
Entropy compression method

Zdeněk Dvořák

December 12, 2019

1 Star coloring

A proper coloring ϕ of a graph G is a star coloring if union of any two
colors induces a star forest in G (i.e., forest whose components are stars).
Equivalently, at least three colors are used on any 4-vertex path in G.

Theorem 1. If G is a graph of maximum degree at most d, then G has a
star coloring by at most d100d3/2e colors.

Proof. Let q = d100d3/2e and n = |V (G)|. Order the vertices of G arbitrarily.
For a path v1v2 . . . vk, the code of the path is the sequence of numbers p1,
. . . , pk−1, where pi is the position of vi+1 among the neighbors of vi (sorted
according to the fixed ordering of vertices of G). Consider the following
procedure that attempts to find a star coloring ϕ of G using q colors.

While there exists an uncolored vertex:

• Let v be the smallest uncolored vertex.

• Give v a random color from [q], and write out “Color”.

• If there exists uv ∈ E(G) such that ϕ(u) = ϕ(v), then uncolor u and
v, and write out “Uncolor1”, ϕ(v), and the code of the path vu; else,

• if there exists a path vv1v2v3 such that ϕ(v) = ϕ(v2) and ϕ(v1) = ϕ(v3),
then uncolor the vertices of the path and write out “Uncolor2”, ϕ(v),
ϕ(v1), and the code of the path vv1v2v3; else,

• if there exists a path v1vv2v3 such that ϕ(v) = ϕ(v3) and ϕ(v1) = ϕ(v2),
then uncolor the vertices of the path and write out “Uncolor3”, ϕ(v),
ϕ(v1), and the codes of the paths vv1 and vv2v3.

1

In the third and the fourth step of the procedure, if there are more edges
or paths to choose from, we pick one arbitrarily, but in some deterministic
fashion (say the one with the smallest code among all the choices). Suppose
that the procedure runs for t iterations of the cycle, giving colors c1, . . . ,
ct to vertices v1, . . . , vt. Note the colors c1, . . . , ct uniquely determine the
run, and thus the probability that the procedure follows this particular run
is exactly q−t.

On the other hand, we claim that the run is also uniquely determined
by the output of the procedure and the final coloring ϕt. Indeed, even with-
out knowing the colors that are assigned in the second statement, we can
keep track of which vertices are being colored and uncolored by following
the “Color” and “Uncolor” statements, and thus determine the sequence v1,
. . . , vt. Next, we reconstruct the partial colorings ϕ1, . . . , ϕt found by the
algorithm: We are given ϕt. If we know ϕi, and vi was not uncolored, then
ϕi−1 = ϕi. Otherwise, the “Uncolor” statement gives the colors of uncolored
vertices, and thus ϕi−1 is obtained from ϕi by coloring the vertices of the
given path in the described way. Consequently, we can also exactly recon-
struct the sequence c1, . . . , ct.

In a run of length t, exactly t vertices are given a color, and thus the
number of uncolorings of single vertices performed by the procedure is also
at most t; since we uncolor two or four vertices at a time, there are at most
t/2 “Uncolor” statements in the output. Hence, the output of the procedure
can be encoded as a string of at most 3

2
t symbols (“Color”, “Uncolor1”,

“Uncolor2”, “Uncolor3”), accompanied by a string C of colors (numbers
from [q]) and a string P of elements of path codes (numbers from [d]) used
by the “Uncolor” statements in order. Note that the procedure each time
either uncolors two vertices, contributing one symbol to C and one symbol
to P ; or uncolors four vertices, contributing two symbols to C and three
symbols to P . Hence, |C| ≤ t/2 and |P | ≤ 3

4
t. Finally, there are at most

(q + 1)n possible choices for the partial coloring ϕt. We conclude that there

are at most (q+1)n3
3
2
tqt/2d

3
4
t runs of length t, and since each of them is taken

with probability q−t, the probability that the procedure runs for t steps is at
most

(q + 1)n4
3
2
tq−t/2d

3
4
t ≤ (q + 1)n4

3
2
t100−t/2 = (q + 1)n(25/16)−t/2.

For t sufficiently large (linear in n log d), this probability is smaller than 1,
and thus with non-zero probability, the procedure produces a star coloring
of G using q colors.

2

2 Coloring triangle-free graphs

We will use the following concentration bounds.

Theorem 2 (Simple Concentration Bound). Suppose a random variable X
is determined by n independent trials and changing the outcome of one trial
can change X by at most c. Then for any t ≥ 0,

Pr[|X − E[X]| > t] ≤ 2e−
t2

2c2n .

Theorem 3 (Chernoff Bound). Suppose a random variable X is a sum of
independent boolean variables. Then for any a ≥ 1,

Pr[X ≥ (1 + a)E[X]] ≤ e−aE[X]/3.

Let G be a triangle-free d-regular graph, and let s =
√

14d log d. Let L
be an assignment of lists of size q = d3d/ log de to vertices of G. Consider a
partial proper L-coloring ϕ of G. For v ∈ V (G), let Fv be the set of colors
in L(v) that ϕ does not use on any of the neighbors of v. By recoloring
the neighborhood of v, we mean changing the color of each neighbor u of v
uniformly independently by a color from Fu ∪ {blank}; if “blank” is chosen,
we uncolor u, instead. Let Av denote the event that |Fv| ≤ s, and Bv the
event that at least s neighbors of v are uncolored.

Lemma 4. There exists d0 such that for all d ≥ d0, after the neighborhood
of v is recolored, the probability that Av holds is at most d−4.

Proof. For each color c ∈ L(v), let ρ(c) =
∑

uv∈E(G),c∈Fu

1
|Fu| . Note that∑

c∈L(v) ρ(c) ≤
∑

uv∈E(G)

∑
c∈Fu

1
|Fu| ≤ d. If c ∈ Fu, then |Fu| ≥ 1, and thus

1 − 1
|Fu|+1

> e−1/|Fu|. Probability that c belongs to Fv after recoloring is∏
uv∈E(G),c∈Fu

(
1− 1

|Fu|+1

)
, and thus

E[|Fv|] =
∑
c∈L(v)

∏
uv∈E(G),c∈Fu

(
1− 1

|Fu|+ 1

)
>
∑
c∈L(v)

e−ρ(c).

Since e−x is convex, we have

1

q

∑
c∈L(v)

e−ρ(c) ≥ e−
∑

c∈L(v) ρ(c)/q ≥ e−d/q.

Consequently, E[|Fv|] > qe−d/q ≥ 3d
log d

e−
1
3
log d = 3d2/3/ log d ≥ 2s, since d is

large enough.

3

Note that |Fv| is a random variable determined by d independent trials
(choices of colors at the neighbors of v). Furthermore, changing one of these
trials may add or remove occurrence of at most one color in the neighbor-
hood of v, and thus |Fv| is changed by at most 1. Consequently, the Simple
Concentration Bound implies that

Pr[|Fv| ≤ s] ≤ Pr[||Fv| − E[|Fv|]| > s]

≤ 2e−
s2

2d = 2e−7 log d < d−4,

as required.

Lemma 5. There exists d0 such that the following holds for all d ≥ d0. Sup-
pose that Au is false for all neighbors u of a vertex v. After the neighborhood
of v is recolored, the probability that Bv holds is at most d−4.

Proof. Let X be the number of neighbors of v that are uncolored after recol-
oring. Consider a neighbor u of v. Since Au is false, we have |Fu| ≥ s, and
thus after recoloring u is uncolored with probability less than 1/s. Hence,
E[X] ≤ d/s. On the other hand, a neighbor u is uncolored with probability
at least 1/(q + 1), and thus E[X] ≥ d/(q + 1) ≥ 1 for large enough d. Note
that X is a sum of independent boolean variables, and thus by Chernoff
Bound, we have

Pr[X ≥ s] ≤ Pr[X ≥ s2

d
E[X]]

= Pr[X ≥ 14 log dE[X]]

≤ e−
(14 log d−1)

3
E[X] ≤ e−4 log d = d−4

for large enough d.

Order the vertices of G arbitrarily. We also fix an ordering on the events
Av and Bv: Au ≺ Bv for all u, v, and Au ≺ Av and Bu ≺ Bv whenever u < v.
Consider the following recursive procedure Fix(Xv), called on an event Xv

which holds at a vertex v, such that either Xv = Av, or Xv = Bv and none
of the events Au for neighbors u of v holds.

• Write out the colors of neighbors of v.

• Recolor the neighborhood of v.

• While Au holds for some vertex u at distance at most three from v, or
Bu holds for some vertex u at distance at most two from v, then let Xu

be the minimal such event according to the ordering fixed above, and

4

– Write out whether Xu is Au or Bu, and the code of a shortest path
from v to u.

– Call Fix(Xu).

• Write out “Return”.

Note that if Fix(Xv) finishes, then Xv does not hold, and if Au or Bu holds
afterwards for some u ∈ V (G), then it used to hold before the call as well
(new events may appear due to the recoloring of the neighborhood of v, but
these events are contained in the second neighborhood of v, and thus they
are fixed recursively before the procedure ends).

Let us also make the “Write out the colors of neighbors of v” statement
more precise. There are Cv =

∏
uv∈E(G)(|Fu| + 1) possible valid colorings of

the neighbors of v, but by Lemmas 4 and 5, at most d−4Cv of them have
the property that Xv holds. We order such colorings arbitrarily, and write
out just the position of the current coloring of the neighborhood of v in this
ordering.

Lemma 6. Let n = |V (G)|. With high probability, the procedure Fix(Xv)
finishes in O(n) steps.

Proof. Consider the state after Fix has been called t times during the exe-
cution. Suppose the current coloring ϕt and the initial event Xv are given,
together with the list of things written out by the procedure. We claim that
from this information, we can exactly reconstruct the run of the procedure,
including the exact colors assigned to each vertex during the recoloring steps.

Indeed, since we write out the description of the path that identifies
the vertex u, as well as the type of the event Xu on that we recurse, and
since we write out the “Return” statements, we can at any moment keep
track of which event Xu is being processed in the current call. Consider
the last call Fix(Xu), which produces ϕt from a coloring ϕt−1 by recoloring
the neighborhood of u. Note that ϕt matches ϕt−1 on the neighborhoods of
neighbors of u, and thus we know the sets Fw for neighbors w of u at the time
of recoloring. Thus, we can decode the colors of these neighbors w before
recoloring from the written out record, and to reconstruct ϕt−1. Going back
in time, we analogously reconstruct all the colorings up to the original one.

Now, consider any run of the procedure with t steps, calling it on Xv1 ,
. . . , Xvt in order. Let Ci =

∏
uvi∈E(G)(|Fu|+1), for the sets Fu at the moment

of the call Fix(Xvi). The run is uniquely determined by the inital event Xv,
the initial coloring, and the choice of one of Ci colorings of the neihborhood
of vi at each step i = 1, . . . , t. Since the recolorings are performed uniformly
independently, the probability of this particular run is 1

C1C2···Ct
. Let us call

5

λ = blog2(C1 · · ·Ct)c the order of the run; note that the probability of the
run is at most 2−λ. Furthermore, |Fu|+ 1 ≤ q+ 1 ≤ d, and thus Ci ≤ dd and
λ ≤ td log2 d.

On the other hand, during the call to Fix(Xvi), the program writes out
one of at most d−4Ci recolorings, for each recursive call one of 2 types and at
most d3 paths that identify it, and the return statement. This gives altogether
at most d−4t2λ+1(3d3)t possible outputs for runs of Fix(Xv) of order λ, which
combined with one of at most (q + 1)n ≤ dn final partial colorings ϕt also
uniquely determines the run. Hence, there are at most 3tdn−t2λ+1 runs of
order λ.

Consequently, the probability that Fix(Xv) runs for t steps is at most

dt log2 d∑
λ=1

3tdn−t2λ+1

2λ
≤ 2dt log2 d · 3tdn−t.

For t = 3n and sufficiently large d, this is at most d−n � 1.

Theorem 7. There exists d0 such that for each d ≥ d0, every triangle-free
graph of maximum degree at most d has choosability at most d3d/ log de.

Proof. Without loss of generality, we can assume that the graph G is d-
regular (otherwise, consider some d-regular triangle-free supergraph). Start
with G completely uncolored (so Bv holds at every vertex v). As long as
there exists an event Xv (either Av or Bv) that holds, call Fix(Xv) for the
minimum such event; by Lemma 6, this with non-zero probability succeeds
in eliminating this event. Consequently, there exists a partial coloring from
the lists such that neither Av nor Bv holds at any vertex. This coloring can
be extended to a full list coloring of G greedily.

6

