Barevnost grafů a kombinatorických struktur
Koná se úterý 15:40–17:10 v S11.
Lecture notes
- 3.10.: List version of Brooks' theorem and Gallai trees.
- 10.10., 17.10.: Critical graphs and algorithmic complexity of coloring graphs on surfaces. Density of critical graphs.
- 23.10. (replacing the 24.10. lesson): Potential method: Density of 4-critical graphs and Grötzsch theorem.
- 31.10.: Finished the potential method proof. A simple example for the discharging metod.
- 7.11.: Discharging method: How to find a proof?
- 14.11.: Grötzsch theorem using discharging.
- 21.11.: Coloring and nowhere-zero flows.
- 28.11., 5.12.: The proof of the Four Color Theorem.
- 12.12.: List coloring in planar graphs.
- 19.12.: Variants of graph coloring. Acyclic and star coloring. Defective and clustered coloring. Circular coloring, fractional coloring, homomorphisms.
- 9.1.: Coloring of triangle-free graphs and the Rosenfeld counting method.
- Cirkulární barevnost. Orientace grafu a cirkulární barevnost.
- Barevnost a homomorfismy. Zlomková barevnost. Zlomková barevnost Mycielského grafů.
- Vybíravost.
- Entropy compression method.
- Applications of the probabilistic method in graph coloring.
- Presentation and notes from the presentation for the critical graphs and coloring graphs on surfaces.
- Grötzch theorem by discharging: Assignment description, the worksheet, the tex file for the worksheet.