8^{TH} TUTORIAL ON RANDOMIZED ALGORITHMS

1. Counting matchings. Let $G=(U \cup V, E)$ be a bipartite graph where $|U|=|V|=n$ and $\delta(G)>n / 2$. We define:
$M_{k}=$ the set of matchings of size k in G,
$m_{k}=\left|M_{k}\right|$ the number of matchings of size k in G, and
$r_{k}=m_{k} / m_{k-1}=$ the fraction of the $\#$ of k-matchings to the $\#$ of $k-1$-matchings. Let $\alpha \geq 1$ be a real number such that $1 / \alpha \leq r_{k} \leq \alpha$. Pick $N=n^{7} \alpha$ elements from $M_{k} \cup M_{k-1}$ independently uniformly at random (approximately uniform generation covered in the lecture). Set $\hat{r_{k}}$ to the fraction of observed k-matchings to $(k-1)$ matchings. Show that

$$
\left(1-1 / n^{3}\right) r_{k} \leq \hat{r_{k}} \leq\left(1+1 / n^{3}\right) r_{k}
$$

with probability at least $1-\exp (-n)$. (Hint: use the Estimator theorem from the lecture.)
(Also recall why accurate approximations of r_{k} 's are useful for estimating the number of perfect matchings.)
2. Let G_{k} be the graph constructed from $G=(U \cup V, E)$ such that we add $n-k$ vertices to each partite and connect each new vertex with all old vertices in the opposite partite. Show that if R is the fraction of perfect matchings to the number of almost perfect matchings (all but one vertex in each partite is matched) in the new graph G_{k} then

$$
R=\frac{m_{k}}{m_{k+1}+2(n-k) m_{k}+(n-k+1)^{2} m_{k-1}}
$$

3. Estimating permanent. Let $A \in\{0,1\}^{n \times n}$ be a matrix. Let $\varepsilon_{i, j}$ be independent random ± 1 variables. Let $B \in\{-1,0,1\}^{n \times n}$ be a matrix such that $B_{i, j}=\varepsilon_{i, j} A_{i, j}$ (uniformly randomly independently assign signs to entries of A).
a) Show that $\mathbb{E}[\operatorname{det}(B)]=0$
b) Show that $\mathbb{E}\left[\operatorname{det}(B)^{2}\right]=\operatorname{perm}(A)($ permanent of $A)$

Now it may look like this gives an efficient and accurate estimation for the permanent. Where's the catch?
4. Bonus: polynomial-time interactive protocol for permanent. Show that permanent is in IP. We say that a language $L \subseteq\{0,1\}^{*}$ is in IP if

- The verifier V gets a word $w \in\{0,1\}^{*}$, works in polynomial time in $|w|$ and can use random bits.
- The verifier V can communicate with the prover P (which is computationally unbounded).
- We say that $L \in I P$ if there is a prover P and a verifier V such that:
- Completeness: for each $w \in L$ we have

$$
\operatorname{Pr}[V(w) \text { accepts the proof of } P] \geq 2 / 3
$$

- Soundness: for any $x \notin L$ and any prover Q we have

$$
\operatorname{Pr}[V(x) \text { accepts the proof of } Q] \leq 1 / 3
$$

Our goal is to show that the decision problem whether or not $\operatorname{perm}(A)=k$ for a given matrix $A \in\{0,1\}^{n \times n}$ and $k \in \mathbb{N}$ is in IP.

