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Geometric streams

• Input: sequence of points from Rd

• Processed in a few passes using small memory

• Goal: estimate a statistic of the point set

• e.g. diameter, cost of clustering, MST, matching, . . .

• solution can take space Ω(n)

Dynamic geometric streams: classical model [Indyk STOC ’04]

• insertions & deletions

• points from [∆]d for integer ∆ > 0

• space ideally poly(d · log ∆)

• will ignore poly(log(∆ + n)) factors in space

Often: “Algo. for insertion-only ⇒ Algo. for dynamic geometric streams”

“Counterexample”: diameter with poly(d) space [Indyk’03], [Agarwal,Sharathkumar’15]
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Geometric streams: Main dichotomy

Low Dimension: space exp (d) High Dimension: space poly (d)

• O(1) or even (1 + ε)-approximation e.g. for:

• MST, TSP, and Steiner tree [Frahling,Indyk,Sohler ’05]

• k-median, k-means, Max-Cut, . . . [Frahling&Sohler ’05]

• Facility Location [Czumaj et al. ’13]

• Steiner Forest [Czumaj,Jiang,Krauthgamer,V. ’22]

• typical space decompositions: grids/quadtree

• Important case: d = Θ(log n) (JL lemma)

• only O(log n)-approximation (or worse)

• ratio O(d · log ∆) by tree embeddings [Indyk ’04]

• ratio O(log n) for MST and EMD [Chen, Jayaram,

Levi, Waingarten ’22]

• lack of techniques for O(1)-approx.

• tree embedding distorts distances by Ω(log n)

• exception: ratio (1 + ε) for k-median and k-means

• low space only for small k

• [Braverman,Frahling,Lang,Sohler,Yang ’17], [Song,Yang,Zhong ’18]

• Insertion-only setting:

• Diameter et al.: ratio O(1) [Agarwal,Sharathkumar’15]

• Width in any direction [Woodruff,Yasuda’22]
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Euclidean Uniform Facility Location

Input: pointset X ⊂ Rd , opening cost f > 0

Goal: open a set of facilities F to minimize cost(X , F ) :=
∑
p∈X

dist(p, F )︸ ︷︷ ︸
connection cost

+ f · |F |︸ ︷︷ ︸
opening cost

dist(p, q) := ‖p − q‖2 and dist(p, F ) := min
q∈F

dist(p, q)

Image credits: NASA Hubble, CC BY 2.0, via Wikimedia Commons

This talk: unit facility cost f = 1
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Facility Location in Geometric Streams

# of passes ratio space reference & notes

Previous work: 1 O(d · log2 ∆) poly(d) [Indyk ’04]

1 exp(d) exp(d) [Lammersen,Sohler ’08]

1 1 + ε exp(d)
only for d = 2

[Czumaj,Lammersen,Monemizadeh,Sohler ’13]

We wanted: 1 O(1) poly(d)

(still conjectured. . . )

We got: 2 O(1) poly(d) ∗
1† O(1) poly(d) ∗; 1† = random-order streams
1 O(d1.5) poly(d) ∗

Lower bound: 1 < 1.085 Ω
(

2poly(d)
)
∗ follows from Boolean Hidden Matching

• for d = Θ(log n) (from JL lemma): improvement from ratio Θ(log3 n) [Indyk ’04] to Θ(log1.5 n)
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Estimator from Mettu-Plaxton algorithm [Mettu, Plaxton ’03], [Bădoiu, Czumaj, Indyk, and Sohler ’05]

For every point p, we define 1
n ≤ rp ≤ 1 such that: 1.

∑
p rp = Θ(OPT)

2. |X ∩ B(p, rp)| ≈ 1/rp (X = input point set)rp = 1
2

rp = 1

rp ≈ 1/n

Image credits: NASA Hubble, CC BY 2.0, via Wikimedia Commons

∑
q∈X∩B(p,rp)

(rp − dist(q, p)) = 1

• property 2 ⇒ streaming O(1)-approximation of rp for p given in advance

• but Ω(n) space needed for any finite approx. when p given as a query (from INDEX)

⇒ Näıve two-pass algo. for Facility Location • 1st pass: sample a few points uniformly

• 2nd pass: estimate rp’s for sampled points

Uniform sampling has too large variance

√
n points with rp ≥ 1

2 & OPT ≈
√
n
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Geometric Importance Sampling

Goal: sample proportionally to rp in one pass ⇒ O(1)-approximation in two passes

• for p∗ = sampled point, rp∗/Pr[p∗] unbiased estimator of
∑

p rp = Θ(OPT)

Want to sample w/ prob. ∼ rp but cannot estimate rp for queried p in one pass

vs.

⇒ need to sample w.r.t. geometry

Goal: map/hash ϕ : Rd → Rd , then sample uniformly from the support of ϕ(X )

• ϕ−1(p) = bucket of points p

• desired properties: • “large” rp (say rp ≈ 1) ⇒ few points in the bucket of p

• dense clusters with points of “small” rp (say rp = o(1)) mapped to few buckets
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Cosistent Geometric Hashing

Grids/quadtrees not good:

• cluster intersects 2d buckets

Goal: space decomposition such that:

1. bounded diameter buckets

2. ball of small-enough diameter intersects poly (d) buckets

Def.: ϕ : Rd → Rd is Γ-gap Λ-consistent hash if

1. Bounded diameter: every bucket ϕ−1(y) has diameter ≤ 1

2. Consistency: ∀S ⊆ Rd with Diam(S) ≤ 1/Γ: |ϕ(S)| ≤ Λ

• need Γ,Λ = poly(d)

• Γ determines the approx. ratio of our 1-pass algo.

∼ sparse partitions from [Jia-Lin-Noubir-Rajaraman-Sundaram’05], [Filtser’20]

• we require computing ϕ(p) in poly(d) time & space

• we need data-oblivious ϕ
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Cosistent Geometric Hashing

Grids/quadtrees not good:

• cluster intersects 2d buckets

Goal: space decomposition such that:

1. bounded diameter buckets
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Def.: ϕ : Rd → Rd is Γ-gap Λ-consistent hash if

1. Bounded diameter: every bucket ϕ−1(y) has diameter ≤ 1

2. Consistency: ∀S ⊆ Rd with Diam(S) ≤ 1/Γ: |ϕ(S)| ≤ Λ

• need Γ,Λ = poly(d)

• Γ determines the approx. ratio of our 1-pass algo.

∼ sparse partitions from [Jia-Lin-Noubir-Rajaraman-Sundaram’05], [Filtser’20]

• we require computing ϕ(p) in poly(d) time & space

• we need data-oblivious ϕ
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Construction of Consistent Geometric Hashing

Def.: ϕ : Rd → Rd is Γ-gap Λ-consistent hash if

1. Bounded diameter: every bucket ϕ−1(y) has diameter ≤ 1

2. Consistency: ∀S ⊆ Rd with Diam(S) ≤ 1/Γ: |ϕ(S)| ≤ Λ

We get Γ = O(d1.5) and Λ = d + 1

• Start with grid & remove `∞ neighborhoods of faces

}ε
}

. . .
ε

. . .

. . . . . .

......

... ...
Czumaj, Jiang, Krauthgamer, Veselý, Yang Streaming Facility Location in High Dimension 8 / 11



Algorithmic Framework Overview
Recall:

∑
p rp = Θ(OPT)

We focus on estimating # of points with rp ≥ 1/2

• Estimating # of points with rp ≥ 1/2i similar using subsampling

Two-pass algo: • Hash points using consistent ϕ

• Sample a non-empty bucket b uniformly & a point from ϕ−1(b)

• using two-level `0 samplers

• 2nd pass: estimate rp for each sampled point

Bottom line: sampling p with probability ≥ rp
poly(d · log ∆)

Random-order streams: • 1st half of stream for sampling

• 2nd half for estimating rp’s of sampled points

One-pass algo: if “few” points around p ⇒ rp “large” — recall: |X ∩ B(p, rp)| ≈ 1/rp

• Count points in close neighborhood of each bucket

• Similar idea as in [Frahling-Indyk-Sohler’05]

• We can distinguish rp ≥ 1
2 and rp ≤ 1/Γ using Γ-gap hash

Czumaj, Jiang, Krauthgamer, Veselý, Yang Streaming Facility Location in High Dimension 9 / 11



Algorithmic Framework Overview
Recall:

∑
p rp = Θ(OPT)

We focus on estimating # of points with rp ≥ 1/2

• Estimating # of points with rp ≥ 1/2i similar using subsampling

Two-pass algo: • Hash points using consistent ϕ

• Sample a non-empty bucket b uniformly & a point from ϕ−1(b)

• using two-level `0 samplers

• 2nd pass: estimate rp for each sampled point

Bottom line: sampling p with probability ≥ rp
poly(d · log ∆)

Random-order streams: • 1st half of stream for sampling

• 2nd half for estimating rp’s of sampled points

One-pass algo: if “few” points around p ⇒ rp “large” — recall: |X ∩ B(p, rp)| ≈ 1/rp

• Count points in close neighborhood of each bucket

• Similar idea as in [Frahling-Indyk-Sohler’05]

• We can distinguish rp ≥ 1
2 and rp ≤ 1/Γ using Γ-gap hash
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Conclusions & Open Problem

# of passes ratio space notes

We wanted: 1 O(1) poly(d) (conjecture)

We got: 2 O(1) poly(d) ∗; also 1-pass random-order
1 O(d1.5) poly(d) ∗

Lower bound: 1 < 1.085 Ω
(

2poly(d)
)
∗

Open problems: • Prove/disprove what we wanted

• In general: need new techniques for high-dimensional spaces

• Consistent geometric hashing with better gap Γ⇒ one-pass O(Γ)-approx.

• Γ = O(d/ log d) seems possible [Filtser]

• Lower bound: Γ = Ω(d/ log d) (for poly(d) space) [Filtser ’20]

• Multiple passes

• Lower bound for two passes or random-order streams?

• How many passes do we need for 1 + ε approx. in poly(d · log n) space

• Other applications of consistent geometric hashing / sparse partitions
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Czumaj, Jiang, Krauthgamer, Veselý, Yang Streaming Facility Location in High Dimension 10 / 11



Conclusions & Open Problem

# of passes ratio space notes

We wanted: 1 O(1) poly(d) (conjecture)

We got: 2 O(1) poly(d) ∗; also 1-pass random-order
1 O(d1.5) poly(d) ∗

Lower bound: 1 < 1.085 Ω
(

2poly(d)
)
∗

Open problems: • Prove/disprove what we wanted

• In general: need new techniques for high-dimensional spaces

• Consistent geometric hashing with better gap Γ⇒ one-pass O(Γ)-approx.

• Γ = O(d/ log d) seems possible [Filtser]

• Lower bound: Γ = Ω(d/ log d) (for poly(d) space) [Filtser ’20]

• Multiple passes

• Lower bound for two passes or random-order streams?

• How many passes do we need for 1 + ε approx. in poly(d · log n) space

• Other applications of consistent geometric hashing / sparse partitions
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Thank You!
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