$6^{\text {TH }}$ TUTORIAL ON RANDOMIZED ALGORITHMS

1. Let $G=(V, E)$ be a d-regular graph (so its largest eigenvalue is $\lambda_{1}=d$). Assume that the absolute value of any other eigenvalue is at most λ for $0 \leq \lambda \leq \lambda_{1}$. Then for every $S \subseteq V$ with $|S|=\alpha \cdot n$, it holds that

$$
|e(S, \bar{S})-d \cdot(1-\alpha) \cdot \alpha \cdot n| \leq \lambda \cdot \alpha \cdot(1-\alpha) \cdot n,
$$

where $e(S, \bar{S})$ is the number of edges between S and $\bar{S}=V \backslash S$.
2. Let μ be a probability distribution, that is $\|\mu\|_{1}=1$ and $\mu_{j} \geq 0$ (for each $j \in \Omega$). Let us define $d(\mu, \nu)$ the distance of two probability distributions as:

$$
d(\mu, \nu)=\frac{1}{2} \sum_{x \in \Omega}|\mu(x)-\nu(x)|
$$

Show that:

$$
d(\mu, \nu)=\max _{A \subseteq \Omega} \mu(A)-\nu(A)
$$

where $\mu(A)=\sum_{x \in A} \mu(x)$. (This is called the total variation distance.)
3. Show that for any $v \in \mathbb{R}^{n}$ it holds that

$$
\frac{1}{\sqrt{n}}\|v\|_{1} \leq\|v\|_{2} \leq\|v\|_{1}
$$

(Hint: for the first inequality, use scalar product of v with a suitable vector to get $\left.\|v\|_{1}\right)$
4. Consider the following variant of the Coverage algorithm for approximating the DNF counting problem. For $t=1, \ldots, N$,

- select a clause C_{t} at random with probability proportional to the number of satisfying truth assignments,
- select a satisfying truth assignment a for C_{t} uniformly at random, and
- define random variable $X_{t}=1 /|\operatorname{cov}(a)|$, where $\operatorname{cov}(a)$ denotes the set of clauses that are satisfied by a (there's always at least one).
Our estimator for $\# F$ (the number of satisfying assignments for the DNF formula) is

$$
Y=\sum_{t=1}^{N} \frac{\sigma}{N} \cdot X_{t},
$$

where σ is the sum of the sizes of the coverage sets $\operatorname{cov}(a)$ over all satisfying assignments a. Prove that Y is an (ε, δ)-approximation for $\# F$ for a sufficiently large N.

