9TH TUTORIAL ON RANDOMIZED ALGORITHMS

Counting matchings.

1. Parity of perfect matchings. Show an algorithm that given a bipartite graph G (partites consisting of the same number of vertices) determines if the number of perfect matchings is even or odd.

2. Fraction of approximations. We say that \hat{x} is an ε -approximation of x iff

$$(1-\varepsilon)x \le \hat{x} \le (1+\varepsilon)x$$

Show that for $\varepsilon < 1/2$, if we have ε -approximation \hat{s} of a number s and ε -approximation \hat{t} of a number t, then \hat{s}/\hat{t} is an 4ε -approximation of s/t. (It's sufficient to prove the upper bound as the lower bound is very similar.)

3. Product of approximations. Let $\varepsilon > 0$ be fixed. Find a suitable choice of $\overline{\varepsilon}$ such that if we take $\overline{\varepsilon}$ -approximations $(\hat{a}_i)_{i=1}^n$ of numbers $(a_i)_{i=1}^n$, then $\prod_{i=1}^n \hat{a}_i$ is an ε -approximation of $\prod_{i=1}^n a_i$. (It's sufficient to prove the upper bound as the lower bound is very similar.)

4. Main course: Counting matchings. Let $G = (U \cup V, E)$ be a bipartite graph where |U| = |V| = n and $\delta(G) > n/2$. We define:

 m_k = the number of matchings of size k in G, and

 $r_k = m_k/m_{k-1}$ = the fraction of the # of k-matchings to the # of k-1-matchings. Let $\alpha \ge 1$ be a real number such that $1/\alpha \le r_k \le \alpha$; for bipartite graphs with $\delta(G) > n/2$, it holds that $\alpha \le n^2$. Pick $N = n^7 \alpha$ elements from $M_k \cup M_{k-1}$ independently uniformly at random (approximately uniform generation covered in the lecture). Set \hat{r}_k to the fraction of observed k-matchings to (k-1)-matchings. Show that

$$(1-1/n^3) r_k \le \hat{r_k} \le (1+1/n^3) r_k$$

with probability at least $1 - \exp(-n)$. (Hint: use the Estimator theorem from the lecture.)

Then show why accurate approximations of r_k 's are useful for estimating the number of perfect matchings.

5. Bonus: polynomial-time interactive protocol for permanent. Show that permanent is in IP. We say that a language $L \subseteq \{0,1\}^*$ is in IP if

- The verifier V gets a word $w \in \{0,1\}^*$, works in polynomial time in |w| and can use random bits.
- The verifier V can communicate with the prover P (which is computationally unbounded).
- We say that $L \in IP$ if there is a prover P and a verifier V such that:
 - Completeness: for each $w \in L$ we have

 $\Pr[V(w) \text{ accepts the proof of } P] \ge 2/3$

– Soundness: for any $x \notin L$ and any prover Q we have

 $\Pr[V(x) \text{ accepts the proof of } Q] \leq 1/3$

Our goal is to show that the decision problem whether or not perm(A) = k for a given matrix $A \in \{0, 1\}^{n \times n}$ and $k \in \mathbb{N}$ is in IP.