well-linked
path-of-sets system of maximum degree three, width 2w and height h/29.

Indeed, we can combine this theorem with Lemma 1 to turn the obtained
path-of-sets system into node-linked one of height h/c for some fixed constant
c. We then iterate the process log2(2n

2)-times, so that the resulting system
has width 2n2 and height

h

clog2(2n2)
=

h

(2n2)log2 c
=

h

poly(n)
.

For h sufficiently large (but just polynomial) in n, this enables us to apply
Corollary 2 and obtain Wn as a minor.

To prove Theorem 4, we need to show how to locally split a brick into
two. So that we can apply this splitting operation along the path-of-sets
system, we need a variation on the definition of a brick. A good semi-brick
of height h is a triple (G,A,B) with A and B disjoint sets of vertices of G,
where

• G has maximum degree three and vertices of A and B have degree 1,

• |A| = h/64 and |B| = h,
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• B is node-well-lined and A and B are node-linked.

A splintering of a semi-brick of height h is a pair of disjoint subgraphs X
and Y of G and disjoint sets A′, C ⊂ V (X) and D,B′ ⊂ V (Y ) such that

• A′ ⊂ A has size h/512 and B′ ⊂ B has size h/64,

• C and D have size h/512 and G contains a perfect matching between
them, and

• A′ ∪ C is 64-well-linked in X and D ∪ B′ is (64, h/512)-well-linked in
Y .

Lemma 5. Every good semi-brick of height h has a splintering.

It is easy to see Lemma 5 implies Theorem 4. Clearly, node-linkedness
is stronger than the linkedness properties required for a semi-brick. We pro-
ceed along the path-of-sets system, applying Lemma 5. Suppose we already
splintered the previous brick (Hi−1, Ai−1, Bi−1), and let B′i−1 ⊂ Bi−1 be the
resulting subset of size h/64. We restrict Ai to the h/4 vertices connected to
B′i−1 by the (i− 1)-connector, turning the i-th brick into a good semi-brick,
and apply Lemma 5 to split the semi-brick into Xi and Yi, obtaining subsets
A′i ⊂ Ai and B′i ⊂ Bi. We restrict B′i−1 to the vertices connected to A′i by
the (i−1)-connector, turning Yi−1 into a 64-well-linked brick of height h/512.
We repeat this procedure until the whole system consists of twice as many
64-well-linked bricks of height h/512.

Therefore, we only need to prove Lemma 5. Towards this goal, let us
introduce a simpler object, a weak splintering (X, Y, SX , SY ,PX ,PY ), where
X and Y are disjoint subgraphs of G − (A ∪ B), PX and PY are disjoint
(B−SX) and (B−SY ) linkages in G, each of size h/32 and only intersecting
X and Y in their endpoints, SX is (64, h/512)-well-linked in X and SY is
(64, h/512)-well-linked in Y . We now aim to turn a weak splintering into a
splintering. To this end, we repeatedly use the following Cleaning Lemma.

Lemma 6. Let R, S, and T be sets of vertices in a graph G, and let P1 be
an (R−S)-linkage of size a1. Suppose also G contains an (R−T ) linkage of
size a2 ≤ a1. Then G contains an (R−S ∪ T )-linkage P of size a1 such that
a1 − a2 of the paths of P belong to P1 and the remaining a2 paths end in T .

Proof. Let G′ be a minimal subgraph of G that contains P1 as well as an
(R − T ) linkage P2 of size a2. Let T ′ be the set of ends of paths of P2 in
T . Since G′ contains an (R − S ∪ T )-linkage of size a1 (namely P1), the
standard augmenting path flow algorithm started from P2 implies G′ also
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contains such a linkage P where the endpoints include T ′. We claim that
all paths from P not ending in T ′ belong to P1; if not, one of these paths
contains an edge e not belonging to P1. But then G′ − e contains P1 as well
as an (R− T ′) linkage of size a2, contradicting the choice of G′.

Lemma 7. If a good semi-brick (G,A,B) contains a weak splintering (X, Y, SX , SY ,PX ,PY ),
then it also contains a splintering.

Proof. First, we construct a large (SX , SY )-linkage while sacrificing a small
part of PX and PY . Let BX and BY be the ends of paths of PX and PY in
B. Let k = h/64, so that |BX | = |BY | = 2k. Since B is node-well-linked,
we can find a flow with vertex congestion 1 and size 2k from BX to BY ,
and combining it with paths from PX and PY , we obtain a flow with vertex
congestion 2 and size 2k from SX to SY . This flow gives an (SX−SY )-linkage
of size k. From this linkage, we select a sublinkage Q0 of size 3k/4.

We now apply the Cleaning Lemma to PX and Q0 in the subgraph in-
duced by these two linkages, obtaining P ′X ⊂ PX of size 5k/4 and a disjoint
(SX , SY )-linkage Q′0 of size 3k/4. Then, we apply the Cleaning Lemma to
PY and Q′0, obtaining P ′Y ⊂ PY of size 5k/4 and a disjoint (SX , SY )-linkage
Q of size 3k/4.

Next, we find a large (A, SX ∪SY )-linkage while sacrificing small parts of
P ′X , P ′Y , and Q. Since A and B are node-linked, there exists a flow of size 2k
from a subset of A of size 2k to BX and node congestion 1, and combining
it with PX , we obtain a flow with node congestion 2 to SX ∪ SY . As before,
this gives an (A, SX ∪XY )-linkage R0 of size k/4.

We select one vertex on each path of Q, forming a set Z (we insert
auxiliary fake vertices on those paths that are just single edges), so we can
view Q as a (Z − SX ∪ SY )-linkage. We again apply the Cleaning Lemma to
P ′X ∪P ′Y ∪Q and R0, obtaining L ⊂ P ′X ∪P ′Y ∪Q of size |P ′X ∪P ′Y ∪Q|−k/4
and a disjoint (A, SX ∪ XY )-linkage R of size k/4. From L, we can select
P ′′X ⊂ P ′X of size |P ′X | − k/4 = k, P ′′Y ⊂ P ′Y of size k, and Q′ of size
k/8 ≤ |Q| − k/4.

By symmetry, we can assume that k/8 = h/512 paths RX from R end
in SX . We can combine RX , X, and all but one edge of every path from Q′
to form the left part of the splintering, and Y together with P ′′Y to form the
right part of the splintering.

2 Weak splinterings from perfect clusters

Consider a good semi-brick (G,A,B). A cluster is an induced subgraph C
of G − (A ∪ B). For a cluster C, we let ∂C denote the set of vertices of C
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incident with edges outside of C. We say that C is (a, k)-well-linked if ∂C
is (a, k)-well-linked in C. A balanced C-split is an ordered partition (L,R)
of V (G) \ V (C) such that |R ∩ B| ≥ |L ∩ B| ≥ |B|/4; it is minimum if
the number e(L,R) of edges of G between L and R is minimum among all
balanced C-splits. We say that C is good if e(L,R) ≤ 7

32
h, and perfect if

additionally 1
28
h ≤ e(L,R). A perfect, sufficiently linked cluster gives a weak

splintering.

Lemma 8. Let (G,A,B) be a good semi-brick and let C be a perfect (64, h/512)-
well-linked cluster. If |∂C| ≤ |A|+ |B|+ 1 and each vertex of C has at most
one neighbor outside of C, then (G,A,B) contains a weak splintering.

Proof. Let (L,R) be a minimum balanced C-split. Since B is (1, h/4)-well-
linked, G contains h/4 vertex-disjoint paths from L ∩B to R∩, and at least
h/4 − e(L,R) ≥ h/32 of them hits C; let PC consist of the initial segments
of these paths until they hit C, and let SC be the set of their ends in C.

Note also this implies at least h/4 − e(L,R) edges from C are incident
with L, and thus the number of edges leaving R is at most e(L,R)+e(C,R) =
e(L,R)+ |∂C|−e(C,L) ≤ |A|+ |B|+1+2e(L,R)−h/4 = 49

64
h+2e(L,R)+1.

We now perform the following algorithm, refining a partition P of R; initially,
we set P = {R}. As long as there exists a (necessarily unique) part Y ′ ∈ P
such that |Y ′ ∩ B| > |R ∩ B|/2, we check whether ∂Y ′ ∪ (Y ′ ∩ (A ∪ B)) is
(64, h/512)-well-linked in G[Y ′]. If so, we let Y = G[Y ′ \ (A∪B)]; the cluster
Y is also (64, h/512)-well-linked, since all vertices of A ∪B have degree one.
And, we let PY consist of h/32 edges between B and Y , and let SY denote
their ends in Y . Then (C, Y, SC , SY ,PC ,PY ) is a weak splintering. Otherwise,
Y ′ = Y1 ∪ Y2 for disjoint Y1 and Y2 such that e(Y1, Y2) < 1

64
min(|Y1|, |Y2|);

we replace Y ′ by Y1 and Y2 in P .
Suppose this continued till every part would contain at most half of the

vertices of |R∩B|. A technical calculation (which we skip) shows that we did
not create too many edges between different parts of P—less than e(L,R)/2
in total (this calculation uses the fact that e(L,R) ≥ h/28). For each part
P ∈ P , let i(P ) denote the number of edges from P to the other parts of P ,
and o(P ) the number of edges from P to L. Then∑

P∈P

(i(P )− o(P )) =
∑
P∈P

i(P )−
∑
P∈P

o(P ) < 2 · e(L,R)

2
− e(L,R) = 0,

and thus there exists P ∈ P such that i(P ) < o(P ). However, |R∩B \P | ≥
|R ∩ B|/2 ≥ |B|/4, and thus (L ∪ P,R \ P ) is a balanced C-split with
e(L,R) + i(P ) − o(P ) < o(L,R) edges between the parts, contradicting the
minimality of (L,R).
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The proof of the grid theorem thus would be finished by proving the
following claim.

Theorem 9. Let (G,A,B) be a good semi-brick and let C be a good 23-well-
linked cluster such that |∂C| is minimum and subject to that |C| is minimum.
Then either C is perfect or (G,A,B) contains a splintering.

Indeed, note that G− (A ∪ B) is a good 23-well-linked cluster, and thus
|∂C| ≤ |A| + |B|. Furthermore, it is easy to see that the minimality of |C|
and the fact that G has maximum degree at most three implies that each
vertex of C has at most one neighbor outside. Therefore, if C turns out to
be perfect, we obtain a splintering by Lemma 8.

The proof of Theorem 9 is still quite technical, and we opt to stop our
exposition here.
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