Streaming Facility Location
in High Dimension

via Geometric Hashing

Pavel Vesely (Charles University, Prague)

Artur Czumaj Shaofeng Jiang Robert Krauthgamer Mingwei Yang
(Warwick) (Peking) (Weizmann) (Peking)

Powered by BeamerikZ


https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

Geometric streams

e Input: sequence of pointsi¥ from R?

e e.g. diameter, cost of clustering, MST, matching, ...

e Processed in a few passes using small memory \ ﬁ\%/ﬁf?
e Goal: estimate a statistic of the point set

e solution can take space Q(n)
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e Processed in a few passes using small memory \ ﬁ\%/ﬁf?
e Goal: estimate a statistic of the point set

e solution can take space Q(n)

Dynamic geometric streams: classical model [Indyk STOC '04]
e insertions & deletions
e points from [A]? for integer A > 0
e space ideally poly(d - log A)
e will ignore poly(log(A + n)) factors in space
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Geometric streams

e Input: sequence of pointsi¥ from R?

e e.g. diameter, cost of clustering, MST, matching, ...

e Processed in a few passes using small memory \ i?\%/ﬁf?
e Goal: estimate a statistic of the point set

e solution can take space Q(n)

Dynamic geometric streams: classical model [Indyk STOC '04]
e insertions & deletions
e points from [A]? for integer A > 0
e space ideally poly(d - log A)
e will ignore poly(log(A + n)) factors in space

Often: “Algo. for insertion-only = Algo. for dynamic geometric streams”

“Counterexample”: diameter with poly(d) space [indyk'03], [Agarwal Sharathkumar'15]
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Geometric streams: Main dichotomy

Low Dimension: space exp (d) High Dimension: space poly (d)
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Geometric streams: Main dichotomy
Low Dimension: space exp (d) High Dimension: space poly (d)
e O(1) or even (1 + ¢)-approximation e.g. for:
e MST, TSP, and Steiner tree [Frahling Indyk,Sohler '05]
e k-median, k-means, Max-Cut, ... [Frahling&Sohler '05]
e Facility Location [Czumaj et al. '13]

e Steiner Forest [Czumaj,Jiang,Krauthgamer,V. '22]

e typical space decompositions: grids/quadtree
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Geometric streams: Main dichotomy

Low Dimension: space exp (d)

e O(1) or even (1 + &)-approximation e.g. for:

e MST, TSP, and Steiner tree [Frahling,Indyk,Sohler '05]

e k-median, k-means, Max-Cut, ... [Frahling&Sohler '05]

e Facility Location [Czumaj et al. '13]

e Steiner Forest [Czumaj,Jiang,Krauthgamer,V. '22]

e typical space decompositions: grids/quadtree
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High Dimension: space poly (d)

e Important case: d = ©(log n) (JL lemma)

e only O(log n)-approximation (or worse)
e ratio O(d - log A) by tree embeddings [indyk '04]
e ratio O(log n) for MST and EMD [Chen, Jayaram,

Levi, Waingarten '22]

e lack of techniques for O(1)-approx.

e tree embedding distorts distances by Q(log n)
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e k-median, k-means, Max-Cut, ... [Frahling&Sohler '05]

e Facility Location [Czumaj et al. '13]

. : Levi, Waingarten '22]
e Steiner Forest [Czumaj,Jiang,Krauthgamer,V. '22] '

e typical space decompositions: grids/quadtree ¢ lack of techniques for O(1)-approx.

e tree embedding distorts distances by Q(log n)
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Low Dimension: space exp (d)

e O(1) or even (1 + &)-approximation e.g. for:

e MST, TSP, and Steiner tree [Frahling,Indyk,Sohler '05]
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High Dimension: space poly (d)
e Important case: d = ©(log n) (JL lemma)

only O(log n)-approximation (or worse)
e ratio O(d - log A) by tree embeddings [indyk '04]
e ratio O('Og n) for MST and EMD [Chen, Jayaram,

Levi, Waingarten '22]
e lack of techniques for O(1)-approx.

e tree embedding distorts distances by Q(log n)

e exception: ratio (1 + ¢) for k-median and k-means
e low space only for small k

® [Braverman,Frahling,Lang,Sohler,Yang '17], [Song,Yang,Zhong '18]

Insertion-only setting:
e Diameter et al.: ratio O(].) [Agarwal,Sharathkumar’15]

e Width in any direction [Woodruff,Yasuda'22]
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Euclidean Uniform Facility Location

Input: pointset X C RY, opening cost § > 0

Goal: open a set of facilities F to minimize Cost(X, F) = Z dist(p, F) + f- ‘F|
BEX . opening cost

e
connection cost

dist(p, q) == ||p — ql|]2 and dist(p, F) := mindist(p, q)
S

oo % q

A

Image credits: NASA Hubble, CC BY 2.0, via Wikimedia Commons
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Goal: open a set of facilities F to minimize Cost(X, F) = Z dist(p, F) + f- ‘F|
BEX . opening cost

e
connection cost
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*' ' Image credits: NASA Hubble, CC BY 2.0, via Wikimedia Commons
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Euclidean Uniform Facility Location

Input: pointset X C RY, opening cost § > 0

Goal: open a set of facilities F to minimize Cost(X, F) = Z dist(p, F) + f- ‘F|
BEX . opening cost

e
connection cost

dist(p, q) == ||p — ql|]2 and dist(p, F) := mindist(p, q)
S

geF
'o! k '.l
) S 06°
X _— »_

*' ' Image credits: NASA Hubble, CC BY 2.0, via Wikimedia Commons

This talk: unit facility cost f =1
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Facility Location in Geometric Streams

# of passes ratio space reference & notes
Previous work: 1 O(d - log” A)  poly(d) [indyk '04]
1 exp(d) exp(d) [Lammersen,Sohler '08]
) 14 e exp(d) only for d =2

[Czumaj,Lammersen,Monemizadeh,Sohler '13]
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Previous work: 1 O(d - log” A)  poly(d) [indyk '04]
1 exp(d) exp(d) [Lammersen,Sohler '08]
) 14 e exp(d) only for d =2

[Czumaj,Lammersen,Monemizadeh,Sohler '13]

We wanted: 1 O(1) poly(d)
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Facility Location in Geometric Streams

# of passes ratio space reference & notes
Previous work: 1 O(d - log” A)  poly(d) [indyk '04]
1 exp(d) exp(d) [Lammersen,Sohler '08]
) 14 e exp(d) only for d =2

[Czumaj,Lammersen,Monemizadeh,Sohler '13]

We wanted: 1 O(1) poly(d)  (still conjectured. . .)
We got: 2 O(1) poly(d) =
1 0O(1) poly(d)  *; 17 = random-order streams
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Facility Location in Geometric Streams

# of passes ratio space reference & notes
Previous work: 1 O(d - log” A)  poly(d) [indyk '04]
1 exp(d) exp(d) [Lammersen,Sohler '08]
1 1+¢ exp(d) only for d=2 _
[Czumaj,Lammersen,Monemizadeh,Sohler '13]
We wanted: 1 O(1) poly(d)  (still conjectured...)
We got: 2 O(1) poly(d)
1 0O(1) poly(d) *; 17 = random-order streams
1 O(d*9) poly(d)

o for d = O(log n) (from JL lemma): improvement from ratio ©(log> n) [Indyk '04] to ©(log' n)

Czumaj, Jiang, Krauthgamer, Vesely, Yang
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Facility Location in Geometric Streams

# of passes ratio space reference & notes
Previous work: 1 O(d - log” A)  poly(d) [indyk '04]
1 exp(d) exp(d) [Lammersen,Sohler '08]
) 14 e exp(d) only for d =2

[Czumaj,Lammersen,Monemizadeh,Sohler '13]

We wanted: 1 O(1) poly(d)  (still conjectured...)
We got: 2 O(1) poly(d)
1 0O(1) poly(d) *; 17 = random-order streams
1 O(d*9) poly(d)
Lower bound: 1 <1.085  Q(2°°9)) follows from Boolean Hidden Matching

o for d = O(log n) (from JL lemma): improvement from ratio ©(log> n) [Indyk '04] to ©(log' n)
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Estimator from Mettu-Plaxton algorithm [Mettu, Plaxton '03], [Badoiu, Czumaj, Indyk, and Sohler '05]
For every point p, we define - < r, <1 such that: 1. Zp r, = @(OPT)

= input point set)
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For every point p, we define % < rp <1 such that: 1. Zp ry = @(OPT)
> dist(a.p) = 1

qeXNB(p,rp)
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Estimator from Mettu-Plaxton algorithm [Mettu, Plaxton '03], [Badoiu, Czumaj, Indyk, and Sohler '05]

For every point p, we define % < rp <1 such that: 1. Zp ry = @(OPT)
> dist(a.p) = 1

qeXNB(p,rp)

= input point set)

A

e property 2 = streaming O(1)-approximation of r, for p given in advance

e but ((n) space needed for any finite approx. when p given as a query (from INDEX)
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Estimator from Mettu-Plaxton algorithm [Mettu, Plaxton '03], [Badoiu, Czumaj, Indyk, and Sohler '05]

For every point p, we define % < rp <1 such that: 1. Zp ry = @(OPT)
> dist(a.p) = 1

qeXNB(p,rp)

= input point set)

A

e A

e property 2 = streaming O(1)-approximation of r, for p given in advance
e but ((n) space needed for any finite approx. when p given as a query (from INDEX)
= Naive two-pass algo. for Facility Location e 1st pass: sample a few points uniformly

e 2nd pass: estimate r,'s for sampled points
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Estimator from Mettu-Plaxton algorithm [Mettu, Plaxton '03], [Badoiu, Czumaj, Indyk, and Sohler '05]

For every point p, we define % < rp <1 such that: 1. Zp ry = @(OPT)
> dist(a.p) = 1

qeXNB(p,rp)

= input point set)

A

e A

e property 2 = streaming O(1)-approximation of r, for p given in advance

e but ((n) space needed for any finite approx. when p given as a query (from INDEX)
= Naive two-pass algo. for Facility Location e 1st pass: sample a few points uniformly
e 2nd pass: estimate r,'s for sampled points

Uniform sampling has too large variance &)
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Geometric Importance Sampling

Goal: sample proportionally to r, in one pass = O(1)-approximation in two passes
o for p* = sampled point, ry«/ Pr[p*] unbiased estimator of »  r, = ©(OPT)

Czumaj, Jiang, Krauthgamer, Vesely, Yang Streaming Facility Location in High Dimension 6/ 11



Geometric Importance Sampling

Goal: sample proportionally to r, in one pass = O(1)-approximation in two passes
o for p* = sampled point, ry«/ Pr[p*] unbiased estimator of »  r, = ©(OPT)

Want to sample w/ prob. ~ r, but cannot estimate r, for queried p in one pass

VS. Qs
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o for p* = sampled point, ry«/ Pr[p*] unbiased estimator of »  r, = ©(OPT)

Want to sample w/ prob. ~ r, but cannot estimate r, for queried p in one pass

VS. \

= need to sample w.r.t. geometry

Czumaj, Jiang, Krauthgamer, Vesely, Yang Streaming Facility Location in High Dimension 6/ 11



Geometric Importance Sampling

Goal: sample proportionally to r, in one pass = O(1)-approximation in two passes
o for p* = sampled point, ry«/ Pr[p*] unbiased estimator of »  r, = ©(OPT)

Want to sample w/ prob. ~ r, but cannot estimate r, for queried p in one pass

VS. L -

= need to sample w.r.t. geometry
Goal: map/hash ¢ : RY — R9 then sample uniformly from the support of (o(X)
e o !(p) = bucket of points p
e desired properties: ® “large” r, (say r, = 1) = few points in the bucket of p

e dense clusters with points of “small” r, (say r, = o(1)) mapped to few buckets
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Cosistent Geometric Hashing

Grids/quadtrees not good:

e cluster intersects 29 buckets
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Cosistent Geometric Hashing

Grids/quadtrees not good: Goal: space decomposition such that:

1. bounded diameter buckets

2. ball of small-enough diameter intersects poly (d) buckets

e cluster intersects 29 buckets
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Cosistent Geometric Hashing

Grids/quadtrees not good: . Goal: space decomposition such that:

1. bounded diameter buckets

2. ball of small-enough diameter intersects poly (d) buckets

Def.: ¢ : R? — RY is [-gap A-consistent hash if
1. Bounded diameter: every bucket ¢ 1(y) has diameter < 1
2. Consistency: VS C R with Diam(S) < 1/I': |¢(S)| < A

e need [, A = poly(d)

e cluster intersects 29 buckets _ _
e [ determines the approx. ratio of our 1-pass algo.

L~ sparse partitions from [Jia-Lin-Noubir-Rajaraman-Sundaram’05], [Filtser'20]
e we require computing ¢(p) in poly(d) time & space

e we need data-oblivious ¢
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Construction of Consistent Geometric Hashing

Def.: ¢ : RY — R? is I'-gap A-consistent hash if

1. Bounded diameter: every bucket o ~!(y) has diameter < 1
2. Consistency: VS C RY with Diam(S) < 1/T: [p(S)| < A

We get I' = O(d*®) and A =d +1

e Start with grid & remove /., neighborhoods of faces

Czumaj, Jiang, Krauthgamer, Vesely, Yang
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Algorithmic Framework Overview
Recall: > r, = ©(OPT)

We focus on estimating # of points with r, > 1/2
e Estimating # of points with r, > 1/2' similar using subsampling
Two-pass algo: e Hash points using consistent ¢

e Sample a non-empty bucket b uniformly & a point from ¢ 1(b)

e using two-level ¢y samplers

e 2nd pass: estimate r, for each sampled point
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Recall: > r, = ©(OPT)

We focus on estimating # of points with r, > 1/2
e Estimating # of points with r, > 1/2' similar using subsampling
Two-pass algo: e Hash points using consistent ¢

e Sample a non-empty bucket b uniformly & a point from ¢ 1(b)
e using two-level ¢y samplers
e 2nd pass: estimate r, for each sampled point

Ip

poly(d - log A)

Bottom line: sampling p with probability >
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Algorithmic Framework Overview
Recall: > r, = ©(OPT)

We focus on estimating # of points with r, > 1/2
e Estimating # of points with r, > 1/2' similar using subsampling
Two-pass algo: e Hash points using consistent ¢

e Sample a non-empty bucket b uniformly & a point from ¢ 1(b)
e using two-level ¢y samplers
e 2nd pass: estimate r, for each sampled point
Ip
poly(d - log A)
Random-order streams: e 1st half of stream for sampling sampling: 7

Bottom line: sampling p with probability >

. K
value evaluation: 7,7

e 2nd half for estimating r,’s of sampled points| HEEEEEENEN

J
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Algorithmic Framework Overview
Recall: > r, = ©(OPT)

We focus on estimating # of points with r, > 1/2
e Estimating # of points with r, > 1/2' similar using subsampling
Two-pass algo: e Hash points using consistent ¢

e Sample a non-empty bucket b uniformly & a point from ¢ 1(b)

e using two-level ¢y samplers

e 2nd pass: estimate r, for each sampled point

,
Bottom line: samplin with probability > P
PR P P = poly(d - log A)
Random-order streams: e 1st half of stream for sampling sampling: & value evaluation: 1.y
e 2nd half for estimating r,’s of sampled points HNEEEEEEEEEE

J K

One-pass algo: “®> if “few” points around p = r, “large” — recall: [ X N B(p, r,)| =1/,
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Algorithmic Framework Overview
Recall: > r, = ©(OPT)

We focus on estimating # of points with r, > 1/2
e Estimating # of points with r, > 1/2' similar using subsampling
Two-pass algo: e Hash points using consistent ¢

e Sample a non-empty bucket b uniformly & a point from ¢ 1(b)

e using two-level ¢y samplers

e 2nd pass: estimate r, for each sampled point

,
Bottom line: samplin with probability > P
PR P P = poly(d - log A)
Random-order streams: e 1st half of stream for sampling sampling: & value evaluation: 1.y
e 2nd half for estimating r,’s of sampled points HNEEEEEEEEEE

J K
One-pass algo: “®> if “few” points around p = r, “large” — recall: [ X N B(p, r,)| =1/, '

e Count points in close neighborhood of each bucket

e Similar idea as in [Frahling-Indyk-Sohler'05]

e We can distinguish r, > and r, < 1/T using [-gap hash
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Conclusions & Open Problem

# of passes  ratio space notes

We wanted: 1 O(1) poly(

(conjecture)

d)
We got: 2 O(1) poly(d)  *; also 1-pass random-order
1 O(d™®) poly(d) =

1

Lower bound: < 1.085 Q (2°°M()) s
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Open problems: e Prove/disprove what we wanted

e In general: need new techniques for high-dimensional spaces
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Open problems: e Prove/disprove what we wanted

e In general: need new techniques for high-dimensional spaces

e Consistent geometric hashing with better gap [ = one-pass O(I")-approx.
e [ = O(d/log d) seems possible [Filtser]

Czumaj, Jiang, Krauthgamer, Vesely, Yang Streaming Facility Location in High Dimension

10 / 11



Conclusions & Open Problem

# of passes  ratio space  notes
We wanted: 1 O(1) poly(d)  (conjecture)
We got: 2 O(1) poly(d)  *; also 1-pass random-order
1 O(d™®) poly(d) =
Lower bound: 1 < 1.085 Q (20M9))

Open problems: e Prove/disprove what we wanted

e In general: need new techniques for high-dimensional spaces

e Consistent geometric hashing with better gap [ = one-pass O(I")-approx.
e [ = O(d/log d) seems possible [Filtser]
e Lower bound: [ = Q(d/ log d) (for poly(d) space) [Filtser 20]

Czumaj, Jiang, Krauthgamer, Vesely, Yang Streaming Facility Location in High Dimension

10 / 11
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# of passes  ratio space notes

We wanted: 1 O(1) poly(

(conjecture)

d)
We got: 2 O(1) poly(d)  *; also 1-pass random-order
1 O(d™®) poly(d) =

1

Lower bound: < 1.085 Q (2°°M()) s

Open problems: e Prove/disprove what we wanted

e In general: need new techniques for high-dimensional spaces

e Consistent geometric hashing with better gap [ = one-pass O(I")-approx.
e [ = O(d/log d) seems possible [Filtser]
e Lower bound: [ = Q(d/ log d) (for poly(d) space) [Filtser 20]

e Multiple passes

e Lower bound for two passes or random-order streams?

e How many passes do we need for 1 + € approx. in poly(d - log n) space

Czumaj, Jiang, Krauthgamer, Vesely, Yang Streaming Facility Location in High Dimension

10 / 11



Conclusions & Open Problem

# of passes  ratio space notes

We wanted: 1 O(1) poly(

(conjecture)

d)
We got: 2 O(1) poly(d)  *; also 1-pass random-order
1 O(d™®) poly(d) =

1

Lower bound: < 1.085 Q (2°°M()) s

Open problems: e Prove/disprove what we wanted
e In general: need new techniques for high-dimensional spaces

e Consistent geometric hashing with better gap [ = one-pass O(I")-approx.
e [ = O(d/log d) seems possible [Filtser]
e Lower bound: [ = Q(d/log d) (for poly(d) space) [Filtser '20]

e Multiple passes
e Lower bound for two passes or random-order streams?

e How many passes do we need for 1 + € approx. in poly(d - log n) space

e Other applications of consistent geometric hashing / sparse partitions
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Thank Youl!
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