11TH TUTORIAL ON RANDOMIZED ALGORITHMS Streaming algorithms: KMV and Count-Min sketches

Even simpler count distinct: K Minimum Values (KMV) sketch. We would like to count the number of distinct elements, i.e., estimate set cardinality. We look at a different approach (which is actually quite popular in practice): For a parameter kand a hash function $h: [N] \to (0,1]$, store the k smallest hash values of the distinct stream elements, i.e., we store k pairs (item j, h(j)). When queried for cardinality, return $(k-1)/v_k$, where v_k is the k-th smallest hash value (the largest one stored).

1.

- a) Analyze the algorithm assuming h is fully random and prove that given $\varepsilon \in (0, 1)$, for $k \geq c/\varepsilon^2$ (where c is a large enough constant) the algorithm gives an ε approximation of F_0 = the number of distinct elements with constant probability. Focus on bounding the probability of $(k-1)/v_k > (1+\varepsilon) \cdot F_0$; the other inequality is similar.
- b) What is wrong with h being fully random? What kind of hash functions would be sufficient for the analysis?

2. Count-Min sketch for frequency estimation. We would like to estimate frequencies and find heavy hitters under both insertions and deletions (similarly as CountSketch but with a different guarantee). We will assume that all frequencies are non-negative at the end. We use the following sketch for estimating frequencies f_i (screenshot from lecture notes by A. Chakrabarti):

Algorithm 9 Count-Min Sketch Initialize:

- 1: $C[1...t][1...k] \leftarrow \vec{0}$, where $k := 2/\varepsilon$ and $t := \lfloor \log(1/\delta) \rfloor$
- 2: Choose *t* independent hash functions $h_1, \ldots, h_t : [n] \to [k]$, each from a 2-universal family

Process (token (j,c)): 3: for $i \leftarrow 1$ to t do 4: $C[i][h_i(j)] \leftarrow C[i][h_i(j)] + c$

Output (query *a*): 5: report $\hat{f}_a = \min_{1 \le i \le t} C[i][h_i(a)]$

a) Using the assumption that all frequencies are non-negative at the end, derive lower and upper bounds on the estimator of a single row. That is, for any $a \in [n]$ and row $i \in [t]$ show that

$$\left| f_a - C[i][h_i(a)] \right| \le \varepsilon \cdot \|\mathbf{f}\|_1.$$
(1)

with a constant probability.

- b) Show a high probability bound for the final estimator \hat{a}_j for frequency f_a .
- c) Compare CountSketch (from the lecture) and Count-Min sketch, both in terms of their description and their properties.
- d) Can you derive a more refined bound on the error of Count-Min? That is, replace $\|\mathbf{f}\|_1$ by a smaller quantity in (1).
- e) Count-Min is a linear sketch, that is, it can be viewed as a linear map of the frequency vector \mathbf{f} to a much smaller dimension. What are the properties of the matrix of this linear map?