A graph G is f-treewidth-fragile if for every integer k, there exists a
partition of V(G) to parts Xi, ..., X such that tw(G — X;) < f(k) for
1 =1,...,k. A graph class G is f-trecwidth-fragile if every graph in G €
G is f-treewidth-fragile. A class G is treewidth-fragile if it is f-treewidth-
fragile for some function f, and it is effectively trecwidth-fragile if there exists
a polynomial-time algorithm taking G € G and £ > 1 as an input and
outputing the corresponding partition X7, ..., X;. Our goal is to show that
all proper minor-closed classes are (effectively) treewidth-fragile, and to give
some applications.

1 Applications of treewidth-fragility

A property 7 of graphs is a-hereditary if for every graph G having the prop-
erty m and for every X C V(G), there exists Y C V(G) such that X C Y
and |Y| < a|X| and G — Y has the property 7. For example,

e the properties “G has no edges” and “G is 3-colorable” are 1-hereditary,
and

e the property “G can be covered by vertex-disjoint triangles” is 3-hereditary.

Let a:(G) denote the size of the largest set X C V(G) such that G[X] has
the property m. We say that 7 is tractable in graphs of bounded treewidth
if for every b, there exists a polynomial-time algorithm determining a, for
graphs of treewidth at most b.

Lemma 1. Suppose a class G of graphs is effectively treewidth-fragile and a
property m is a-hereditary for some a > 1 and tractable in graphs of bounded
treewidth. Then for every p > 1, there exists a polynomial-time algorithm
that for a graph G € G returns Z C V(G) such that G|Z] has the property
and |Z| > (1 —1/p)a-(G).

Proof. Without loss of generality, we can assume a and p are integers (by
rounding them up if necessary). Let f be the function such that every graph
from G is f-treewidth-fragile. Let £ = ap. In polynomial time, we can find a
partition Xi, ..., Xy of V(G) such that tw(G;) < f(k) fori=1,... k. For
i =1,...,k, use the algorithm for bounded treewidth to find Z; C V(G — X)
of size (G — X;) such that G[Z;] has the property 7, and return the largest
set Z among Zy, ..., Zj.

Consider a set T C V(G) such that G[T] has property 7 and |T'| = a,(G).
Fori=1,...,k, let X! = X;NT; there exists ¢ such that | X!| < |T'|/k. Since
7 is a-hereditary and G[T] has the property m, there exists a set X! C T
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such that X! C X/, |X/| < a|X!| < |T|/p, and G[T"\ X/] has the property
7. Since T'\ X! C V(G) \ X;, we have

Z| 2 |Zi] = an(G = X3) 2 T\ X{'| = (1 = 1/p)IT| = (1 = 1/p)ax(G),
as required. O

Lemma 2. Suppose a class G of graphs is effectively treewidth-fragile. Then
the chromatic number can be approximated for graphs in G up to a factor of
2.

Proof. Let f be the function such that every graph from G is f-treewidth-
fragile. For G € G, let X;, X5 be a partition of V(G) such that tw(G —
Xi),tw(G — X3) < f(2). Color the graphs G — X; and G — X, optimally by
disjoint sets of colors, obtaining a coloring of G by

X(G = X1) + x(G = X2) < x(G) + x(G) = 2x(G)

colors. O

2 Graphs on surfaces

Lemma 3. Suppose G is a graph drawn on a surface of Euler genus g. If G
has radius r, then tw(G) < (2g + 3)r.

Proof. Without loss of generality, G is a triangulation. Applying BFS to G,
we obtain a rooted spanning tree T' of G of depth r; let ¢ be the root of T'
and for each vertex v € V(G), let t(v) denote the set of at most r vertices
on the path from v to ¢ in 7', including v but excluding ¢q. Let G* be the
dual of G, and let S be the spanning subgraph of G* whose edges correspond
to those in E(G) \ E(T). Each vertex f of G* corresponds to a face of G,
bounded by a cycle zyz; let us define t(f) = t(z) Ut(y) Ut(z) and note that
t(f)| < 3r.

Note the graph S is connected. Indeed, we can “walk around” the tree T’
in G, passing along edges of S and visiting all faces of G (vertices of S). Let
So be a spanning tree of S and let X = E(5) \ E(Sy). We have

(X1 =[E(S) = [E(So)| = (|E(G)] = [E(T)]) = [E(So)|
= [E@G)| = (V&) =1) = ([V(G&")] = 1)
= (V@[ +[V(GT)+9=2) = (V(G)] =1) = ([V(G)| = 1) = g.

Let X’ be the set of vertices of GG incident with the edges corresponding to
X, and let Z = {J,cy t(v); we have |Z| < 2gr. For f € V(G*), let us define
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B(f) =t(f) U ZU{q}; we have B(f) < (29 + 3)r + 1. Hence, it suffices to
argue that (Sp, ) is a tree decomposition of G.

For any edge wv € E(G), we have {u,v} C {q} Ut(u) Ut(v) C B(f) for
a face f € V(5p) incident with this edge. Consider any vertex v € V(G).
If v € {¢} U Z, then v appears in all bags of (Sp, 5). Otherwise, let T, be
the subtree of T rooted in v, and note that v € 5(f) exactly for the faces f
incident with vertices of T,. Any two such faces are connected by a walk in §
obtained by “walking around” T,; the edges of this walk must belong to .Sy,
since v ¢ Z implies no edge of S corresponding to an edge of G incident with
a vertex of T, belongs to X. Therefore, {f : v € 5(f)} induces a connected
subtree of Sy. |

3 Outgrowths

Recall:

Definition 4. A graph H is a vortex of depth d and boundary sequence
V1, ..., if H has a path decomposition (T, 3) of width at most d such that

o T'=vvy...v;, and
o v, € B(v) fori=1,... k

Definition 5. For G drawn in a surface, a graph G is an outgrowth of G
by m vortices of depth d if

o G=GyUH,UH,, where H;N H; =0 for distinct i and j,

e for all v, H; is a vortex of depth d intersecting G only in its boundary
sequence,

o for some disjoint faces f1, ..., fr of Gy, the boundary sequence of H;
appears in order on the boundary of f;.

Let us now generalize Lemma [3]

Lemma 6. Suppose G s an outgrowth of graph Go drawn on a surface of
FEuler genus g by (any number of ) vortices of depth d. If G has radius r,
then tw(G) < (2(29 + 3)r +1)(d+1).

Proof. Let fi, ..., fr be the faces of Gy to which the vortices Gy, ..., Gy
attach. For i = 1,... k, let (T}, B;) be the corresponding decomposition of
G;; we can assume 7; is a path in Go. Let G{, be obtained from Gy by, for
1 =1,...,k, adding a vertex adjacent to all vertices incident with f;; note
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that G{, has radius at most 2r. Let (T, 5y) be the tree decomposition of Gy
obtained by Lemma [3} we have |3(z)| < 2(2g + 3)r + 1 for x € V(7). For
v € V(Gy), if there exists (necessarily unique) index ¢ such that v € V(T;),
let a(v) = Bi(v), otherwise let a(v) = {v}. For x € V(T), let B(z) =
Uvepo(r) @(v). Then (T',53) is a tree decomposition of G of width less than
(229 +3)r +1)(d+1).

Indeed, consider any v € V(G). If there exists i such that v € V(G;), then
there exists a connected subpath T;,, C Gy of T; such that v € §;(x) exactly for
x € V(T,), and let T] be the connected subtree of 7" induced by the vertices x
such that Sy(x)NV(T,) # 0; otherwise, let T, = @. If v € V(Gy), then let TV
be the connected subtree of 7" induced by the vertices x such that v € fy(z);
otherwise, let 7)) = @&. Note that {z € V(T) :v € (x)} = V(T,UT))}, and
that if T, # @ # T/, then v € V(T;), and thus 7, N T/ # (), implying that
T! UT/ is connected. O

Let G4 be the class of outgrowths of graphs drawn on a surface of Euler
genus g by (any number of) vortices of depth d. For a vortex with decompo-
sition (T, ), a vertex x is boundary-universal if it is adjacent to all vertices of
T. Let G, ,; be the class of outgrowths of graphs drawn on a surface of Euler
genus ¢ by (any number of) vortices of depth d, each of them containing a
boundary-universal vertex.

Corollary 7. For any g, d, b, r, consider a graph G € G, ;. If Z is the set
of vertices of G at distance at least b and at most b+ r from some vertexr vy
in the embedded part of G, then tw(G[Z]) < (2(2g +3)(r+5)+ 1)(d+ 1)

Proof. Without loss of generality, we can assume G is connected. Let Gq
be the embedded part of G. For each vortex G; of G, let (T}, 5;) be the
corresponding decomposition. Let H be obtained from G as follows. Delete
all vertices at distance greater than b+1r from vy that are not in the boundary
of any vortex, except for the boundary-universal vertices at distance exactly
b+ r 4+ 1 from vy. For each vortex Gj,

(a) if all vertices of T; are at distance greater than b+r from vy, then delete
V(T;), and

(b) if all vertices of T; are at distance less than b from v, then contract G;
to a single vertex and do not consider it to be a vortex any more.

Finally, contract all edges joining vertices v and v at distance less than b
from vy such that at least one of u and v is not contained in a boundary of
a vortex.



Let H' be the subgraph of G induced by vertices at distance at least b
and at most b + r from vy that are contained in vortices (G; such that all
vertices of T; are at distance less than b from vy (i.e., the vortices eliminated
in (b) above). Note that H' is a union of components of G[Z], treewidth of
H' is less than d, and G[Z \ V(H’)] is a subgraph of H. Hence, it suffices to
argue that tw(H) < (2(2g + 3)(r +5) + 1)(d + 1). Note also that H € G, 4,
and thus by Lemma [6] it suffices to argue H has radius at most r + 5

Indeed, consider any vertex v' € V(H), and let v be one of vertices of
G which have been contracted to v'. Let P be a shortest path from vy to
v in G; the construction of H and the fact that vortices contain boundary-
universal vertices implies that P has length at most b 4+ r 4+ 2. Consider any
edge xy of P, where both x and y are at distance less than b — 2 from vy. If
one of these vertices is a boundary vertex of a vortex, then since the vortex
contains a boundary-universal vertex, all the vertices of the boundary are at
distance less than b from vy, and thus the vortex was contracted in (b) to a
single vertex. Otherwise, the edge xy was contracted in the last part of the
construction of H. Therefore, P is contracted to a path of length at most
T+ 5. [

Corollary 8. For every g and d, then class G, 4 is treewidth-fragile.

Proof. Consider a graph G € G, 4; without loss of generality, we can assume
G is connected. For each vortex G; of G, let (T}, 3;) be the corresponding
decomposition, and let G’ be obtained by, for each i, adding a vertex v;
adjacent to all vertices of T; to the graph and putting v; to all bags of f;;
clearly, G € G ;,,. Let vy be an arbitrary vertex of the embedded part of
G'.

Consider any integer £k > 1. For ¢ = 1,...,k, let X] consist of vertices
whose distance from vy in G’ modulo k is i — 1, and let X; = X/ N V(G).
It suffices to argue that the treewidth of G' — X! O G — X; is bounded.
This follows from Corollary [7] since G’ — X/ is a disjoint union of subgraphs
induced by vertices at distances at least tk + ¢ and at most tk+i+ k — 1 for
telZ. ]

4 Apices and clique-sums

Recall:

Definition 9. G is obtained from H by adding a apices if H = G — A for
some set A C V(QG) of size a.

For a class G, let G denote the class of graphs obtained from those in
G by adding at most a apices. For a function f, let f((k) = f(k) + a.
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Observation 10. If G is f-treewidth-fragile, then G@ is %) _treewidth-
fragile.

Proof. Consider a graph G € G, and let A be a set of size at most a

such that G — A € G. Let X{, ..., X}, be a partition of V(G — A) such
that tw(G — A — X!) < f(k) for each i. Let X; = X1, ..., X; | = Xj_1,
Xi = X, UA. Then tw(G — X;) < f(k) + a for each 1. O

Observation 11. If G is f-trecwidth-fragile, then w(G) < 2f(2)+2 for every
Geg.

Proof. Let X1, X5 be a partition of V(G) such that tw(G—X1), tw(G—Xs) <
f(2). Then

w(G) < w(G=X1)+w(G—X3) < (tw(G—=X1)+1)+(tw(G—X2)+1) < 2f(2)+2.
O

Lemma 12. Let G be a class of graphs and let H be the class of graphs
obtained from those in G by clique-sums. If G is f-treewidth-fragile, then H
is fRIO2) treewidth-fragile.

Proof. Note that for every H € H, we have w(H) < 2f(2) + 2. Consider
any k£ > 1. We will inductively show a stronger claim: For every H € H
and a partition K, ..., K, of a clique K in H, there exists a partition X,
vy X of H such that tw(H — X;) < f(k) +2f(2) +2 and K NX; = K;
for each 7. This is clear for graphs G € G: Take the partition obtained by
f-treewidth-fragility of G and move all vertices of K to the appropriate part,
increasing the treewidth of G — X; by at most |K]|.

Suppose we now perform a clique-sum of Hy, Hy € H on a clique @, to
obtain a graph H, and let K be a clique in H and K, ..., K} its partition.
We can by symmetry assume K C V(H;). Let X7,..., X} be the inductively
obtained partition of V(H;) such that tw(H; — X]) < f(k) +2f(2) + 2 and
KN X! = K, for each i. Let Q; = Q N X/ for each i, and let X7, ..., X/
be the inductively obtained partition of V(Hjy) such that tw(Hs — X/) <
f(k)+2f(2) +2and @ N X! = Q; for each 7. Letting X; = X/ U X/, we
obtain a partition of V(H) such that K N X; = K; for each i. Moreover,
H — X; is a clique-sum of Hy — X and Hy — X/, implying tw(H — X;) <

)

fk)+2f(2) + 2. ]

5 Proper minor-closed classes

Recall:



Definition 13. A graph G is a-near-embeddable in a surface ¥ if for some
graph Gy drawn in X, G is obtained from an outgrowth of Gy by at most a
vortices of depth a by adding at most a apices.

Theorem 14 (The Structure Theorem). For every proper minor-closed class
G, there exists a and g such that graphs in G are clique-sums of graphs that
are a-near-embeddable in surfaces of genus at most g.

Combining the structure theorem with Lemma Observation [10, and
Corollary [8, we obtain the following claim.

Corollary 15. Every proper minor-closed class is treewidth-fragile.
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