
Recall that a tangle assigns the “small” and the “large” side to each
separation of bounded size in a graph G. In case G is drawn on a surface
other than the sphere, a tempting idea is to declare the side which is non-
planar to be the large side. Assuming this works (i.e., every separation has a
unique non-planar side, and the resulting object satisfies the tangle axioms),
the resulting (unique) tangle can be conveniently used to describe properties
of the drawing, e.g., it enables us to say whether vertices u and v are “far
apart” in the sense that G contains a system of disjoint non-contractible
cycles such that any path from u to v intersects many of them. Let us now
develop this theory in detail, including also the the case of graphs drawn in
the sphere (i.e., planar graphs).

1 Terminology

Let Σ be a surface. A closed curve in Σ is contractible if it can be continuously
transformed to a point; a simple (i.e., non-self-intersecting) closed curve c is
contractible exactly if one of the components of Σ \ c is an open disk; we
denote the closure of this disk by lake(c). Note that every closed curve
drawn in the sphere is contractible.

Consider a graph G drawn in Σ. Each closed walk in G is naturally
traced by a closed curve; we naturally extend the terminology above to the
closed walks (e.g., a closed walk is contractible if the closed curve tracing
it is contractible, for a cycle C traced by a simple closed curve c we define
lake(C) = lake(c)). The representativity of (the drawing of) G is the mini-
mum number of intersections of a non-contractible closed curve with G (this
notion clearly only makes sense if Σ is not the sphere). Note that we can
always “shift” a curve to intersect G only in vertces without increasing the
number of intersections, and thus it suffices to consider such closed curves;
we say a closed curve is G-normal if it intersects G only in vertices.

A drawing of a graph G in a surface Σ is 2-cell if every face is homeo-
morphic to an open disk. Note that

• if Σ is the sphere, then the drawing of G is 2-cell if and only if G is
connected; and

• if Σ is not the sphere, then it is 2-cell if and only if G is connected and
has representativity at least 1.

Suppose the drawing of G is 2-cell. The radial graph R(G) of G is has as
vertex V (G) together with one vertex vf drawn in each face f of G. For each
face f bounded by the closed walk v1v2 . . . vm, the edge set of R(G) includes
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the edges v1vf , . . . , vmvf drawn inside f in the natural way. Note that each
face of R(G) has length four and contains exactly one edge of G drawn as its
diagonal. Observe also that for the dual G? of G, we have R(G) = R(G?).
Note that G-normal closed curves naturally correspond to closed walks in
R(G), obtained by “shifting” the curve within each face.

Observation 1. Let G be a graph with a 2-cell drawing in a surface Σ. For
each G-normal closed curve c, there exists a closed walk W in R(G) and a
bijection f from c to the closed curve tracing W such that for each component
k of c−G, k and f(k) are homotopic in Σ \G.

2 Slopes

Consider a graph H drawn in a surface Σ (you should imagine H being the
radial graph of some other graph). A slope of order θ in H is a function ins
that to every cycle C ⊆ H of length less than 2θ in H assigns a closed disk
ins(C) ⊆ Σ bounded by C, such that

(S1) If C1 and C2 are cycles of length less than 2θ in H and C1 ⊆ ins(C2),
then ins(C1) ⊆ ins(C2).

(S2) If F ⊆ H is a theta graph (union of three paths intersecting exactly
in their common endpoints) and all three cycles in F have length less
than 2θ, then there exists a cycle C ⊆ F such that every other cycle
C ′ ⊆ F satisfies ins(C ′) ⊆ ins(C).

Note that if Σ is not the sphere, then there exists a slope of order θ in H if
and only if every cycle of length less than 2θ is contractible, and in this case
ins(C) = lake(C) for every such cycle C. In case that Σ is the sphere, there
are more ways how to choose ins. One is to drill a hole into one of the faces,
transforming the sphere into an open disk (or, up to a homeomorphism, the
plane), in which case each cycle encloses a unique closed disk. However,
this construction gives slopes which are “degenerate” and we will be more
interested in slopes which correspond to tangles in a sense we explore later.
Let us now establish some basic properties of slopes.

We say F ⊆ H is confined if every cycle in F has length less than 2θ.
For a confined subgraph, we define ins(F ) as the union of F and the disks
ins(C) for every cycle in C. Thus, (S2) can be restated as saying that for
every confined theta-subgraph F , ins(F ) = ins(C) for some cycle C in F .
The following observation easily follows by considering the cycles C for which
ins(C) is inclusionwise-maximal. A cactus is a graph in which any two cycles
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intersect in at most one vertex (equivalently, a cactus is a graph where every
2-connected block is either an edge or a cycle).

Lemma 2. Let ins be a slope of order θ and let F be a confined graph drawn
in a surface Σ. There exists a cactus F ′ ⊆ F such that ins(F ) = ins(F ′),
and for any distinct 2-connected blocks B1 and B2 of F ′, ins(B1) and ins(B2)
intersect in at most one vertex. Consequently, there exists a face f of F such
that ins(F ) = Σ \ f .

Suppose that H is a bipartite graph with a 2-cell drawing in a surface,
and let X be one of the parts of its bipartition. For a set Z of faces of H,
let N(Z) denote the subgraph of H consisting of vertices and edges incident
both with a face in Z and in Z. Note that N(Z) = N(Z). For a slope ins of
order θ, we say that Z is X-small if |N(Z)| ∩ X| < θ and Z ⊂ ins(N(Z));
note the former condition implies that N(Z) is confined. Also, by Lemma 2,
if |N(Z)| ∩ X| < θ, then exactly one of the sets Z and Z is X-small. The
proof of the following key lemma is quite technical and we skip it.

Lemma 3. In the situation described in the previous paragraphs, if Z1, Z2, Z3 ⊂
F (H) are X-small, then Z1 ∪ Z2 ∪ Z3 6= F (H).

3 Respectful pre-tangles

Consider a system T of separations of order less than θ in a graph G with a
2-cell drawing in a surface Σ. We say that T is respectful if for every cycle
C in R(G) of length less than 2θ, there exists a closed disk ∆ ⊆ Σ bounded
by C such that

(G ∩∆, G ∩ Σ \∆) ∈ T .

In that case, we define insT (C) = ∆. Let us remark that if Σ is not the sphere,
we necessarily have insT (C) = lake(C). We say that T is a pre-tangle if it
satisfies the tangle axioms (T1) and (T2) (see the first lecture).

Lemma 4. Let G be a graph with a 2-cell drawing in a surface Σ. If T is
a respectful pre-tangle of order θ in G, then insT (C) is a slope of order θ in
R(G).

Proof. We need to verify the slope axioms. Note we can assume that Σ is
the sphere, as otherwise insT = lake is a slope. For any cycle Ci in R(G)
of length less than 2θ, let (Ai, Bi) = (G ∩ insT (Ci), G ∩ Σ \ insT (Ci)) be the
corresponding separation belonging to T .
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(S1) Let C1 and C2 be cycles of length less than 2θ in R(G) such that
C1 is drawn in the disk insT (C2). If insT (C1) 6⊆ insT (C2), then the
union of the disks insT (C1) and insT (C2) is the whole sphere, and thus
A1 ∪ A2 = G. But this contradicts (T2).

(S2) Let F be a confined theta-subgraph of R(G), let C1, C2, and C2 be
the cycles in F , and assume without loss of generality that insT (C1)
is inclusionwise-maximal among insT (C1), insT (C2) and insT (C3). If
F ⊆ insT (C1), then (S2) holds. Otherwise, the maximality of insT (C1)
implies that insT (C1), insT (C2), and insT (C3) are the closures of the
faces of F bounded by C1, C2, and C3. Consequently, insT (C1) ∪
insT (C2)∪ insT (C3) is the whole sphere and A1 ∪A2 ∪A3 = G, contra-
dicting (T2).

We say that the slope insT is derived from T . We can also go from a
slope ins in R(G) to a pre-tangle, as follows. Recall that R(G) is bipartite,
V (G) is one of the parts of the bipartition, and faces of R(G) correspond to
edges of G. For a separation (A,B) of G of order less than θ, let ZA be the
set of faces of R(G) corresponding to the edges of A. Note that a vertex v
of G belongs to N(ZA) if and only if v is incident with edges of both A and
B, and thus v ∈ V (A ∩ B); hence, |V (N(ZA)) ∩ V (G)| ≤ |V (A ∩ B)| < θ.
We define Tins as the set of separations (A,B) of G of order less than θ such
that ZA is V (G)-small.

Lemma 5. Let G be a graph with a 2-cell drawing in a surface Σ, and let
ins be a slope in R(G) of order θ. Then Tins is a respectful pre-tangle in G
of order θ, and ins is the slope derived from Tins.

Proof. We need to verify the pre-tangle axioms for Tins:

(T1) Consider any separation (A,B) of G of order less than θ. As we have
argued, |V (N(ZA)) ∩ V (G)| ≤ |V (A ∩ B)| < θ. As we have seen
before, this means that either ZA or ZA = ZB is small, and thus either
(A,B) ∈ Tins or (B,A) ∈ Tins.

(T2) Consider any separations (A1, B1), (A2, B2), (A3, B3) ∈ Tins, meaning
that ZA1 , ZA2 , ZA3 are small. By Lemma 3, R(G) has a face f not
belonging to ZA1 ∪AA2 ∪AA3 . This face corresponds to an edge e of G
not belonging to A1 ∪ A2 ∪ A3, and thus A1 ∪ A2 ∪ A3 6= G.

Next, let us argue Tins is respectful and ins is derived from it. Consider any
cycle C in R(G) of length less than 2θ, and let (A,B) = (G ∩ ins(C), G ∩
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Σ \ ins(C)) be the corresponding separation of G. It suffices to argue that
(A,B) ∈ T . This is clearly the case, since N(ZA) = C and ZA ⊂ ins(C),
implying that ZA is small.

We say that Tins is the pre-tangle induced by the slope. So far, we have
shown that if T is the pre-tangle induced by the slope ins, then ins is derived
from T . We want to establish a (1 : 1)-correspondence, and thus we also
need the converse.

Lemma 6. Let G be a graph with a 2-cell drawing in a surface Σ, and let T
be a respectful pre-tangle in G of order θ. Let ins = insT be the slope derived
from T . Then T is induced by ins.

Proof. Consider any separation (A,B) ∈ Tins, of order less than θ. We need
to argue that T agrees with Tins on this separation, i.e., that (A,B) ∈ T .
Since (A,B) ∈ Tins, ZA is small, and thus for each edge e ∈ E(A), there exists
a cycle Ce ⊆ N(ZA) such that the face of R(G) corresponding to e, and thus
also e, is contained in ins(Ce). Let (Ae, Be) = (G∩ ins(Ce), G∩Σ \ ins(Ce)).
We have e ∈ E(Ae), and since ins is derived from T , we have (Ae, Be) ∈ T .
Moreover, V (Ae ∩ Be) = V (Ce ∩ G) ⊆ V (N(ZA)) ⊆ V (A ∩ B). Let (A0, G)
be the separation of G with V (A0) = V (A∩B) and E(A0) = ∅; by (T1) and
(T2), we have (A0, G) ∈ T . By Lemma 1 from the first lecture notes (whose
proof only uses (T1) and (T2), and thus also applies to pre-tangles), we have

(A,B) =
(
A0 ∪

⋃
e∈E(A)

Ae, G ∩
⋂

e∈E(A)

Be

)
∈ T ,

as required.

4 Respectful tangles

As we have seen, in the sphere there are slopes which have nothing to do
with tangles, namely those where we choose any face f of R(G) and define
as ins(C) the disk that does not contain f . These are actually the only
“degenerate” slope irrelevant with respect to tangles.

Lemma 7. Let G be a graph with a 2-cell drawing in a surface Σ, and let
ins be a slope in R(G) of order θ ≥ 3. For an edge e ∈ E(G), let ∆e be the
closure of the 4-face of R(G) containing e, and let Ce be the cycle bounding
it. The pre-tangle Tins is a tangle if and only if ins(Ce) = ∆e for every
e ∈ E(G).
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Proof. If there exists e ∈ E(G) such that ins(Ce) = Σ \∆a, then we have
(G − e, e) ∈ Tins by the definition of Tins, and since V (G − e) = V (G), this
means Tins does not satisfy (T3), and thus it is not a tangle.

Conversely, suppose that ins(Ce) = ∆e for every e ∈ E(G). It suffices to
argue that Tins satisfies (T3). Suppose for a contradiction (A,B) ∈ Tins and
V (A) = V (G), and thus V (B) = V (A∩B). For any edge e ∈ E(B), we have
ins(Ce) = ∆e, and thus (e,G− e) ∈ Tins. By Lemma 1 from the first lecture
notes, we have

(G, V (B)) =
(
A ∪

⋃
e∈E(A)

e, B ∩
⋂

e∈E(B)

(G− e)
)
∈ Tins,

which contradicts (T2) for the pre-tangle Tins.

For surfaces other than the sphere, this makes the situation regarding
respectful tangles is quite simple.

Theorem 8. Let G be a graph with a 2-cell drawing in a surface Σ other
than the sphere. Then G contains a respectful tangle of order θ ≥ 3 if and
only if the representativity of G is at least θ. Moreover, this respectful tangle
is unique.

Proof. If G has representativity less than θ, then by definition of the rep-
resentativity and Observation 1, R(G) contains a non-contractible cycle of
length less than 2θ. This cycle does not bound any disk in Σ, and thus G
cannot contain a respectful tangle.

Suppose now that G has representativity at least θ. Then there exists
a unique slope, namely the slope lake, of order θ in G, and since we have
established (1 : 1)-correspondence between slopes and respectful pre-tangles,
it follows that G contains a unique pre-tangle T induced by lake. Moreover,
for any edge e ∈ E(G), we have lake(e) = ∆e, and thus T is a tangle by
Lemma 7.

On the other hand, for graphs drawn in the sphere, every tangle is re-
spectful. Note this has the following interesting corollary.

Theorem 9. Let G be a plane graph and let G? be its dual. Then there is
a (1 : 1)-correspondence between tangles in G and G?, and in particular, G
and G? have the same tangle number (and branchwidth).

Proof. Tangles in G are in (1 : 1)-correspondence with slopes in R(G) that
satisfy the condition of Lemma 7. The same is true for the tangles in G?.
Since R(G) = R(G?), the claim of the theorem follows.

In particular, this implies that the treewidth of G and G? differ by factor
of at most 3/2.
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5 The metric from respectful tangles

Let G be a graph with a 2-cell drawing in a surface Σ and let T be a respectful
tangle of order θ in G. The atoms of G are its vertices, edges, and faces,
and we let A(G) denote their set. Note that vertices and faces correspond to
vertices of R(G), while the edges correspond to faces of R(G); for each atom
a, let R(a) denote the corresponding object in R(G). For a closed walk W
in R(G), we let U(W ) be the subgraph of R(G) consisting of vertices and
edges of W . For a, b ∈ A(G), let us define d(a, b) as follows:

• if a = b, then d(a, b) = 0,

• if there exists a closed walk W in R(G) of length less than 2θ such that
R(a), R(b) ⊆ insT (U(W )) and ` is the length of the shortest such walk,
then d(a, b) = `/2, and

• otherwise, d(a, b) = θ.

Then d is a metric and the following claims hold.

Lemma 10. Let G be a graph with a 2-cell drawing in a surface Σ and let
T be a respectful tangle of order θ in G. For every a ∈ A(G), there exists
e ∈ E(G) such that dT (a, e) = θ.

Lemma 11. Let G be a graph with a 2-cell drawing in a surface Σ and let
T be a respectful tangle of order θ in G. For any a ∈ A(G) and any integer
4 ≤ k < θ, there exists a connected subgraph H of R(G) containing exacly
one cycle C and a closed disk ∆ bounded by C such that H − (V (H) ∩ ∆)
is an independent set, and for each b ∈ A(G), d(a, b) ≤ k if and only if
b ∩ (H ∪∆) 6= ∅.

For more details, see the homework assignment.
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