
1 The grid theorem

Let Wn denote the n × n grid. On one hand, tw(Wn) = n, and thus every
graph that contains Wn as a minor has treewidth at least n. The grid theorem
states that an approximate converse holds.

Theorem 1. There exists a function f1 as follows. For every integer n, if a
graph G has treewidth at least f1(n), then G contains Wn as a minor.

The first proof of this statement by Robertson and Seymour did not
even explicitly state a bound on this function f1. Later results gave explicit
exponential bounds. In a breakthrough result, Chekuri and Chuzhoy (2014)
gave a polynomial bound on this function. The current best result is f1(n) =
O(n9polylog n). In the next lecture, we will prove a weaker polynomial
bound; in this lecture, we do some preparatory work on obtaining grids in
graphs containing certain substructures.

Note that Km has treewidth m−1, but cannot contain a grid Wn for any
n >
√
m, since |V (Wn)| = n2. Hence, the function f1 cannot be better than

quadratic. By considering suitably chosen random graphs, one can improve
this lower bound by a logarithmic factor.

The following claim is natural and not hard to prove.

Lemma 2. For every planar graph H, there exists nH such that H is a minor
of WnH

.

In fact, it suffices to take nH linear in |V (H)|. Combining this lemma
with Theorem 1, we obtain a structure theorem for graphs avoiding a planar
graph as a minor.

Corollary 3. For every planar graph H, there exists cH such that every
graph not containing H as a minor has treewidth at most cH .

Note that for the application in the proof of the structure theorem, we
need the following stronger form of Theorem 1 that shows that any tangle of
large order “points towards” a grid minor. In the proof, we will ignore this
detail (which can be dealt with by being careful in the proofs and making
sure we always operate in the part of the graph specified by the tangle).

Theorem 4. There exists a function f4 as follows. If T is a tangle of order
at least f4(n) in a graph G, then G contains Wn as a minor with model µ
such that T is conformal with the canonical tangle in Wn and µ.
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2 Cleaning up towards a grid

In this section, we show how to obtain a grid minor from a path system in
a nearly planar graph. A linkage is a set of pairwise vertex-disjoint paths;
the linkage is an (A−B)-linkage if each of these paths starts in A and ends
in B. The (A − B)-linkage L is total if |A| = |B| = |L|, i.e., each vertex in
A ∪ B is incident with one of its paths. For a linkage L in a graph G, let
GL be the graph with vertex set L, where two paths L,L′ ∈ L are adjacent
if and only if G contains a path with one end in L, the other end in L′, and
otherwise disjoint from all paths in L.

Let A and B be disjoint sets of vertices in a graph G such that |A| = |B|,
and let U and D be vertex-disjoint paths from A to B in G. We say that
(G,A,B, U,D) is a loom of size |A| if for every total (A − B)-linkage L
such that U,D ∈ L, the graph GL is a path from U to D. Observe this in
particular is always the case if G is a plane graph and A, U , B, and D are
contained in the boundary of the outer face of G in order.

Lemma 5. Let (G,A,B, U,D) be a loom of size n+ 2. If G contains a total
(A − B)-linkage containing U and D and a (V (U) − V (D))-linkage of size
n, then Wn � G.

Proof. Let L be a total (A − B)-linkage in G containing U and D and Q
a (V (U) − V (D))-linkage of size n + 2 chosen so that the subgraph H =⋃
L ∪

⋃
Q has the smallest number of edges. Without loss of generality, we

can assume each path in Q intersects U and D in exactly one vertex.
Consider a path Q ∈ Q. An L-segment of Q is a subpath Q′ of length

at least 1 with both ends in
⋃
L and otherwise disjoint from paths in L.

Suppose Q′ would have both ends in the same path P ∈ L. By assumptions,
P 6∈ {U,D}. We now could replace P by a path in P ∪ Q′ passing through
Q′, obtaining another total (A − B)-linkage in G containing U and D and
contradicting the minimality of |E(H)|. Hence, every L-segment has ends in
different paths (adjacent in the path GL).

Consider now two L-segments Q and Q′ between paths P, P ′ ∈ L different
from U and D. Suppose the ends of Q and Q′ appear in different order on
P and P ′. Then we can replace P and P ′ by paths in P ∪ P ′ ∪ Q ∪ Q′
passing through Q and Q′, obtaining another total (A − B)-linkage in G
containing U and D and contradicting the minimality of |E(H)|. Hence, no
such “crossing” L-segments exist.

Let the path GL be UP1P2 . . . PnD. Let G′ be the subgraph of G consist-
ing of P1, . . . , Pn and the L-segments between these paths. Let Q′ consist of
the paths obtained from those inQ by taking a minimal subpath with one end
in P1 and the other end in Pn. Let A′ = A\V (U∪C) and B′ = B\V (U∪D),
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and let L′ = {P1, . . . , Pn}. Then L′ is a total (A′ −B′)-linkage in G′ and Q′
is a (V (P1) − V (Pn))-linkage in G′, each path in L′ intersects P1 and Pn in
exactly one vertex, and G′ can be drawn in the plane so that A′, P1, B, and
Pn appear on the boundary of the outer face in order.

Choose a total (A′ − B′)-linkage L′′ with P1, Pn ∈ L′′ and a (V (P1) −
V (Pn))-linkage Q′′ of size n in G such that the graph H ′′ =

⋃
L′′ ∪

⋃
Q′′ has

the smallest number of edges. Without loss of generality, we can assume each
path in Q′′ intersects P1 and Pn in exactly one vertex. For i ∈ {1, . . . , n}, let
P ′′i be the path in L′′ with the same endpoints as Pi.

We claim that the intersection of every path in L′′ with every path in Q′′
is connected. If not, choose i minimum such that some path in Q′′ does not
intersect Pi in a connected subpath. Consider a subpath Q′ of some path
Q ∈ Q′′ of length at least 1 with both ends in Pi and otherwise disjoint from
Pi. NoteQ′ is disjoint from Pi−1, since Pi−1∩Q is connected by the minimality
of i and Q intersected Pi−1 before intersecting Pi. If Q′ were drawn between
Pi and Pi−1, then except for its endpoints, Q′ would be disjoint from all
paths of L′′. But then we could replace a part of Pi by Q′, contradicting
the minimality of |E(H ′′)|. Hence, every such subpath Q′ is drawn between
Pi and Pn (and it is disjoint from Pn, since Q intersects Pn only in its last
vertex).

By the choice of i, there exists Q ∈ Q′ with a subpath Q′ of length at
least 1 with both ends in Pi and otherwise disjoint from Pi. Consider the
subpath P ′ of Pi between the ends of Q′. We claim the interior of P ′ does
not intersect any path Q1 ∈ Q′; indeed, Q1 would have to leave the area
bounded by P ′ ∪ Q′ by passing through the area between Pi and Pi−1, and
in the previous paragraph, we argued this is not possible. Hence, we can
replace Q′ by P ′ in Q, contradicting the minimality of |E(H ′′)|.

Hence, we can contract each path Pi ∩ Q for i ∈ {1, . . . , n} and Q ∈ Q′
to a single vertex, obtaining a minor of Wn in G.

In particular, Lemma 5 is sufficient to prove the grid theorem in planar
graphs, in a very strong form.

Theorem 6. for every integer n, every planar graph of treewidth at least
6n+ 14 contains Wn as a minor.

Proof. Let G be a plane graph of treewidth at least 6n+ 14, without loss of
generality connected. ThenG contains a tangle T of order 4n+9. For a closed
disk ∆ whose boundary intersects G only in vertices, let S∆ = (A∆, B∆) be
the separation of G where B∆ is the subgraph of G drawn in ∆ and A∆ is
the subgraph of G drawn in the closure of the complement of ∆. Choose ∆
so that S∆ ∈ T and subject to that A∆ is maximal. Let Z = V (A∆∩B∆) be
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the set of vertices of G contained in the boundary of ∆. We have |Z| = 4n+8
and Z is an independent set in B∆, as otherwise we can shift the boundary
of ∆ slightly to make A∆ include one more vertex or edge (this keeps the
separation in the tangle, as is easy to see from Lemma 1 from Lesson 1).

Let us divide Z into four sets Z1, . . . , Z4 of size 2n + 4 drawn along the
boundary of ∆. We claim that B∆ contains a total (Z1 − Z3)-linkage L.
Indeed, otherwise by a form of Menger’s theorem, we could split ∆ along a
curve c starting and ending in its boundary and intersecting G only in vertices
into two disks ∆1 and ∆2 such that say ∆1 ∩ Z3 = c ∩ Z3 and |∆1 ∩ Z1| >
|c∩V (G)|. Then S∆1 has order less than |Z|−|Z3|+ |c∩V (G)| = |Z|−|Z1|+
|c∩V (G)| < |Z| and S∆2 has order less than |Z|−|∆1∩Z1|+|c∩V (G)| < |Z|.
By the maximality of A∆, we have S∆1 , S∆2 6∈ T , but this contradicts the
tangle properties (T1) and (T2).

Symmetrically, B∆ contains a total (Z2 − Z4)-linkage Q. We can now
apply Lemma 5 to the loom between the topmost and the bottommost path
of L.

Consider a planar graph G and let n = d
√
|V (G)|+ 1e. Then G cannot

contain Wn as a minor, since Wn has at least |V (G)| + 1 vertices. Hence,
Theorem 6 has the following consequence.

Corollary 7. Every planar graph G has treewidth at most 6d
√
|V (G)|+ 1e+

13.

3 Flows and linkedness

A flow from A to B in a graph G is an assignment of non-negative flow values
f(e) to edges of an orientation of G such that∑

e from v

f(e) =
∑
e to v

f(e)

for v ∈ V (G) \ (A ∪B), ∑
e from v

f(e)−
∑
e to v

f(e) ≤ 1

for v ∈ A and ∑
e from v

f(e)−
∑
e to v

f(e) ≥ −1

for v ∈ B. The size of the flow is∑
v∈A

( ∑
e from v

f(e)−
∑
e to v

f(e)
)
.
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The congestion of an edge e is f(e), the amount of flow passing across e.
Similarly, the congestion of a vertex v is the amount of flow passing through
v (leaving v if v 6∈ B, entering v if v 6∈ A). The edge/vertex congestion of
a flow is the maximum congestion of its edges/vertices. If G has maximum
degree ∆ and the flow has edge congestion at most c, then it clearly also has
vertex congestion at most ∆c+ 1.

Note the following connection between flows and linkages.

Lemma 8. Suppose G contains a flow of size s from A to B with vertex
congestion at most c. Then G contains an (A − B)-linkage of size at least
s/c.

Proof. Divide all flow values by c; we obtain a flow of size s/c with vertex
congestion at most 1. In other words, we obtain a flow from A to B where
each vertex has capacity 1. Since all capacities are integers, there exists a
maximum flow in this network whose values are integers, necessary 0 or 1 due
to the capacities. This flow consists of at least s/c pairwise vertex-disjoint
paths from A to B.

We say a set W ⊆ V (G) is a-well-linked in a graph G if for all disjoint
subsets A and B of W of the same size, G contains a flow from A to B of
size |A| and edge congestion at most a. We say W is node-well-linked if G
contains a total (A − B)-linkage for any such subsets A and B. In graphs
of bounded maximum degree, these concepts are connected by the following
lemma.

Lemma 9. Let G be a graph of maximum degree ∆ and let T be an a-well-
linked set of its vertices. Then there exists T ′ ⊆ T such that |T ′| ≥ |T |

4(∆a+1)

and T ′ is node-well-linked.

Proof. Let t = |T |. Let (A,B) be a separation of G of minimum order
such that |V (A) ∩ T |, |V (B) ∩ T | ≥ t/4. By symmetry, we can assume
|V (A) ∩ T | ≥ t/2. Let W = V (A ∩ B). We claim W is node-well-linked in
A. Indeed, otherwise Menger’s theorem implies A has a separation (X, Y ) of
order less then min(|V (X)∩W |, |V (Y )∩W |). By symmetry, we can assume
|V (X) ∩ T | ≥ |V (A) ∩ T |/2 ≥ t/4. But (X, Y ∪ B) has order o(A,B) −
|V (X) ∩W |+ o(X, Y ) < o(A,B), contradicting the choice of (A,B).

Let C and D be disjoint subsets of V (A) ∩ T and V (B) ∩ T of the same
size at least t/4. Since T is a-well-linked, G contains a flow from C to D of
size |C| and edge congestion at most a. This flow has vertex congestion at
most ∆a + 1, and by Lemma 8, G contains a (C − D)-linkage L of size at
least t

4(∆a+1)
. Let T ′ be the set of vertices of this linkage in C. Then T ′ is
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node-well-linked—for any subsets of T ′, we can follow the paths of L to W ,
then link them appropriately in A using the fact that W is node-well-linked
in A.

We say that two disjoint sets X and Y in G are node-linked if for all
A ⊆ X and B ⊆ Y of the same size, G contains a total (A − B)-linkage.
Again, we can derive this property from a weaker one.

Lemma 10. Let G be a graph of maximum degree ∆ and let L and R be
disjoint node-well-linked sets of its vertices of size at least k. If L ∪ R is a-
well-linked, then any subsets of L and R of size at most k

∆a+2
are node-linked.

Proof. Consider any sets A ⊆ L and B ⊆ R of the same size k′. If G did
not contain a total (A−B)-linkage, we could separate A from B by deleting
a set S of less than k′ vertices. Let A′ be the set of vertices of L separated
from A by S; since L is node-well-linked, we have |A′| ≤ |S| < k′. Similarly,
the set B′ of vertices of R separated from B by S has size less than k′. Then
S separates L \ A′ from R \ B′. Since L ∪ R is a-well-linked, G contains a
flow from a subset of L \A′ to a subset of R \B′ of size k− k′ and with edge
congestion at most a, implying the vertex congestion at most ∆a + 1. Such
a flow passes through S, and thus its size is less than k′(∆a + 1). It follows
that k − k′ < k′(∆a+ 1), and k′ > k

∆a+2
.

4 Grids in node-linked bricks

We need the following standard result about spanning trees.

Lemma 11. Let H be a connected graph with at least 2a(b + 5) vertices.
Then either H contains a spanning tree with at least a leaves, or a path with
b vertices which all have degree two in H.

Proof. Consider a spanning tree T of H with the largest number of leaves.
Let X denote the set of vertices whose degree in T is other than two, and
let Y be the set of vertices at distance at most two from X in T . We can
assume T has less than a leaves, and consequently |X| < 2a and |Y | < 10a.
Note that T − Y is a union of less than 2a paths, and thus one such path
P contains at least b vertices. We claim that every vertex v of P has degree
two in H. Indeed, if not, consider an edge e ∈ E(H) \ E(T ) incident with
v. Let C be the unique cycle in T + e, and let e′ be the edge of C − e at
distance 1 from v. The choice of Y implies that both ends of e′ have degree
two in T . Hence, T − e+ e′ is a spanning tree of G with more leaves than T ,
which is a contradiction.
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A brick of height h is a triple (G,A,B), where G is a graph and A and
B are disjoint subsets of vertices of G of size h. The brick is a-well-linked if
A∪B is a-well-linked in G, and node-linked if A and B are node-well-linked
in G and A and B are node-linked in G. We need the following claim about
node-linked bricks.

Lemma 12. Let (G,A,B) be a node-linked brick of height 2n(6n+ 9). Then
either Wn � G, or there exists an (A − B)-linkage L in G of size n and a
connected subgraph H of G disjoint from the paths in L and with a neighbor
in each of the paths in L.

Proof. Let L0 be a total (A−B)-linkage in G chosen so that the graph GL0
(defined at the beginning of Section 2) has as few vertices of degree two as
possible. If GL0 has a spanning tree T with at least n leaves, then let L ⊂ L0

consist of n paths corresponding to the leaves, and let H be the union of⋃
(L0 \ L) with the paths in G corresponding to the edges of T ; then H is

connected and has a neighbor in each of the paths in L.
Hence, we can assume GL0 has no such spanning tree, and thus it contains

a path P with 6n+ 4 vertices, such that all vertices of P have degree two in
GL0 . Let L1, . . . , L6n+4 be the paths from L0 corresponding to the vertices
of P in order, and let ai and bi denote the ends of Li in A and B. Let
L1 = {P1, . . . , Pn+2}, L2 = {P3n+3, . . . , P4n+4}, A1 = {an+3, . . . , a3n+2} and
B1 = {b4n+5, . . . , b6n+4}. For i ∈ {1, 2}, let Fi be the subgraph of G consisting
of
⋃
Li and all vertices and edges on paths starting and ending in

⋃
Li and

otherwise disjoint from L0.
Since A and B are node-linked, there exists a total (A1 −B1)-linkage Q0

in G. Since P is a path of vertices of degree two in GL0 , observe that each
path Q ∈ Q0 contains a subpath Q′ that either is contained in F1 and joins
P1 with Pn+2, or is contained in F2 and joints P3n+3 with P4n+4. Without loss
of generality, we can assume that there exists Q1 ⊂ Q0 of size n such that
for every Q ∈ Q1, the path Q′ is contained in F1. Let Q = {Q′ : Q ∈ Q1},
let L = {a1, . . . , an+2} and let R = {b1, . . . , bn+2}.

We claim that (F1, L,R, P1, Pn+2) is a loom of size n+2. Indeed, consider
any total (L − R)-linkage L′ in F1 that contains P1 and Pn+2, and let L′0 =
(L0\L1)∪L′. Then L′0 is a total (A−B)-linkage in G. Observe that the graph
GL′0 differs from the graph GL0 only in adjacencies of vertices corresponding
to L1 or L′. Since GL0 has the smallest number of vertices of degree two, we
conclude that all vertices of L′ have degree two in GL′0 as well, and thus the
subgraph induced by L′, which is equal to (F1)L′ , is a path from P1 to Pn+2.

Therefore, F1 (and thus also G) contains Wn as a minor by Lemma 5.
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5 Path of sets systems

We now combine bricks into a larger structure. A path-of-sets system of width
w and height h in a graph G is a sequence (H1, A1, B1), . . . , (Hw, Aw, Bw)
of vertex-disjoint bricks of height h such that Hi is an induced subgraph
of G for i ∈ {1, . . . , w}, and G contains total (Bi − Ai+1)-linkages Li for
i ∈ {1, . . . , w − 1} such that the paths in

⋃w−1
i=1 Li are pairwise disjoint and

disjoint from H1 ∪ . . . ∪ Hw except for their endpoints; we say Li is an i-
connector of the system. The system is a-well-linked or node-linked if its
bricks have these properties.

Lemma 12 easily gives a way to turn a node-linked system into a grid
minor.

Lemma 13. If G contains a node-linked path-of-sets system of width 2n2

and height 2n(6n+ 9), then Wn � G.

Proof. Let (Hi, Ai, Bi) be the bricks of the system. We can assume Wn 6� Hi

for each i, and thus by Lemma 12, there exists an (Ai, Bi)-linkage Pi and a
connected subgraph Fi in Hi that has a neighbor in each path of Pi. Let Qi

be the linkage consisting of the paths from the i-connector Li starting from
the ends of the paths in Pi, the paths from the (i+ 1)-connector Li+1 ending
with the starting vertices of the paths in Pi+1, and a total linkage in Hi+1

between the ends of the paths in Li and starts of the paths in Li+1.
We join paths from P1, Q1, P3, Q3, . . . to n long paths, which will form

the rows of the grid minor. We then use paths in F1, F3, . . . to represent the
vertical edges in the minor.

Finally, in a graph of bounded maximum degree, we can turn an a-well-
linked path-of-sets system into a node-linked one.

Lemma 14. Suppose (H1, A1, B1), . . . , (Hw, Aw, Bw) is an a-well-linked
path-of-sets system of height at least 16(∆a + 1)2h in a graph G of max-
imum degree at most ∆. Then there exist sets A′i ⊆ Ai and B′i ⊆ Bi of
size h such that (H1, A

′
1, B

′
1), . . . , (Hw, A

′
w, B

′
w) is a node-linked path-of-sets

system.

Proof. We apply Lemma 9 to A1 in H1 and to Bw in Hw and select node-
well-connected subsets A′1 and B′w of size h from the resulting sets. For
i = 1, . . . , n − 1, we perform the following. We apply Lemma 9 in Hi to
Bi, obtaining a node-well-linked set B′′i of size at least 4(∆a + 1)h. We let
A′′i+1 ⊆ Ai+1 be the set of vertices connected to B′′i by the i-connector. We
apply Lemma 9 in Hi+1 to obtain a node-well-linked set A′i+1 ⊂ A′′i+1 of size
h. Then we choose B′i as the subset of B′′i connected to A′i by the i-connector.
Note that by Lemma 10, Ai and Bi are node-linked in Hi.
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Combining these two results, we obtain the following conclusion.

Corollary 15. If G has maximum degree ∆ and contains an a-well-linked
path-of-sets system of width 2n2 and height 32(∆a+1)2n(6n+9), then Wn �
G.

Hence, to prove the grid theorem, it suffices to find such a system in graph
of large treewidth.
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