Barevnost grafů a kombinatorických struktur
Lecture: ??? ???–??? in ???
Lecture notes
- : Critical graphs and algorithmic complexity of coloring graphs on surfaces.
- : List version of Brooks' theorem and Gallai trees, Density of critical graphs.
- : Coloring and nowhere-zero flows.
- : Discharging method: How to find a proof?
- : Grötzsch theorem using discharging.
- : The proof of the Four Color Theorem.
- : List coloring in planar graphs.
- : Potential method: Density of 4-critical graphs and Grötzsch theorem.
- : Coloring of triangle-free graphs and the Rosenfeld counting method.
- : Variants of graph coloring. Acyclic and star coloring. Defective and clustered coloring. Circular coloring, fractional coloring, homomorphisms.
- Cirkulární barevnost. Orientace grafu a cirkulární barevnost.
- Barevnost a homomorfismy. Zlomková barevnost. Zlomková barevnost Mycielského grafů.
- Vybíravost.
- Entropy compression method.
- Applications of the probabilistic method in graph coloring.
- Presentation and notes from the presentation for the critical graphs and coloring graphs on surfaces.
- Grötzch theorem by discharging: Assignment description, the worksheet, the tex file for the worksheet.