INTRO TO APPROXIMATION, CLASS 4

Is greedy scheduling into a knapsack satisfiable?

A selection from homework:

EXERCISE ONE Scheduling on machines with speeds:

We have m machines with speeds s; > s > - -+ > s, on which we want to schedule n jobs (so that
one machine processes at most one job at a time). Now, processing the j-th job on machine i takes
p;/si units of time, where p; is the length of the job. (The schedule starts at time 0 and two jobs
cannot of course run at the same time on one machine.)

We say that a polynomial-time algorithm is a p-relaxed decision procedure if it gets a number D in
addition to the intput and either (I) creates a schedule so that all jobs are finished till time pD, or
(IT) outputs that there is no schedule that can finish all jobs till time D.

Show that one can use a p-relaxed decision procedure to find a p-approximation algorithm.

EXERCISE TWO Consider SCHEDULING WITH DEPENDENCIES: we schedule jobs on m com-
puters, but in addition to length p; each job j has a set D; of dependencies and we can start job j
only if all jobs in D; are already finished.

a) Prove the following lower bound on the optimum:
“OPT > length of any chain in the input. A chain is a sequence of jobs where each one depends
on the previous one. Its length is then the total processing time of all the jobs in the chain.”

b) Design a greedy 2-approximation algorithm for this problem.

EXERCISE THREE Consider the classic NP-hard KNAPSACK PROBLEM, where we have n ob-
jects aq,...,a,, each object has a weight w; and cost ¢;, and our bag has a weight limit of B.

a) Explain why “naive greedy algorithm”, i.e. “we put the most expensive item (that fits) into the
knapsack and continue the same way” is a bad one.

b) OK, let us try the following: “we sort the items according to their density (ratio price/size), go
through them in decreasing order and insert only those that fit in the knapsack.”
Spoiler alert: this algorithm also fails. Show an input where it does.

c¢) Finally, design a 2-approximation algorithm for this problem. This algorithm does not need to be
greedy.
Hint: When you iterate over the items based on the density, at some point it may happen that
object P does not fit with the items you have already selected into the knapsack. What should
you do then?

EXERCISE FOUR The k-CENTER PROBLEM is another example of an interesting metric prob-
lem. On input we get a set V, |V| = n of points in a metric space and the goal is to select k centers out
of them (a k-element subset of V) so that the points from V" are as close to the centers as possible —
so that the point which is furthest away from any center is as close as possible. Formally we minimize
the function u(S) = max,ey d(p, S), where d(p, S) is the distance from p to its closest point in S.

Design and analyze a 2-approximation algorithm for the £-CENTER PROBLEM.

Tip: Note that both the algorithm and the optimum are choosing exactly k points, the factor that
is relaxed by 2 is the distance function. This must be present in the analysis somehow — it makes
sense to start by considering the k£ points that optimum chooses, the k& points that you choose, and
compare the two sets.

EXERCISE FIVE Recall the integer program for MAX SAT and its linear relaxation. During
the lecture you have seen a 3/4-approximation algorithm for MAX SAT based on choosing a better
of two solutions, one of which was created by rounding a solution of this relaxation. By a better
rounding one can avoid choosing a better of two solutions and still maintain the approximation ratio
3/4.

Find an instance, that is, a set of clauses, such that the optimum of the relaxation OPT, and the
optimum of the instance OPT satisfies OPT = (3/4)OPT,.

This shows that using the linear relaxation one cannot obtain a better than 3/4-approximation
algorithm. (The worst case ratio between OPT and OPT is called integer gap.)

Hint: you can use, for example, just 2 variables and 4 clauses.

