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Definition 1. Let V be an inner product space and let U be its subspace

of finite dimension. For v € 'V, the orthogonal projection of v on U 1is the
vector p € U such that v — p € U™,

Lemma 1. Let V be an inner product space and let U be its subspace of
finite dimension. Let p € U be the projection of v € V. Then p is the vector
of U closest to v, that is,

lo =z|| > flv—pl
for every x € U \ {p}.

Lemma 2. Let V be an inner product space and let U be its subspace of
finite dimension. Let B = uy,...,ux be a (not necessarily othonormal) basis
of U. Let p € U be the projection of v € V on U. Let

<U1,U1> <U2,U1> <uk,u1)
G (ug,ug) (us, u2). oo {ug, ug)
(ug,ug) (ug,ug) ... (ug,ug)

Then G is a reqular matriz and
G[p]g = (<U, u1> IR <Uv uk>)T
Proof. Let [p|lp = (a1,...,ax). Fori=1,... k, we have

(Gp)5): = (uy, w;) oq + (ug, ws) g + ... 4 (up, ug) oy,
= (aquy + ... + agug, u;) = (p, u;) -

Since v —p € U+, we have (v — p,u;) =0 for i = 1,...,k, and thus (p, u;) =
(v,u;). Hence, the equality follows.



Suppose that z = (81, ..., 3,)T is a solution of the system Gz = 0. Let
u = Brus+...4 Brug. Then, (u,w;) = By (ug,w;)+. ..+ B (ug, u;) = 0 for i =

1,...,k and thus u € {uy,...,ux}+ = Ut. However, u € span(uy, ..., u) =
U. Since u € UN U, it follows that u = o, and thus x = (0,...,0).
Consequently, G is regular. n

Example 1. Let U = span((1,1,1),(1,2,3)) be a plane in R®. Determine
the distance of the point v = (3,5,1) from U, without finding an orthogonal
basis of U.

Let u; = (1,1,1) and uy = (1,2,3). We have
G — ( (ur,ur)  (ug,ur) ) 3 6 >
<U1,U2> <U2,U2> 6 14
The solution to the system Gz = ({(v,u1), (v,u2))’ = (9,16) is z = (5, —1).

Hence, the projection of v on U is bu; —us = (4, 3,2), and the distance from
v to U is ||v— (4,3,2)]| = V6.

Corollary 3. Consider the Euclidean space R™ with the inner product defined
as the dot product, and let U be its subspace. Let p : R" — R"™ be the
function that maps each vector to its projection on U. Let B = uq,...,u
be a (not necessarily othonormal) basis of U. Let A = (uq|uz|...|ug). Then
p(v) = A(ATA)"LATv, and thus A(AT A)=*AT is the matriz of the function
p (with respect to the canonical basis of R").

Proof. Let G be the matrix from Lemma 2. Note that (u;,u;) = u! u;, and
thus G = ATA. Similarly, b = ((v,uy), ..., (v,u))’ = ATv. By Lemma 2,

if the coordinates of p(v) with respect to the basis B are (aq,...,ax), then
(ar,...,o1)T = G0 = (ATA)"1ATv. Tt follows that p(v) = aquy + ... +
apup = Aoy, ... ap)T = A(ATA)7LAT. O

1 Least squares method and pseudoinverse

Example 2. Suppose we measured the following dependence of some quantity
on time:
t 0 1 2 3 7
f(&) | 0.000 0.998 1.987 2.855 4.794



Let S = {0,1,2,3,7}. Find the approximation of f by a quadratic poly-
nomial p such that ", s(f(t) — p(t))? is minimum.

Consider the space V of functions S — R, with inner product (g1, gs) =
Y oies 1(t)ga(t). Let py(t) = 1, pa(t) =t and ps(t) = t* be elements of V.
Any quadratic polynomial is a linear combination of p1, po and p3. Hence, p
is the projection of f on span(py,ps2,ps). Let

(p1,p1) (p2.p1) (p3,p1) 5 11 63
G = <p1,p2) <p2,p2> <p3,p2> = 11 63 379
(p1,p3) (p2,p3) (ps3,p3) 63 379 2499

and

b= ({f,p1), {f,p2), (f,ps))" = (10.634,47.095,269.547)""

By Lemma 2, the coordinates of p with respect to the basis p1, p2, ps are the
solution to the system Gx = b, which is

r =~ (—0.032,1.146, —0.065)".
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Hence, p ~ —0.032 4 1.146t — 0.065¢>.

Example 3. Another way of viewing Fxample 2: Suppose that p = «ag +
ait 4+ aot? for some (unknown) coefficients ap, oy and as. Let

1 0 0
1 1 1
A=\ 1 2 4
1 3 9
1 7 49

Then
(p(0),p(1),p(2), p(3),p(7))" = A(ag, o1, )"

Ideally, we would like to have p = f, and thus (ag, a1, ag) would be a solution
to the system

Aag, a1, az)’ = (0.000,0.998, 1.987, 2.855,4.794) .

Howewver, this system has no solution, and thus we want to find (g, a1, as)
so that A(ag, a1, an)T differs from (0.000,0.998, 1.987,2.855,4.794)T (in the
FEuclidean norm) as little as possible.

Lemma 4. Let A be an m X n real matriz of rank n, let b be a column

vector of m real numbers, and let x be such ||Axz — b|| is minimum. Then
x = (ATA) AT,

Proof. Observe that Az is the projection of b on the column space of A, and
thus by Corollary 3,
Az = A(ATA)TAT,

By comparing the sides, we see that we can choose z = (AT A)~*ATb. Note
that z is unique, by the uniqueness property from Lemma 1 and the assump-
tion that A has full column rank. O

Let us remark that the previous lemma can be modified to handle the
case when A does not have full column rank: then, x can be chosen as any
of the (infinitely many) solutions to the system AT Az = ATb.

The matrix (ATA)7LAT is the pseudoinverse to A (and if A is regular,
its pseudoinverse is equal to A™!). The pseudoinverse can be defined (in a
somewhat more complicated way) even if A does not have full column rank.



2 Orthogonal matrices and isometries

Definition 2. Let V be an inner product space over R. A function f : 'V —
V is an isometry if | f(x) — f(y)|| = ||z — yl|| for every x,y € V.

Examples: rotations, reflections, translations, ...

Proposition 5. Any isometry of an inner product space is an affine function;,
and thus, if f : V — V is an isometry and f(o) = o, then f is a linear
function.

We skip the proof of this proposition, which requires a bit of math anal-
ysis.

Lemma 6. Let 'V be an inner product space over R. Let f : V. — V be a
linear function. The following claims are equivalent:

1. f is an isometry
2. [ preserves the norm, that is, || f(x)|| = ||z|| for every x € V.

3. [ preserves the inner product, that is, (f(x), f(y)) = (x,y) for every
x,y € V.

Proof. Since f is linear, || f(z)— f(y)|| = || f(x —y)||. If f preserves the norm,
then || f(z — y)|| = ||z — y|| as required. Conversely, if f is an isometry, then
[F @)l = 1lf(z) = fF)l = [z = ol = |=||.

If f preserves the inner product, then || f(x)|| = +/{(f(z), f(z)) = /(z,z) =

||z||, and thus it preserves the norm. Conversely, if f preserves the norm, then

(f@), ) =5 U+ I> = 1F @12 = 1FWIP) = 5 U=+l = 2> = [[ylI*) =
(z,y). 0

Lemma 6 shows that isometries also preserve angles.
Definition 3. A square matriz Q) is orthogonal if QTQ = I.

Lemma 7. Let 'V be an inner product space over R. Let f : V. — V be a
linear function. Let B = vq,...,v, and C be orthonormal bases of V. Then
f is an isometry if and only if [f]g.c is an orthogonal matriz.

Proof. Recall that if (v, ..., a,) and (B, ..., B,) are the coordinates of vec-
tors = and y with respect to an orthonormal basis, then (z,y) = a; 61+ ...+
anﬁn- HQDCG, <$,y> = ['T}B[y}g = [x]C[y]g Let Q = [f]B,C’~

Suppose that Q is orthogonal. Then (f(z), (1)) = [f(@)]c[f )5 =

(Ql2]5)"(Qly]E) = [2]5(QTQ)WE = [2ls[y]5 = (z.y), hence f preserves the
inner product, and thus f is an isometry.
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Conversely, suppose that f is an isometry, and thus f preserves the inner

product. Hence, (z,y) = (f(x), f(y)) = [2](QTQ)[y]} for every z,y € V,
and in particular, (v;,v;) = [vi]5(QTQ)[v;]} = €:(QTQ)el = (QTQ);;. Since
(vi,v5) = 0if i # j and (v;,v;) = 1 for all 4, it follows that QTQ is the
identity matrix, and thus @) is orthogonal. O

Since id is an isometry, this implies that the transition matrix [id]z ¢
between orthonormal bases is orthogonal.

Lemma 8. For any n x n matriz QQ, the following claims are equivalent:
1. Q is orthogonal.

Q is reqular and Q' = Q7.

QT is orthogonal.

QR =1.

Q is reqular and Q=" is orthogonal.

The rows of Q) form an orthonormal basis of R™.

NS = e

The columns of QQ form an orthonormal basis of R™.

Proof. From the definition of the orthogonal matrix, Q7Q = I, and thus
Q7' =QT. Hence, I = QQ! = QQT = (Q1)TQ", and thus QT is orthogo-
nal. Also, (Q7 )T = (QT)T = @, and thus (Q ™ HTQ ' =QQ ' =1 and Q!
is orthogonal. The reverse implications follow by symmetry.

Also, note that (Q7Q);; is equal to the dot product of i-th and the j-th
column of ). Hence, QTQ = I if and only if the set of columns of @ is
orthonormal, and similarly QQ = I if and only if the set of rows of Q is
orthonormal. O

Lemma 9. The product of two orthogonal matrices is orthogonal.

Proof. 1t Q1TQ1 = [ and Q5Q2 = I, then (Q1Q2)T(Q1Q2) = Q2TQ1TQ1Q2 =
Q3Q2=1. m



