Coloring graphs on surfaces by fixed number of colors

Zdeněk Dvořák

October 21, 2018

1 Basic results

Theorem 1 (Four Color Theorem). Every planar graph is 4-colorable.

Theorem 2. Deciding whether a planar graph is 3-colorable is NP-hard.

Theorem 3 (Grötzsch' Theorem). Every planar triangle-free graph is 3-colorable.

Euler genus of a surface Σ is 2×number of handles+number of crosscaps needed to create Σ from the sphere. The embedding of a graph in Σ is 2-cell if all faces are homeomorphic to open disks.

Lemma 4 (Generalized Euler's Formula). A (multi)graph G embedded in a surface of Euler genus g with s faces satisfies

$$||G|| \le |G| + s + g - 2,$$

with equality iff the embedding is 2-cell.

The *girth* of a graph is the length of its shortest cycle.

Corollary 5. A (multi)graph G embedded in a surface of Euler genus g such that each face has length at least $k \geq 3$ satisfies

$$||G|| \le \frac{k}{k-2}(|G|+g-2).$$

Consequently, if G has girth at least k and G is not a forest, then

$$||G|| \le \frac{k}{k-2}(|G|+g-2);$$

and in particular, if G is simple (has no loops or parallel edges) and $|G| \ge 3$, then

$$||G|| \le 3(|G| + g - 2).$$

Theorem 6 (Heawood's formula). A graph embedded in a surface Σ of Euler genus g has chromatic number at most

$$\frac{7+\sqrt{24g+1}}{2}.$$

This bound is tight with the exception of Σ being the Klein bottle, in which case it can be improved to 6.

2 Coloring with fewer colors

By Corollary 5:

Theorem 7. Let $C_{k,g} = \frac{2k(g-2)}{k-2}$. Let G be a graph with at least three vertices. If G has girth at least $k \ge 3$ and can be embedded in a surface of Euler genus g, then the average degree of G is at most

$$\frac{2k}{k-2} + C_{k,g}/|G|;$$

and in particular, the average degree is at most

 $6 + C_{3,g}/|G|.$

Corollary 8. For every g and k, there exists $n_{g,k}$ as follows. If a graph of girth at least $k \geq 3$ embedded in a surface of Euler genus g has at least $n_{g,k}$ vertices, then G contains a vertex of degree at most $\lfloor 2k/(k-2) \rfloor \leq 6$.

Corollary 9. For every g and k, and any $c \ge \lfloor 2k/(k-2) \rfloor + 1$, there exists a linear-time algorithm to decide whether a graph of girth at least $k \ge 3$ embeddable in a surface of Euler genus g is c-colorable.

Proof. If G contains a vertex v of degree less than c, then G is c-colorable if and only if G-v is c-colorable. Otherwise, by Corollary 8 we have $|G| < n_{g,k}$, and we can test c-colorability of G by brute force in constant time.

colors	3	4	5	6	≥ 7
3 (general)	NP-hard	?	?	?	Р
4 (triangle-free)	?	?	Р	Р	Р
5	?	Р	Р	Р	Р
≥ 6	?	Р	Р	Р	Р

Hence, we have the following for graphs embedded in a general surface:

To fill in a few more blanks, we need to consider coloring of graphs of average degree close to 2k/(k-2). It is more convenient to work in the setting of critical graphs.

3 Critical graphs

A graph G is c-critical if $\chi(G) = c$, but every proper subgraph of G is (c-1)-colorable.

Observation 10. A graph is c-colorable if and only of it does not contain a (c+1)-critical subgraph.

Observation 11. Each (c+1)-critical graph has minimum degree at least c.

By Corollary 8:

Corollary 12. For every g and k, there exists $n_{g,k}$ such that if G is a (c+1)critical graph of girth at least $k \ge 3$ for $c \ge \lfloor 2k/(k-2) \rfloor + 1$, and G can be embedded in a surface of Euler genus g, then $|G| \le n_{g,k}$. In particular, for every $c \ge \lfloor 2k/(k-2) \rfloor + 1$, there are only finitely many (c+1)-critical graphs of girth at least k that can be embedded in a surface of Euler genus g.

Combining Corollary 12 with Observation 10, we can give another proof to Corollary 9: it suffices to test whether G contains as a subgraph one of the finitely many (c+1)-critical graphs of girth at least k embeddable in the surface.

Observation 11 implies that a (c+1)-critical graph has average degree at least c. This bound is tight for the complete graph K_{c+1} , but this is the only example. In future lectures, we are going to prove the following improved bound.

Theorem 13. If G is (c + 1)-critical and $G \neq K_{c+1}$, then G has average degree at least

$$c + \frac{c-2}{c^2 + 2c - 2}$$

Let us remark that even this bound can be improved by forbidding further small special graphs; the correct bound is c+1-2/c+o(1), and we will discuss this in more detail later. It is easy to see (homework) that Theorem 13 implies that the number of 7-critical graphs, the number of triangle-free 5-critical graphs, and the number of 4-critical graphs of girth at least 6 that can be embedded in any fixed surface is finite. Consequently, for graphs embedded in a surface, the 6-colorability, the 4-colorability when the graph is trianglefree, and the 3-colorability when G has girth at least 6 is polynomial-time solvable.