11^{TH} TUTORIAL ON RANDOMIZED ALGORITHMS

Streaming algorithms: KMV and Count-Min sketches

1. Even simpler count distinct: K Minimum Values (KMV) sketch. We would like to count the number of distinct elements, i.e., estimate set cardinality. We look at a different approach (which is actually quite popular in practice): For a parameter k and a hash function $h:[N] \rightarrow(0,1]$, store the k smallest hash values of the distinct stream elements, i.e., we store k pairs (item $j, h(j)$). When queried for cardinality, return $(k-1) / v_{k}$, where v_{k} is the k-th smallest hash value (the largest one stored).
a) Analyze the algorithm assuming h is fully random and prove that given $\varepsilon \in(0,1)$, for $k \geq c / \varepsilon^{2}$ (where c is a large enough constant) the algorithm gives an ε approximation of $F_{0}=$ the number of distinct elements with constant probability. Focus on bounding the probability of $(k-1) / v_{k}>(1+\varepsilon) \cdot F_{0}$; the other inequality is similar.
b) What is wrong with h being fully random? What kind of hash functions would be sufficient for the analysis?
2. Count-Min sketch for frequency estimation. We would like to estimate frequencies and find heavy hitters under both insertions and deletions (similarly as CountSketch but with a different guarantee). We will assume that all frequencies are non-negative at the end. We use the following sketch for estimating frequencies f_{i} (screenshot from lecture notes by A. Chakrabarti):

Algorithm 9 Count-Min Sketch

Initialize:

1: $C[1 \ldots t][1 \ldots k] \leftarrow \overrightarrow{0}$, where $k:=2 / \varepsilon$ and $t:=\lceil\log (1 / \delta)\rceil$
2: Choose t independent hash functions $h_{1}, \ldots h_{t}:[n] \rightarrow[k]$, each from a 2-universal family
Process $($ token $(j, c))$:
3: for $i \leftarrow 1$ to t do
4: $\quad C[i]\left[h_{i}(j)\right] \leftarrow C[i]\left[h_{i}(j)\right]+c$

Output (query a) :

5: report $\hat{f}_{a}=\min _{1 \leq i \leq t} C[i]\left[h_{i}(a)\right]$
a) Using the assumption that all frequencies are non-negative at the end, derive lower and upper bounds on the estimator of a single row. That is, for any $a \in[n]$ and row $i \in[t]$ show that

$$
\begin{equation*}
\left|f_{a}-C[i]\left[h_{i}(a)\right]\right| \leq \varepsilon \cdot\|\mathbf{f}\|_{1} . \tag{1}
\end{equation*}
$$

with a constant probability.
b) Show a high probability bound for the final estimator \hat{a}_{j} for frequency f_{a}.
c) Compare CountSketch (from the lecture) and Count-Min sketch, both in terms of their description and their properties.
d) Can you derive a more refined bound on the error of Count-Min? That is, replace $\|\mathbf{f}\|_{1}$ by a smaller quantity in (1).
e) Count-Min is a linear sketch, that is, it can be viewed as a linear map of the frequency vector \mathbf{f} to a much smaller dimension. What are the properties of the matrix of this linear map?

