7^{TH} TUTORIAL ON RANDOMIZED ALGORITHMS

1. Consider the following variant of the Coverage algorithm for approximating the DNF counting problem. For $t=1, \ldots, N$,

- select a clause C_{t} at random with probability proportional to the number of satisfying truth assignments,
- select a satisfying truth assignment a for C_{t} uniformly at random, and
- define random variable $X_{t}=1 /|\operatorname{cov}(a)|$, where $\operatorname{cov}(a)$ denotes the set of clauses thatare satisfied by a (there's always at least one).
Our estimator for $\# F$ (the number of satisfying assignments for the DNF formula) is

$$
Y=\sum_{t=1}^{N} \frac{\sigma}{N} \cdot X_{t},
$$

where σ is the sum of the sizes of the coverage sets $\operatorname{cov}(a)$ over all satisfying assignments a. Prove that Y is an (ε, δ)-approximation for $\# F$ for a sufficiently large N.
2. Parity of perfect matchings. Show an algorithm that given a bipartite graph G (partites consisting of the same number of vertices) determines if the number of perfect matchings is even or odd.
3. Fraction of approximations. We say that \hat{x} is an ε-approximation of x iff

$$
(1-\varepsilon) x \leq \hat{x} \leq(1+\varepsilon) x
$$

Show that for $\varepsilon<1 / 2$, if we have ε-approximation \hat{s} of a number s and ε-approximation \hat{t} of a number t, then \hat{s} / \hat{t} is an 4ε-approximation of s / t. (It's sufficient to determine the upper bound.)
4. Product of approximations. Let $\varepsilon>0$ be fixed. Find a suitable choice of $\bar{\varepsilon}$ such that if we take $\bar{\varepsilon}$-approximations $\left(\hat{a_{i}}\right)_{i=1}^{n}$ of numbers $\left(a_{i}\right)_{i=1}^{n}$, then $\prod_{i=1}^{n} \hat{a_{i}}$ is an ε approximation of $\prod_{i=1}^{n} a_{i}$. (It's sufficient to work out the upper bound.)
5. Main course: Counting matchings. Let $G=(U \cup V, E)$ be a bipartite graph where $|U|=|V|=n$ and $\delta(G)>n / 2$. We define:
$m_{k}=$ the number of matchings of size k in G, and
$r_{k}=m_{k} / m_{k-1}=$ the fraction of the $\#$ of k-matchings to the $\#$ of $k-1$-matchings.
Let $\alpha \geq 1$ be a real number such that $1 / \alpha \leq r_{k} \leq \alpha$. Pick $N=n^{7} \alpha$ elements from $M_{k} \cup M_{k-1}$ independently uniformly at random (approximately uniform generation covered in the lecture). Set $\hat{r_{k}}$ to the fraction of observed k-matchings to $(k-1)$ matchings. Show that

$$
\left(1-1 / n^{3}\right) r_{k} \leq \hat{r_{k}} \leq\left(1+1 / n^{3}\right) r_{k}
$$

with probability at least $1-\exp (-n)$. (Hint: use the Estimator theorem from the lecture.)
Then show why accurate approximations of r_{k} 's are useful for estimating the number of perfect matchings.

