7TH TUTORIAL ON RANDOMIZED ALGORITHMS

Approximate counting

1. Consider the following variant of the *Coverage algorithm* for approximating the DNF counting problem. For t = 1, ..., N,

- select a clause C_t at random with probability proportional to the number of satisfying truth assignments,
- select a satisfying truth assignment a for C_t uniformly at random, and
- define random variable $X_t = 1/|cov(a)|$, where cov(a) denotes the set of clauses that are satisfied by a (there's always at least one).

Our estimator for #F (the number of satisfying assignments for the DNF formula) is

$$Y = \sum_{t=1}^{N} \frac{\sigma}{N} \cdot X_t \,,$$

where σ is the sum of the sizes of the coverage sets cov(a) over all satisfying assignments a. Prove that Y is an (ε, δ) -approximation for #F for a sufficiently large N.

2. Parity of perfect matchings. Show an algorithm that given a bipartite graph G (partites consisting of the same number of vertices) determines if the number of perfect matchings is even or odd.

3. Fraction of approximations. We say that \hat{x} is an ε -approximation of x iff

$$(1-\varepsilon)x \le \hat{x} \le (1+\varepsilon)x$$

Show that for $\varepsilon < 1/2$, if we have ε -approximation \hat{s} of a number s and ε -approximation \hat{t} of a number t, then \hat{s}/\hat{t} is an 4ε -approximation of s/t. (It's sufficient to determine the upper bound.)

4. Product of approximations. Let $\varepsilon > 0$ be fixed. Find a suitable choice of $\overline{\varepsilon}$ such that if we take $\overline{\varepsilon}$ -approximations $(\hat{a}_i)_{i=1}^n$ of numbers $(a_i)_{i=1}^n$, then $\prod_{i=1}^n \hat{a}_i$ is an ε -approximation of $\prod_{i=1}^n a_i$. (It's sufficient to work out the upper bound.)

5. Main course: Counting matchings. Let $G = (U \cup V, E)$ be a bipartite graph where |U| = |V| = n and $\delta(G) > n/2$. We define:

 m_k = the number of matchings of size k in G, and

 $r_k = m_k/m_{k-1}$ = the fraction of the # of k-matchings to the # of k-1-matchings. Let $\alpha \ge 1$ be a real number such that $1/\alpha \le r_k \le \alpha$. Pick $N = n^7 \alpha$ elements from $M_k \cup M_{k-1}$ independently uniformly at random (approximately uniform generation covered in the lecture). Set \hat{r}_k to the fraction of observed k-matchings to (k-1)-matchings. Show that

$$(1-1/n^3) r_k \le \hat{r_k} \le (1+1/n^3) r_k$$

with probability at least $1 - \exp(-n)$. (Hint: use the Estimator theorem from the lecture.)

Then show why accurate approximations of r_k 's are useful for estimating the number of perfect matchings.