7TH TUTORIAL ON RANDOMIZED ALGORITHMS

Eigenvalues of adjacency matrices and expanders II.

1. Show that a connected d-regular graph is bipartite iff the least eigenvalue of its adjacency matrix is -d.

2. Let A, B be two disjoint sets of vertices where |A| = |B| = n. We generate a random *d*-regular bipartite graphs for a fixed $d \ge 5$, by choosing uniformly at random *d* neighbors in *B* for each vertex in *A* (independently). We show that with constant positive probability each set $S \subseteq A$ of size $|S| \le n/d$ has more than d|S|/4 neighbors. Hint: define suitable indicators.

3. Let G = (V, E) be a *d*-regular graph (so its largest eigenvalue is $\lambda_1 = d$). Assume that the absolute value of any other eigenvalue is at most λ for $0 \le \lambda \le \lambda_1$. Then for every $S \subseteq V$ with $|S| = \alpha \cdot n$, it holds that

$$|e(S,\overline{S}) - d \cdot (1 - \alpha) \cdot \alpha \cdot n| \le \lambda \cdot \alpha \cdot (1 - \alpha) \cdot n,$$

where $e(S, \overline{S})$ is the number of edges between S and $\overline{S} = V \setminus S$.

Hint: use the following corollary of Courant-Fisher: Let u_1 be the eigenvector corresponding to λ_1 . For any $x \in \mathbb{R}^n$ satisfying ||x|| = 1 and $x^T u_1 = 0$, it holds that $|x^T A x| \leq \lambda \cdot x^T x$. Now consider a vector that is negative on S and positive otherwise (or vice versa).

A side question: what is the meaning of $d \cdot (1 - \alpha) \cdot \alpha \cdot n$? To this end, consider a random *d*-regular graph, generated by picking *d* random neighbors of each vertex.