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Streaming Model of Computation

e One pass over data w/ limited memory s

Streaming Algorithm
® receives data in a stream, item by item -‘ e
e uses memory sublinear in N = stream length =
e at the end, computes approximate answer

Note: cannot output a packing / schedule

—> estimate optimal cost (+ output template of a solution)

Challenges: o N very large _
no need to make online

e Stream ordered arbitrarily decisions about the solution

e No random access to data
Trade-off: space vs. accuracy of the estimate

How to summarize the input?

Pavel Vesely Streaming Algs. for Bin Packing and Vector Scheduling 3/ 13



Streaming Algorithms known for ...

Pavel Vesely Streaming Algs. for Bin Packing and Vector Scheduling 4 /13



Streaming Algorithms known for ...
e most frequent items,

e # of distinct items,

Pavel Vesely Streaming Algs. for Bin Packing and Vector Scheduling 4 /13



Streaming Algorithms known for ...

most frequent items,

# of distinct items,

approximate median = .5-quantile,
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Streaming Algorithms known for ...

most frequent items,
# of distinct items,
approximate median = .5-quantile,
e or any ¢-quantile for ¢ € [0, 1],
e = ¢ - N-th largest item,
approx. cumulative distribution function,

Cde(X):{aEA\agx}

N
some graph problems,

submodular maximization,

i

What about other basic problems in combinatorial optimization?
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Our Results: Streaming Algorithms for ...
1

Bin Packing:

e Input: items of size in [0, 1]

e Goal: pack into min. number of bins of capacity 1

e Offline: OPT + O(log OPT) bins in poly-time [Hoberg, Rothvoss '17]
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Vector Scheduling:
e Input: jobs characterized by d-dim. vectors
e e.g.. processing time, memory or bandwidth requirements, etc.
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Bin Packing: Offline Approximation Scheme
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2

e by quantiles with precision ~ ¢
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e too much precision for small items

Geometric grouping [Karmarkar, Karp '82]

11

e Split big items into [log, 5 size groups: (%, 1], (3,51, - -

e Use quantile summary for each group with precision ~ ¢

o = space O(L - log?!-log OPT)
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Streaming 1 + c-Approx. for Bin Packing
Can we do better than (9(% : Iog% - log OPT)?
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Streaming 1 + c-Approx. for Bin Packing
Can we do better than O(2 - Iog% - log OPT)?

c

Yes! If ...
e ...items drawn from a bounded-size universe U
e space O(% - Iog% - log |U|) using a quantile summary from [Shrivastava et al. '04]
e ...randomization allowed (wrong answer w/ probability )
e space (’)(% : Iogé - log log %) using a quantile summary from [Karnin et al. '16]
No, not much by a deterministic comparison-based algo.
e Streaming 1 + c-approx. for BIN PACKING in space S
= estimating rank w/ accuracy = ¢ in space S

e LB Q(% - logeN) for estimating rank / quantile summaries [Cormode & V. '19+]
= LB Q(Z - log OPT) for BIN PACKING
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Vector Scheduling: Rounding
e Input: jobs characterized by d-dimensional vectors
e Goal: assign jobs to machines to minimize makespan
= maximum load over all machines and dimensions

e 1+ c-approximation (more involved rounding & MIP) [Bansal et al. '16]
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Vector Scheduling: Rounding
e Input: jobs characterized by d-dimensional vectors
e Goal: assign jobs to machines to minimize makespan
= maximum load over all machines and dimensions
e 1+ c-approximation (more involved rounding & MIP) [Bansal et al. '16]
e Rescaling property: scaling every vector by o = scaling OPT by «
Makespan Scheduling: d =1
e Rounding currently big jobs to powers of 1 + ¢
e Big jobs = bigger than ¢ times currently largest job
e = streaming 1 + c-approx. in space ~ log;,. 1 = O(2 - log 1)
Vector Scheduling: d >1
e More intricate rounding from [Bansal et al. '16]:
e Round to 0 coordinates small relatively to ||v||~
e Big jobs: round each dimension to power of 1 4+ ¢ = space (’3(%)"

e Small jobs: round relative to ||v||
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Vector Scheduling: Aggregation Algorithm
Job vector v big if ||v||o > 7+ (LB on OPT) for v &~ &%/ Iogg
e = at most d - m/~y big vectors

e Store them all
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Vector Scheduling: Aggregation Algorithm
Job vector v big if ||v||e > 7+ (LB on OPT) for y & 2/ log ¢
e = at most d - m/~ big vectors
e Store them all
Small vectors:
e combine into containers /= big vectors
e Maintain one open container
e add incoming small vectors into it
e close it once it becomes full & open a new one
Analysis:
e Use the best schedule for big vectors: makespan < OPT
e Assign containers by an optimal online algorithm from [Im et al. '15]
e Randomized & greedy assignment

e Containers small = nearly balanced assignment = makespan < (1 +¢) - OPT

e Combine the two cases: makespan < (2 — X +¢) - OPT tight!
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Conclusions & Open Problems
Bin Packing
e Streaming 1 + c-approximation in space 6(%)

e Tight up to O(log %) factor by connection to quantile summaries
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Streaming vs. Online
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Problem

Streaming vs. Online

Competitive ratio UB

BIN PACKING
VECTOR BIN PACKING
MAKESPAN SCHEDULING

VECTOR SCHEDULING

Streaming Competitive ratio LB
apx.
1+¢€ 1.542 [Balogh et al. '19]
d+e Q(d*¢) [Azar et al. '13]
1+¢€ 1.88 [Rudin "01]
Q(log d/ loglog d)

2(1+¢) [Im et al. "15]

Pavel Vesely

1.578 [Balogh et al. '18]

d + 0.7 [Garey et al. '76]
1.92 [Fleischer & Wahl '00]
O(log d/ loglog d)

[Im et al. '15]
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