$\mathbf{9}^{\mathrm{TH}}$ TUTORIAL ON RANDOMIZED ALGORITHMS

1. Random walk on a hypercube. In the hypercube graph of dimension d, vertices are binary strings of length d and two vertices are connected by an edge iff they differ in exactly one coordinate. For $d=2$, the graph is

$$
(\{00,01,10,11\},\{\{00,01\},\{00,10\},\{11,01\},\{11,10\}\}) .
$$

We start at 0^{d} and do the following random walk:

- With probability $1 / 2$ we stay at the current vertex.
- With probability $1 / 2$ we choose an index $j \in[d]$ uniformly at random and flip the j-th bit.

The Markov chain is ergodic (finite, aperiodic, and irreducible), so it converges to a unique stationary distribution (which one is it?). Show that the random walk has

$$
\tau(\varepsilon) \leq d \ln (d / \varepsilon) .
$$

2. Sampling colorings. Let $G=(V, E)$ be a graph with maximum degree Δ. We would like to uniformly sample a proper coloring with c colors. We use the following Markov chain: Given a proper coloring, pick $v \in V$ and a color $\ell \leq c$ uniformly at random and color v using ℓ if this new coloring is proper.
a) Show that this Markov chain is ergodic for $c \geq \Delta+2$. What is the stationary distribution? What breaks down for $c \leq \Delta+1$?
b) Analyze the mixing time for $c \geq 4 \Delta+1$ using a simple coupling (pick the same v and ℓ in both chains). Hint: look at random variable $d_{t}=$ the number of vertices with different colors in the two chains.
c) Finally, we will show a better coupling that works even for $c \geq 2 \Delta+1$ (thus saving a factor of two).
