Lineární algebra 2
Aktuálně tento předmět nevyučuji.
Obsah přednášek a poznámky
- Dot product, inner product. Cauchy-Schwarz inequality.
- Norm and orthogonality. Orthonormal basis, Gram-Schmidt orthogonalization.
- Othogonal complement and projection.
- Method of least squares, pseudoinverse. Isometries and orthogonal matrices.
- Determinants - definition, row operations.
- Determinants - multiplicativity, linear equations, inverse.
- Applications of determinants. Eigenvalues and eigenvectors.
- Matrix similarity. Diagonalization and Jordan normal form.
- Cayley-Hamilton theorem. Symmetric and positive matrices, Perron-Frobenius theorem.
- Bilinear and quadratic forms. Classification of quadrics.
- Positive (semi)definiteness.
- Matrix decompositions.