4TH TUTORIAL ON RANDOMIZED ALGORITHMS

Exponentially decreasing bounds on the tails with Chernoff

1. Simulating a biased coin using a fair coin. We are given a fair coin with $\Pr[\text{tails}] = 0.5$. Show how to generate a random bit with $\Pr[1] = p$ for a given $p \in (0, 1)$ (both p = 0 and p = 1 are a bit boring). How many fair coin flips do we need in expectation? (This could be useful for some homework...)

- i) First, assume that $p = k/2^{\ell}$ for some integers k and ℓ .
- ii) What about any rational p, say, p = 1/3? What about irrational p?

2. Anti-Chernoff. Give an example of *n* dependent random variables $X_i \in \{0, 1\}, i = 1, \ldots, n$ such that each X_i is a (fair or biased) coin flip but Chernoff bounds do not hold for $\sum_i X_i$. Are X_i 's positively or negatively correlated or uncorrelated?

3. Distinguishing coins. You are given two coins. One is fair and the other one has Pr[tails] = 1/4. We use the following algorithm to distinguish those:

- Pick a coin and toss it n times.
- Let \hat{p} be the probability of getting a tails (number of tails over n).
- If $\hat{p} \ge 3/8$ we say this coin is fair.

Show that if $n \ge 32 \ln(2/\delta)$ then our algorithm answers correctly with probability at least $1 - \delta$.

4. Estimator Theorem. Let U be a finite set and $G \subseteq U$ its subset. We know |U| and wish to estimate |G|. If we take n uniformly random and independent samples from U (with replacement), calculate X = number of samples inside of G, and output $A = X \frac{|U|}{n}$. How large n do we need to choose so that A is a $(1 \pm \varepsilon)$ -approximation of |G| with probability at least $1 - \delta$, i.e.,

$$\Pr\left[(1-\varepsilon)|G| \le A \le (1+\varepsilon)|G|\right] \ge 1-\delta?$$

5. QuickSort analysis. Consider the QuickSort algorithm with uniformly random pivot choice. Show that the expected number of comparisons is $c \cdot n \ln(n)$ for some constant c. Prove that the probability of it making at least $32n \ln(n)$ comparisons is at most $1/n^3$.