Datove struktury 1
9. Prednaska 2.12.

Pavel Vesely

Plan: retezcove DS

Sufixove stromy a pole
* ... aneb serfadime sufixy a vyfeSime témér vSe v linearnim ¢ase ©

Vyhledavani v textu (jehly v kupce sena)

* Dan text S (,,seno“) ajehla]

* Cil: najit vsechny vyskyty J v textu = sufixy S zaCinajici na J

* Algorltmy hm
* Knuth—-Morris—Pratt (KMP): - == S oA NN =St
b a r b a r 0 s s a
* pomociautomatu '\) Y //

* RabinUv-Karpuv
* Pomoci ,rolling hash*
* Aho-Corasick: rozsireni KMP na vice jehel
* Co kdyz nam chodi jehly jako dotazy?
* Z textu tedy chceme vytvorit DS, ktera pro zadanou jehlu najde jeji vyskyty

Obrazek 13.1: Vyhledavaci automat pro slovo barbarossa

/naceni pro retezce

* ¥ = abecedaznak(,),* jsoukonecéné fetézce nad)

* S,a,f =text, fetézec, slovo, ...; |S| = délka S (pocet znak)

¢ = prazdné slovo délky 0

* S[i] = znak na pozicii =0, ...,|S| — 1

« S[i : j] = podretézec (podslovo) znaku na pozicich i,i + 1, ..., j-1
* S[: j] = prefix z prvnich j znaku

» S[i :] = sufixz poslednich |S| — i znakd, tedy od znaku i

Opa kovani: trie = pl'smenkow'/ Strom (prefixovy strom)

 Dana mnozina slov (fetézcu)
e Kazdy uzel odpovida prefixu nejakého
slova
e Uzel:
* Pole indexované pismeny)
* Priznak konce slova

« Komprimovana trie

* Odstranime uzly s jednim synem
* Hrana Obrazek 4.4: Pismenkovy strom pro slova kocka,

kocur, kote, koza, kozel, kuzle, mys, mysak, myska

* dvaindexy nazacatek a konec podslova

Sufixovy strom pro $: A

aroko. barokoarokoko$ N O

= komprimovana trie vSech sufix(l S$ aroxoxos/ |xos : ko arokoko$

O
arokoko$ arokoko$

$ ko$

arokoko$

Obrazek 13.4: Suffixovy strom pro slovo barokoarokoko

Jak spocist sufixovy strom z S? K ¢emu je dobry sufixovy strom?

* Snadno v kvadratickém ¢ase ® * \lyhledani vyskytl jehly
* Vlinearnim Case — pozdéeji * Nejdelsi opakujici se podslovo

ko$

Sufixoveé pole X (aspol.)

» Udava lexikografické poradi sufixt S
* X[i] = pozice zaCatku i-tého sufixu S v lexikografickém poradi

* Rankove pole R =inverzni permutace k X
* R|i] = kolikaty v lexikografickém pofadi je sufix S|i : |

* LCP pole L (pole spole¢nych prefixt, “longest common prefix”)
* LCP(a, B) = nejdelSi spolecny prefix slova a3
 L[i] =LCP(S[X[i]:1], S[X[i +1]:])

* Aplikace:
* Vlyhledavani vyskytu jehly

Pocet k-gramU = pocet riznych podslov délky k

NejdelSi opakujici se podslovo

Nejdelsi spolecné podslovo

Jsou lepsi sufixové stromy nebo pole?

Algoritmy pro sufixove pole/stromy

1. Vypocet sufixoveho pole X:
* Tedy sefazenivSech sufixt S
a) Zdvojovanimv case O(nlogn)

« Sefadime dle prvnich 2! pismenproi = 0,1,2, ..., [log, n]

8
b) Algoritmus Skew v ¢case O (7’1) — pro abecedy, které lze setfiditv O(n) 12 g

* [Karkkainen&Sanders ‘03]

2. Vypocet LCP pole ze sufixového pole X
» Kasaillv algoritmus

3. Sufixovy strom < sufixové +LCP pole
* Lze v Case O(n) —cviceni

i X[Rl Lli| suffiz

0 13 3 0 €

1 1 1 5! arokoarokoko
2 6 12 0 arokoko

3 0 10 0 barokoarokoko
4 11 5 2 Eg

5 4 8 2 koarokoko

6 9 2 0 koko

7 12 13 1 o

8 5 11 1 oarokoko

9 10 6 3 oko

10 3 9 3 okoarokoko

11 4 0 okoko

7 4 rokoarokoko
13 0 - rokoko
0
$ ko > roko
aroko. barokoarokoko$ X O O
$ ko
arokoko$ ko$ $ ko$ arokoko$ ko$
®
arokoko$ arokoko$
$ ko$
arokoko$

Obrazek 13.4: Suffixovy strom pro slovo barokoarokoko

Razeni sufixu zdvojovanim — pseudokéd

Algoritmus SUFFIXOVEPOLE
Vstup: Retézec a délky n > 0

1. Vytvorime pole X[0...n] a R[0...n|.

2. Prvni faze:
3. D+ {(ali],i) | i =0,...,n}, kde a[n] povazujeme za nejmensi znak.
4. Setfidime D lexikograficky.
5. Proj=0,...,n:
6. Xj] = D[y}
7. Je-li 7 = 0 nebo DJj][0] # D[j — 1][0]:
8. RIX[j]] =
9. Jinak:
10. RIX[j]l = RIX[j — 1]]
11. k<« 1 a cislo aktudlnt faze
12. Dokud k < n: 4 z poli Xy, a Ry, pocitame Xop, a Rop
13. D« {(R[i],R[i+k],i) | i =0,...,n}, kde R[i+ k] =0 proi+k > n.
14. Setridime D lexikograficky.
15. Proj=0,...,n:
16. Xl|j] = Dljl[2]
17 Je-li j = 0 mebo (Dj][0], Dj)[1]) # (DL — 1][0], Dl — 1[1)):
18. RIX[jl]=J
19. Jinak:
20. R[X[j]] = R[X]j —1]]
21 k « 2k

A\ VA4 A4

Priste

* Linearni algoritmus Skew pro konstrukci sufixoveho pole
e strucne

* Jeste lepsi DS pro retezce:
e Burrows-Wheelerova transformace

* Geometricke datove struktury

	Default Section
	Slide 1: Datové struktury 1
	Slide 2: Plán: řetězcové DS
	Slide 3: Vyhledávání v textu (jehly v kupce sena)
	Slide 4: Značení pro řetězce
	Slide 5: Opakování: trie = písmenkový strom (prefixový strom)
	Slide 6: Sufixový strom pro cap S
	Slide 7: Sufixové pole cap X (a spol.)
	Slide 8: Algoritmy pro sufixové pole/stromy
	Slide 9: Řazení sufixů zdvojováním – pseudokód
	Slide 10: Příště

