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It will be convenient to use the following correspondence between 4-
coloring and 3-edge-coloring in planar triangulations (we will see a proof
of this claim later in the lecture on nowhere-zero flows).

Lemma 1. A plane triangulation is 4-colorable if and only if its dual (a
plane 2-edge-connected 3-regular graph) is 3-edge-colorable.

Hence, the Four Color Theorem is equivalent to the following claim.

Theorem 2 (The Four Color Theorem, edge coloring version). Every planar
2-edge-connected 3-regular graph is 3-edge-colorable.

In the reducibility part of the proof of the Four Color Theorem, we will
work in the edge coloring setting. Let G be a plane 2-edge-connected 3-
regular graph and let K be a cycle in the dual of G; then K corresponds to
a simple closed curve that intersects G only in edges. Let ∆ be the closed
interior or exterior of K, and let −∆ be the closure of the complement of ∆
(the closed exterior or interior of K). We define G∆ to be the graph obtained
from G by adding vertices on the intersections of edges of G with K and then
deleting vertices and edges not contained in ∆; hence, G∆ is drawn in ∆,
its vertices drawn in the interior of ∆ have degree three, and its vertices
drawn on the boundary of ∆ have degree 1. We fix a starting point and
an orientation of the boundary of ∆ arbitrarily (and set them for −∆ in the
same way). Let e1, . . . , ek be the edges of G∆ incident with vertices of degree
1, listed in their order around the boundary of ∆ (starting from the fixed
starting point). A k-tuple coloring is a function ψ : {1, . . . , k} → {1, 2, 3}.
It is parity-compliant if for each c ∈ {1, 2, 3}, we have |ψ−1(c)| ≡ k (mod 2).
Let Ck denote the set of all parity-compliant k-tuple colorings. Let S(G,∆)
be the set of k-tuple colorings ψ such that G∆ has a 3-edge-coloring in which
the color of ei is ψ(i) for i = 1, . . . , k. A minimal counterexample is a planar
2-edge-connected 3-regular graph that is not 3-edge-colorable and has the
smallest number of vertices among the graphs with this property.

1



Observation 3. Let G, ∆ and k be as above.

• Each ψ ∈ S(G,∆) is parity-compliant.

• G is 3-edge-colorable iff S(G,∆) ∩ S(G,−∆) 6= ∅.

• If G is a minimal counterexample and G−∆ is not a tree, then S(G,∆) 6=
∅.

A matching M whose vertices are integers is planar if we can draw its
vertices on the boundary of a disk Λ in increasing order and drawn the edges
inside Λ without crossings. For a parity-compliant k-tuple coloring ψ and a
pair of colors {c1, c2} ∈

({1,2,3}
2

)
, a {c1, c2}-matching is any perfect matching

M with vertex set ψ−1(c1)∪ψ−1(c2); note that this set has even size, since ψ
is parity-compliant. We say that a k-tuple-coloring ψ′ is obtained from ψ by
switching on M if there exists a matching M ′ ⊆M such that for i = 1, . . . , k,

ψ′(i) =


ψ(i) if i ∈ {1, . . . , k} \ V (M ′)

c1 if i ∈ V (M ′) and ψ(i) = c2

c2 if i ∈ V (M ′) and ψ(i) = c1.

Consider a set S of parity-compliant k-tuple colorings. We say that ψ ∈ S
is S-consistent if for every C ∈

({1,2,3}
2

)
, there exists a planar C-matching M

such that all matchings obtained from ψ by switching on M belong to S. We
say that S is consistent if all elements of S are S-consistent.

Lemma 4. If G, ∆ and k are as above, then S(G,∆) and S(G,−∆) are
consistent.

Observe that if S1 and S2 are consistent, then so is S1 ∪ S2. Hence, for
every X ⊆ Ck, there exists a unique maximal subset of X that is consistent;
we denote it by C(X).

Observation 5. C(X) is obtained from X by iteratively removing elements
that are not X-consistent (in any order).

By a string of k letters a, b, and c, we express all k-tuple colorings ob-
tained by interpreting these letters as distinct colors. E.g., by abca, we mean
the set of colorings {(1, 2, 3, 1), (1, 3, 2, 1), (2, 1, 3, 2), (2, 3, 1, 2), (3, 1, 2, 3), (3, 2, 1, 3)}.
Note that if S is a consistent set of parity-compliant k-tuple colorings, it is
closed under permutation of colors, i.e., if ψ ∈ S, then π ◦ ψ ∈ S for any
permutation π of {1, 2, 3}.

An edge-cut of a graph G is a partition (A,B) of its vertex set, the size
of the edge-cut is the number of edges with one end in A and the other end
in B. The edge-cut is cyclic if neither G[A] nor G[B] is a forest.
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Lemma 6. A minimal counterexample G has no cyclic edge-cut of size at
most four. Moreover, if (A,B) is a cyclic edge-cut in G of size five, then
G[A] or G[B] is a 5-cycle.

Proof. Let (A,B) be a cyclic edge-cut of G of minimum size c ≤ 5. Note that
c ≥ 2, since G is 2-edge-connected. We will give the argument for the cases
c = 4 and c = 5, the arguments for the cases c = 2 and c = 3 are similar
(and simpler). Note that in the dual of G, the edges between A and B form
a cycle K of length c; let ∆ be the closed disk bounded by K. Without loss
of generality, we can assume G[A] is drawn in ∆ and G[B] is drawn in −∆.

Suppose c = 4. Note that C4 = aaaa ∪ aabb ∪ abba ∪ abab. By Ob-
servation 3, S(G,∆) 6= ∅. Note that none of the sets aaaa, . . . , abab is
consistent, and that sets aaaa ∪ abab and aabb ∪ abba are not consistent.
In particular, since S(G,∆) is consistent by Observation 4, S(G,∆) is a
union of at least two of the sets. The same holds for S(G,−∆). Moreover,
S(G,∆) ∩ S(G,−∆) = ∅ by Observation 3. By symmetry, we can assume
S(G,∆) = aaaa ∪ aabb and S(G,−∆) = abba ∪ abab. Let v1, . . . , v4 be the
vertices of G∆ of degree one in order around the boundary of ∆. Let G′ be
the graph obtained from G∆ by identifying v1 with v2 to a new vertex z1, v3

with v4 to a new vertex z3, and adding the edge z1z3. Then G′ is planar cubic
graph. Moreover, G′ is 2-edge-connected. Indeed, if z1z2 formed an edge-cut,
then G would contain a (necessarily cyclic) edge cut of size two consisting
of the edges corresponding to v1 and v2, i.e., a cyclic edge-cut smaller than
(A,B); and the other possible 1-edge-cuts are also easy to exclude. By the
minimality of G, G′ has a 3-edge-coloring. However, observe that no coloring
in S(G,∆) extends to a 3-edge-coloring of G′, which is a contradiction.

Suppose c = 5 and for contradiction assume that neither G[A] nor G[B]
is a 5-cycle. Note that C5 consists of aaabc, aabac, and their rotations. Con-
sider a consistent subset S of C5. There are two planar {a, b}-matchings for
a coloring aaabc, M1 containing edges 12 and 34, and M2 containing 14 and
23. Switching on M1 transforms aaabc to aabac (and itself), switching on
M2 transforms aaabc to baaac (and itself). Hence, since S is consistent, we
conclude that if S contains aaabc, then it also contains aabac or baaac. Sim-
ilarly, we can consider planar {a, c}-matchings and conclude that S contains
caaba or aacba. Repeating this idea for all other colorings in C5, we obtain
the following picture, which should be read as follows: If a consistent set
contains a coloring ψ, then it also necessarily contains at least one of the two
colorings joined to it by an edge starting red and at least one joined by an
edge starting blue.
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aaabc

caaab

bcaaa

abcaa

aabca

caaba

acaab

bacaa

abaca

aabac

In particular, S(G,∆) and S(G,−∆) induce in the graph depicted above
disjoint subgraphs of minimum degree two.

Consider the graph G′ obtained from G∆ by deleting v1 and v2 and adding
an edge between their neighbors, and by identifying v3, v4, and v5 to a single
vertex. Note that |V (G′)| < |V (G)|, and moreover, observe that G′ is 2-edge-
connected. By the minimality of G, the graph G′ is 3-edge-colorable, and we
conclude that (aaabc ∪ aabca ∪ aabac) ∩ S(G,∆) 6= ∅. By symmetry, this
argument shows that both S(G,∆) and S(G,−∆) intersect all five triangles
in the picture above.

Suppose that say aaabc ⊆ S(G,∆) and caaab ⊆ S(G,−∆). Then the
neighbor of aaabc over the red edge belonging to S(G,∆) is aabac, and the
neighbor of caaab over the blue edge belonging to S(G,−∆) is acaab. Since
S(G,∆) and S(G,−∆) intersect all triangles, we have bcaaa ⊆ S(G,∆) and
aabca ⊆ S(G,−∆). However, since aaabc and caaab have minimum degree
two in the subgraphs induced by S(G,∆) and S(G,−∆), we conclude that
caaba ⊆ S(G,∆) ∩ S(G,−∆), which is a contradiction. It follows that no
edge of the outer cycle of the depicted graph joins a coloring from S(G,∆)
with a coloring of S(G,−∆).

If both S(G,∆) and S(G,−∆) intersect the outer cycle, we can by sym-
metry assume that aaabc ⊆ S(G,∆) and that caaab and aabca belong to
neither S(G,∆) nor S(G,−∆). Since the subgraph induced by S(G,∆) has
minimum degree at least two, caaba and aabac belong to S(G,∆). But then
S(G,−∆) intersects neither of the triangles containing aaabc, which is a
contradiction.
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Hence, we can assume that S(G,∆) is disjoint from the outer cycle. Let
G′′ be the graph obtained from G∆ by adding the 5-cycle v1 . . . v5. Observe
that G′ is 2-edge-connected and has no 3-edge-coloring, contradicting the
minimality of G (since G[A] is not the 5-cycle).

The following is a key lemma that is used to prove reducibility in the
proof of the Four Color Theorem. It is applied in the situation where G∆ is
a fixed configuration that we want to exclude, and G′∆ is a fixed replacement
graph.

Lemma 7. Let G be a minimal counterexample and let ∆ be the closed
interior or exterior of a cycle K in the dual of G. Let G′ be a planar 2-edge-
connected 3-regular graph obtained from G by replacing G∆ by a smaller
graph; i.e., K is also a cycle in the dual of G′, G′−∆ = G−∆, and |V (G′)| <
|V (G)|. Then SG′,∆ ∩ C(C|K| \ SG,∆) 6= ∅.
Proof. By Observations 3 and 4, we have S(G′,−∆) = S(G,−∆) ⊆ C(C|K| \
SG,∆). By the minimality of G, the graph G′ is 3-edge-colorable, and by
Observation 3, SG′,∆ ∩ S(G′,−∆) 6= ∅.

Let us now illustrate how this lemma is applied to deal with the smallest
non-trivial reducible configuration, for which the graph G∆ is depicted in the
following picture.

v1

v2

v3

v4

v5

v6

An inspection of the 3-edge-colorings of this configuration shows that

S(G,∆) =aaabab, aaabba, aabaab, aabbaa, aabbbb, aabccb, abaaba, ababaa,

ababbb, ababcc, abbabb, abbacc, abbbab, abbbba, abbcac, abccba,

and thus

C6 \ S(G,∆) =aaaaaa, aaaabb, aababa, aabbcc, aabcbc, abaaab, abacbc, abaccb

abbaaa, abbcca, abcabc, abcacb, abcbac, abcbca, abccab
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We now use Lemma 5. We can check that aaaaaa is not consistent with this
set, by going over all planar {a, b}-matchings, and checking that for each of
them, we can switch aaaaaa to a coloring not belonging to the set. Hence,
we can delete aaaaaa, and check whether other colorings are consistent with
the rest of the set. Iteratively deleting inconsistent colorings, we eventually
conclude that C(C6 \ SG,∆) = ∅. Let G′ be obtained from G−∆ by adding
the 6-cycle v1 . . . v6. It is easy to see that G′ is 2-edge-connected. However,
S(G′,∆) ∩ C(C6 \ SG,∆) ⊆ C(C6 \ SG,∆) = ∅, contradicting Lemma 7.

In total, to prove the Four Color Theorem, one needs to exclude more
than 600 such configurations (in some of them, C(C|K| \ SG,∆) is non-empty,
and in these cases, one needs to choose the reduction G′ carefully so that
S(G′,∆) ∩ C(C6 \ SG,∆) = ∅ to obtain a contradiction; Lemma 6 is useful in
showing G′ is 2-edge-connected). For illustrating the discharging rules, we
will use the following reducible configurations (we draw their duals, with the
numbers indicating the degrees of the vertices; for example, the configuration
depicted above corresponds to the first configuration in the list below):
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5

5

5

5

(C1)

5

6 5

≤ 6

(C2)

5

6 6

5≤ 6

(C3)

5

6 6

6

5

≤ 6

(C4)

5

6

6

6

6

5

(C5)

5

6 6

6

65

6

(C6)

5

6 6

6

66

6

(C7)

6

≤ 6

5

5

≤ 6

5

5

(C8)

We now switch to the primal setting, so now a minimum counterexam-
ple G is a non-4-colorable planar triangulation with the smallest number of
vertices. As we have argued above, G contains none of the configurations
(C1), . . . , (C8). Let us give each vertex v the initial charge 10 deg v − 60,
so that the sum of the charges is −120. Next, let us redistribute the charge
according to the following rules (also defining over which edge the charge is
sent, to help with accounting):

(R1) If a vertex v of degree at least seven has a neighbor of degree five, then
v sends 2 to u over the edge vu.

(R2) If a vertex z of degree at most six has distinct neighbors v, x1, . . . , xk,
u in order, where 0 ≤ k ≤ deg z− 2, v has degree at least 7, x1, . . . , xk
have degree six, and u has degree five, then v sends 2 to u if deg z = 5
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and u and z have a common neighbor of degree five, and v sends 1 to
u otherwise. The charge is sent over the edge vx1 if k ≥ 1 and over the
edge vu if k = 0.

(R3) If uvz is a triangle with deg v ≥ 7, deg u = 5 and deg v = 6, then v
sends 1 to u over the edge vz.

In applications of (R2) and (R3), we say that z is the pivot.

Lemma 8. After performing these discharging rules, each vertex of degree
5, 6, or at least 12 has non-negative final charge.

Proof. Note that the rules do not change the charge of vertices of degree six,
and thus the final charge of these vertices is 0.

Consider now a vertex v of degree at least 7, and let us count the amount
of charge sent over an edge vx incident with v. Note that the rule (R1)
applies at most once, rule (R2) applies at most twice (with the pivots being
the common neighbors of v and x), and rule (R3) also applies at most twice.
If deg x = 5, then only rules (R1) and (R2) can apply; if v sent charge to x by
(R1) and the rule (R2) applied on vx twice, both times sending charge 2, then
G would contain (C1). If deg x = 6, then only rules (R2) and (R3) can apply;
if both applied twice and both applications of (R2) sent charge 2, then G
would contain (C8). Hence, v sends charge at most 5 over each incident edge,
implying that its final charge is at least 10 deg v−60−5 deg v = 5(deg v−12).
Hence, if deg v ≥ 12, then the final charge of v is non-negative.

Let us now consider a vertex u of degree five, and let y1, . . . , y5 be its
neighbors in order. Let si denote the amount of charge sent from yi to u by
(R1) plus the amount of charge sent to u by the applications of (R2) and (R3)
with yi being the pivot. By symmetry, we can assume that s2 ≤ s1, s3, s4, s5.
If s1 + . . . + s5 ≥ 10, then the final charge of u is non-negative. Hence,
suppose that s1 + . . .+ s5 < 10, and thus s2 ≤ 1.

In particular, y2 does not send charge to u by (R1), and thus deg y2 ≤
6. Since G does not contain (C1) and (C2), we can by symmetry assume
deg y1 ≥ 6. Let u, y1, xk−1, . . . , x1, v be neighbors of y2 in order, where v is
the first neighbor whose degree is not six (possibly v = y1). Since deg y1 ≥ 6
and G does not contain (C2), . . . , (C7), we have deg v ≥ 7, and the rule (R2)
applies. If deg y3 ≥ 6, then (R2) would symmetrically apply from the other
side and we would have s2 ≥ 2; hence, deg y3 = 5. Since u only receives
one unit of charge by (R2), we have deg y2 = 6. Since (R3) does not apply
with pivot y2, we have deg y1 = 6. Let a ∈ {3, 4, 5} be maximum such
that deg ya 6= 6. Since G does not contain (C3), (C4), and (C5), we have
deg ya ≥ 7. Note that (R3) applies twice and (R3) applies once with pivot
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ya+1 (where y6 = y1), and thus sa+1 = 3. Observe that u does not have
consecutive neighbors of degrees 5, 6, and 6 distinct from y3, y2, and y1, and
thus si ≥ 2 for i 6= 2. Therefore, s1 + . . .+ s5 ≥ 1 + 3 + 3× 2 = 10.

Corollary 9. A minimun counterexample to the Four Color Theorem con-
tains a vertex of degree 7, 8, 9, 10, or 11.

One can finish the proof by introducing additional rules to deal with
vertices of larger degrees (there are around 30 rules in total), making the
final charge of all vertices non-negative (this involves case analysis around
vertices of degree at most 11, performed by computer).
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