3^{RD} TUTORIAL ON RANDOMIZED ALGORITHMS

1. Classes of randomized algorithms. You have seen that $\mathrm{ZPP}=\mathrm{RP} \cap$ co-RP.
a) Show that $\mathrm{RP} \subseteq \mathrm{NP}$ (and thus co-RP \subseteq co-NP).
b) Show that if $N P \subseteq B P P$ then $N P=R P$.
2. Let $A \in \mathbb{R}^{n \times n}$ be a matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Show that the matrix $A+d I_{n}$ has eigenvalues $d+\lambda_{1}, \ldots, d+\lambda_{n}$.
3. Show Courant-Fisher: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix $\left(A^{T}=A\right)$. Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ be its eigenvalues. Show that $\lambda_{1}=\max _{x \in \mathbb{R}^{n},\|x\|=1} x^{T} A x$. (Similarly, $\lambda_{n}=\min _{x \in \mathbb{R}^{n},\|x\|=1} x^{T} A x$ and for example, $\lambda_{2}=\max _{x \in \mathbb{R}^{n},\|x\|=1, x^{T} u_{1}=0} x^{T} A x$, where u_{1} is the eigenvector corresponding to λ_{1}.)
4. Show that a connected d-regular graph is bipartite iff the least eigenvalue of its adjacency matrix is $-d$.
5. Compute the eigenvalues and eigenvectors of the following graphs:
a) K_{n}, the complete graph on n vertices.
b) $K_{n, n}$, the complete bipartite graph with partites of size n each.
