Spring/LS 2021 - Jiří Sgall - Friday 10:40
Recordings of the zoom lectures are available in SIS.
Tutorials
are led by Karel Král, they are scheduled on Thursday
12:20.
Covered topics
- 1. (March 5)
- introductory examples: graph non-isomorphism, 3-colorable
graphs - 2-coloring without monochromatic triangles
- Markov chains, definitions, stationary distribution, its
existence and convergence of the Markov chain to it [MU 7.2,
MR 6.2, notes
on stationary distribution]
- 2. (March 12)
- random walks on graphs [MU 7.4, MR 6.3]
- computation of hitting times and their relation to
electrical networks [MR 6.4]
- bounds on hitting and cover times [MU 7.4, MR 6.5]
- connectivity, universal traversal sequences [MR 6.6]
- 3. (March 19)
- definition of probabilistic complexity classes RP, BPP, PP,
ZPP [MR 1.5]
- relations of probabilistic complexity classes to
deterministic ones [MR 1.5, 2.3]
- Chernoff bounds [MU 4.2-4.3, MR 4.1] (see the summary)
- probability amplification
- 4. (March 26)
- permutation routing [MU 4.5.1, MR 4.2]
- expanders and eigenvalues [MR 6.7]
- 5. (April 9)
- random walks on expanders [MR 6.8]
- 6. (April 16)
- Monte Carlo method for approximate counting [MU 10.1, MR
11.1]
- approximate counting of satisfying assignments for DNF [MU
10.2, MR 11.2]
- 7. (April 23)
- permanent - approximate counting of perfect matching using
Markov chains [MU 10.2, MR 11.2]
- permanent - canonical paths
- 8. (April 30)
- coupling - introduction, shuffling, convergence speed [MU
11.1-11.2]
- coupling - approximate sampling of graph colorings [MU
11.4-11.5]
- 9. (May 7)
- Yao-von-Neumann principle [MR 2.1]
- game tree evaluation - algorithm with expected time 3k,
lower bound 2.61k [MR 2.2, M. Tarsi: Optimal Search
on Some Game Trees. J. ACM 30(3): 389-396 (1983), also
Tarsi-GameTrees.pdf here]
- 10. (May 14)
- 11. (May 21)
- 12. (May 28)
- 13. (June 4)
Učebnice
[MR] R. Motwani, P. Raghavan: Randomized algorithms.
[MU] M. Mitzenmacher, E. Upfal: Probability and Computing:
Randomized Algorithms and Probabilistic Analysis
Další informace
Přednáška se nekoná každý rok, předpokládám její opakování za 2
roky.