Entropy compression method

Zdeněk Dvořák

December 12, 2019

1 Star coloring

A proper coloring φ of a graph G is a *star coloring* if union of any two colors induces a star forest in G (i.e., forest whose components are stars). Equivalently, at least three colors are used on any 4-vertex path in G.

Theorem 1. If G is a graph of maximum degree at most d, then G has a star coloring by at most $\lceil 100d^{3/2} \rceil$ colors.

Proof. Let $q = \lceil 100d^{3/2} \rceil$ and n = |V(G)|. Order the vertices of G arbitrarily. For a path $v_1v_2...v_k$, the *code* of the path is the sequence of numbers p_1 , ..., p_{k-1} , where p_i is the position of v_{i+1} among the neighbors of v_i (sorted according to the fixed ordering of vertices of G). Consider the following procedure that attempts to find a star coloring φ of G using q colors.

While there exists an uncolored vertex:

- Let v be the smallest uncolored vertex.
- Give v a random color from [q], and write out "Color".
- If there exists $uv \in E(G)$ such that $\varphi(u) = \varphi(v)$, then uncolor u and v, and write out "Uncolor1", $\varphi(v)$, and the code of the path vu; else,
- if there exists a path $vv_1v_2v_3$ such that $\varphi(v) = \varphi(v_2)$ and $\varphi(v_1) = \varphi(v_3)$, then uncolor the vertices of the path and write out "Uncolor2", $\varphi(v)$, $\varphi(v_1)$, and the code of the path $vv_1v_2v_3$; else,
- if there exists a path $v_1vv_2v_3$ such that $\varphi(v) = \varphi(v_3)$ and $\varphi(v_1) = \varphi(v_2)$, then uncolor the vertices of the path and write out "Uncolor3", $\varphi(v)$, $\varphi(v_1)$, and the codes of the paths vv_1 and vv_2v_3 .

In the third and the fourth step of the procedure, if there are more edges or paths to choose from, we pick one arbitrarily, but in some deterministic fashion (say the one with the smallest code among all the choices). Suppose that the procedure runs for t iterations of the cycle, giving colors c_1, \ldots, c_t to vertices v_1, \ldots, v_t . Note the colors c_1, \ldots, c_t uniquely determine the run, and thus the probability that the procedure follows this particular run is exactly q^{-t} .

On the other hand, we claim that the run is also uniquely determined by the output of the procedure and the final coloring φ_t . Indeed, even without knowing the colors that are assigned in the second statement, we can keep track of which vertices are being colored and uncolored by following the "Color" and "Uncolor" statements, and thus determine the sequence v_1 , \ldots, v_t . Next, we reconstruct the partial colorings $\varphi_1, \ldots, \varphi_t$ found by the algorithm: We are given φ_t . If we know φ_i , and v_i was not uncolored, then $\varphi_{i-1} = \varphi_i$. Otherwise, the "Uncolor" statement gives the colors of uncolored vertices, and thus φ_{i-1} is obtained from φ_i by coloring the vertices of the given path in the described way. Consequently, we can also exactly reconstruct the sequence c_1, \ldots, c_t .

In a run of length t, exactly t vertices are given a color, and thus the number of uncolorings of single vertices performed by the procedure is also at most t; since we uncolor two or four vertices at a time, there are at most t/2 "Uncolor" statements in the output. Hence, the output of the procedure can be encoded as a string of at most $\frac{3}{2}t$ symbols ("Color", "Uncolor1", "Uncolor2", "Uncolor3"), accompanied by a string C of colors (numbers from [q]) and a string P of elements of path codes (numbers from [d]) used by the "Uncolor" statements in order. Note that the procedure each time either uncolors two vertices, contributing one symbol to C and one symbol to P; or uncolors four vertices, contributing two symbols to C and three symbols to P. Hence, $|C| \leq t/2$ and $|P| \leq \frac{3}{4}t$. Finally, there are at most $(q+1)^n$ possible choices for the partial coloring φ_t . We conclude that there are at most $(q+1)^n 3^{\frac{3}{2}t} q^{t/2} d^{\frac{3}{4}t}$ runs of length t, and since each of them is taken with probability q^{-t} , the probability that the procedure runs for t steps is at most

$$(q+1)^n 4^{\frac{3}{2}t} q^{-t/2} d^{\frac{3}{4}t} \le (q+1)^n 4^{\frac{3}{2}t} 100^{-t/2} = (q+1)^n (25/16)^{-t/2}.$$

For t sufficiently large (linear in $n \log d$), this probability is smaller than 1, and thus with non-zero probability, the procedure produces a star coloring of G using q colors.

2 Coloring triangle-free graphs

We will use the following concentration bounds.

Theorem 2 (Simple Concentration Bound). Suppose a random variable X is determined by n independent trials and changing the outcome of one trial can change X by at most c. Then for any $t \ge 0$,

$$\Pr[|X - E[X]| > t] \le 2e^{-\frac{t^2}{2c^2n}}.$$

Theorem 3 (Chernoff Bound). Suppose a random variable X is a sum of independent boolean variables. Then for any $a \ge 1$,

$$Pr[X \ge (1+a)E[X]] \le e^{-aE[X]/3}$$

Let G be a triangle-free d-regular graph, and let $s = \sqrt{14d \log d}$. Let L be an assignment of lists of size $q = \lceil 3d/\log d \rceil$ to vertices of G. Consider a partial proper L-coloring φ of G. For $v \in V(G)$, let F_v be the set of colors in L(v) that φ does not use on any of the neighbors of v. By recoloring the neighborhood of v, we mean changing the color of each neighbor u of v uniformly independently by a color from $F_u \cup \{\text{blank}\}$; if "blank" is chosen, we uncolor u, instead. Let A_v denote the event that $|F_v| \leq s$, and B_v the event that at least s neighbors of v are uncolored.

Lemma 4. There exists d_0 such that for all $d \ge d_0$, after the neighborhood of v is recolored, the probability that A_v holds is at most d^{-4} .

Proof. For each color $c \in L(v)$, let $\rho(c) = \sum_{uv \in E(G), c \in F_u} \frac{1}{|F_u|}$. Note that $\sum_{c \in L(v)} \rho(c) \leq \sum_{uv \in E(G)} \sum_{c \in F_u} \frac{1}{|F_u|} \leq d$. If $c \in F_u$, then $|F_u| \geq 1$, and thus $1 - \frac{1}{|F_u|+1} > e^{-1/|F_u|}$. Probability that c belongs to F_v after recoloring is $\prod_{uv \in E(G), c \in F_u} \left(1 - \frac{1}{|F_u|+1}\right)$, and thus

$$E[|F_v|] = \sum_{c \in L(v)} \prod_{uv \in E(G), c \in F_u} \left(1 - \frac{1}{|F_u| + 1}\right) > \sum_{c \in L(v)} e^{-\rho(c)}.$$

Since e^{-x} is convex, we have

$$\frac{1}{q} \sum_{c \in L(v)} e^{-\rho(c)} \ge e^{-\sum_{c \in L(v)} \rho(c)/q} \ge e^{-d/q}.$$

Consequently, $E[|F_v|] > qe^{-d/q} \ge \frac{3d}{\log d}e^{-\frac{1}{3}\log d} = 3d^{2/3}/\log d \ge 2s$, since d is large enough.

Note that $|F_v|$ is a random variable determined by d independent trials (choices of colors at the neighbors of v). Furthermore, changing one of these trials may add or remove occurrence of at most one color in the neighborhood of v, and thus $|F_v|$ is changed by at most 1. Consequently, the Simple Concentration Bound implies that

$$\Pr[|F_v| \le s] \le \Pr[||F_v| - E[|F_v|]| > s]$$
$$\le 2e^{-\frac{s^2}{2d}} = 2e^{-7\log d} < d^{-4},$$

as required.

Lemma 5. There exists d_0 such that the following holds for all $d \ge d_0$. Suppose that A_u is false for all neighbors u of a vertex v. After the neighborhood of v is recolored, the probability that B_v holds is at most d^{-4} .

Proof. Let X be the number of neighbors of v that are uncolored after recoloring. Consider a neighbor u of v. Since A_u is false, we have $|F_u| \ge s$, and thus after recoloring u is uncolored with probability less than 1/s. Hence, $E[X] \le d/s$. On the other hand, a neighbor u is uncolored with probability at least 1/(q+1), and thus $E[X] \ge d/(q+1) \ge 1$ for large enough d. Note that X is a sum of independent boolean variables, and thus by Chernoff Bound, we have

$$\Pr[X \ge s] \le \Pr[X \ge \frac{s^2}{d} E[X]]$$
$$= \Pr[X \ge 14 \log dE[X]]$$
$$\le e^{-\frac{(14 \log d - 1)}{3} E[X]} \le e^{-4 \log d} = d^{-4}$$

for large enough d.

Order the vertices of G arbitrarily. We also fix an ordering on the events A_v and B_v : $A_u \prec B_v$ for all u, v, and $A_u \prec A_v$ and $B_u \prec B_v$ whenever u < v. Consider the following recursive procedure $\text{Fix}(X_v)$, called on an event X_v which holds at a vertex v, such that either $X_v = A_v$, or $X_v = B_v$ and none of the events A_u for neighbors u of v holds.

- Write out the colors of neighbors of v.
- Recolor the neighborhood of v.
- While A_u holds for some vertex u at distance at most three from v, or B_u holds for some vertex u at distance at most two from v, then let X_u be the minimal such event according to the ordering fixed above, and

- Write out whether X_u is A_u or B_u , and the code of a shortest path from v to u.
- Call $\operatorname{Fix}(X_u)$.
- Write out "Return".

Note that if $\operatorname{Fix}(X_v)$ finishes, then X_v does not hold, and if A_u or B_u holds afterwards for some $u \in V(G)$, then it used to hold before the call as well (new events may appear due to the recoloring of the neighborhood of v, but these events are contained in the second neighborhood of v, and thus they are fixed recursively before the procedure ends).

Let us also make the "Write out the colors of neighbors of v" statement more precise. There are $C_v = \prod_{uv \in E(G)} (|F_u| + 1)$ possible valid colorings of the neighbors of v, but by Lemmas 4 and 5, at most $d^{-4}C_v$ of them have the property that X_v holds. We order such colorings arbitrarily, and write out just the position of the current coloring of the neighborhood of v in this ordering.

Lemma 6. Let n = |V(G)|. With high probability, the procedure $Fix(X_v)$ finishes in O(n) steps.

Proof. Consider the state after Fix has been called t times during the execution. Suppose the current coloring φ_t and the initial event X_v are given, together with the list of things written out by the procedure. We claim that from this information, we can exactly reconstruct the run of the procedure, including the exact colors assigned to each vertex during the recoloring steps.

Indeed, since we write out the description of the path that identifies the vertex u, as well as the type of the event X_u on that we recurse, and since we write out the "Return" statements, we can at any moment keep track of which event X_u is being processed in the current call. Consider the last call $\operatorname{Fix}(X_u)$, which produces φ_t from a coloring φ_{t-1} by recoloring the neighborhood of u. Note that φ_t matches φ_{t-1} on the neighborhoods of neighbors of u, and thus we know the sets F_w for neighbors w of u at the time of recoloring. Thus, we can decode the colors of these neighbors w before recoloring from the written out record, and to reconstruct φ_{t-1} . Going back in time, we analogously reconstruct all the colorings up to the original one.

Now, consider any run of the procedure with t steps, calling it on X_{v_1} , ..., X_{v_t} in order. Let $C_i = \prod_{uv_i \in E(G)} (|F_u|+1)$, for the sets F_u at the moment of the call $\operatorname{Fix}(X_{v_i})$. The run is uniquely determined by the initial event X_v , the initial coloring, and the choice of one of C_i colorings of the neihborhood of v_i at each step $i = 1, \ldots, t$. Since the recolorings are performed uniformly independently, the probability of this particular run is $\frac{1}{C_1C_2\cdots C_t}$. Let us call

 $\lambda = \lfloor \log_2(C_1 \cdots C_t) \rfloor$ the order of the run; note that the probability of the run is at most $2^{-\lambda}$. Furthermore, $|F_u| + 1 \leq q + 1 \leq d$, and thus $C_i \leq d^d$ and $\lambda \leq td \log_2 d$.

On the other hand, during the call to $\operatorname{Fix}(X_{v_i})$, the program writes out one of at most $d^{-4}C_i$ recolorings, for each recursive call one of 2 types and at most d^3 paths that identify it, and the return statement. This gives altogether at most $d^{-4t}2^{\lambda+1}(3d^3)^t$ possible outputs for runs of $\operatorname{Fix}(X_v)$ of order λ , which combined with one of at most $(q+1)^n \leq d^n$ final partial colorings φ_t also uniquely determines the run. Hence, there are at most $3^t d^{n-t}2^{\lambda+1}$ runs of order λ .

Consequently, the probability that $Fix(X_v)$ runs for t steps is at most

$$\sum_{\lambda=1}^{dt \log_2 d} \frac{3^t d^{n-t} 2^{\lambda+1}}{2^{\lambda}} \le 2dt \log_2 d \cdot 3^t d^{n-t}.$$

For t = 3n and sufficiently large d, this is at most $d^{-n} \ll 1$.

Theorem 7. There exists d_0 such that for each $d \ge d_0$, every triangle-free graph of maximum degree at most d has choosability at most $\lceil 3d/\log d \rceil$.

Proof. Without loss of generality, we can assume that the graph G is d-regular (otherwise, consider some d-regular triangle-free supergraph). Start with G completely uncolored (so B_v holds at every vertex v). As long as there exists an event X_v (either A_v or B_v) that holds, call $Fix(X_v)$ for the minimum such event; by Lemma 6, this with non-zero probability succeeds in eliminating this event. Consequently, there exists a partial coloring from the lists such that neither A_v nor B_v holds at any vertex. This coloring can be extended to a full list coloring of G greedily.