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Motivation: Monitoring Latencies of Web Requests
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Source: C. Masson, J.E. Rim, and H.K. Lee. Ddsketch: A fast and fully-mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12):2195-2205, 2019.
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Millions of observations

e no need to store all observed latencies

How does the distribution look like?
What is the median latency?

e Average latency too high due to ~ 2% of very high latencies
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Streaming Model

Motivation: monitoring latencies of requests
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Motivation: monitoring latencies of requests

ted memory
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Streaming model = one pass over data & |
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Streaming algorithm
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Streaming Model

Motivation: monitoring latencies of requests

Streaming algorithm
e receives data in a stream, item by item
e uses memory sublinear in N = stream length
e at the end, computes the answer

Challenges: o N very large & not known

e Data independent
e Stream ordered arbitrarily

e No random access to data
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Motivation: monitoring latencies of requests

Streaming algorithm
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e Data independent
e Stream ordered arbitrarily

e No random access to data
Main objective: space

How to summarize the input?
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Selection Problem & Streaming

e Input: stream of N numbers

e Goal: find the k-th smallest
e e.g.: the median, 99th percentile

e O(N) time offline algorithm [Blum et al. '73]
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Selection Problem & Streaming
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No streaming algorithm for exact selection

space needed to find the median
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Selection Problem & Streaming

03402287>;

FR SO AT
AT NN CH

¥ ot PR S SRR

R AW i SR O AR

s A e 0G0

FFW ORI W

N0 W

BREIRALD o i RGN 0
SRR A

$IN0O T NOON ¥

@)
I~
®
-
)
=
o S
B M
m[
(2]
s B ¢ E i
8 O o =< =
= o +
E ne!
mmhm o
= + n
S 5 & 25 =
@ O . ©O
< S & o B 9
rllm.m.m.mnvvw
o T = &5 w ©
m () (] Y- w0 n m
£ € ©O o0 @© g
%teerpm
— O _c m a0l m
= v = C o
Sﬁ..t.mow
.- . - t-l
2 = ¥ = o 8 E
S @ o ml.ll
S O o S e e
= O O »n
e o e o

No streaming algorithm for exact selection

space needed to find the median

[Munro & Paterson '80, Guha & McGregor '07]
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What about finding an approximate median?
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Approximate Median & Quantiles

How to define an approximate median?
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How to define an approximate median?
¢-quantile = [¢ - N|-th smallest element (¢ € [0,1])
e Median = .5-quantile

Sorted data

e Quartiles = .25, .5, and .75-quantiles

e Percentiles = .01, .02, ..., .99-quantiles 25-quantile  median .75-quantile

e-approximate ¢-quantile = any ¢'-quantile for ¢/ = [¢p — €, ¢ + €]

e .0l-approximate medians are .49- and .51-quantiles (and items in between)

e-approximate selection:

e query k-th smallest — return k’-th smallest for k" = k &= N

Offline summary: sort data & select ~ % items
€

R
(Or—nqlzéntile) 2e-quantile  4e-quantile ...
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e-Approximate Quantile Summaries

Data structure with two operations:

e UPDATE(x): x = new item from the stream
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e-Approximate Quantile Summaries

Data structure with two operations:

e UPDATE(x): x = new item from the stream

e QUANTILE QUERY(¢): For ¢ € [0, 1], return e-approximate ¢-quantile
Additional operations:

e RANK QUERY(x):

e For item x, determine its rank = position in the ordering of the input

e Merge of two quantile summaries

e Preserve space bounds, while maintaining accuracy
Quantile summaries — streaming algorithms for:

e Approximating distributions

e Equi-depth histograms

e Streaming Bin Packing [Cormode & V. '20]

Bottom line: Finding s-approximate median in data streams
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Approximate Median & Quantiles: Streaming Algorithms

State-of-the-art results
space ~ # of stored items
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State-of-the-art results
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1
e 0 (— - log 5N) — deterministic comparison-based [Greenwald & Khanna '01]
€

maintains a subset of items + bounds on their ranks

1
o O (— - log M) — deterministic for integers {1,..., M} [Shrivastava et al. '04]

£ i
not for floats or strings m

12 ... M
1

o O (—) — randomized [Karnin et al. '16] 0@
£
const. probability of violating e error guarantee

Many more papers: [Munro & Paterson '80, Manku et al. '98, Manku et al. '99]
[Hung & Ting '10, Agarwal et al. '12, Wang et al. '13, Felber & Ostrovsky '15, ...]
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Approx. Median & Quantiles: Is There a “Perfect” Algorithm?

What would be a “perfect” streaming algorithm?

e finds c-approximate median

e deterministic %

e constant space for fixed ¢

e ideally O (1) oreg. O (%)
€ €

e no additional knowledge about items

e comparison-based g

Theorem (Cormode, V. '20)
There is no perfect streaming algorithm for e-approximate median

1
e Optimal space lower bound {2 (— - log 5N>
€

e Matches the result in [Greenwald & Khanna '01]
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Approx. Median & Quantiles: Lower Bound ldea

Comparison-based algorithm g

=> cannot compare with items deleted from the memory
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Approx. Median & Quantiles: Lower Bound ldea

Comparison-based algorithm g

=> cannot compare with items deleted from the memory

10 o0

[ )
new item: 30

How does 30 compare to discarded items between 10 and 507

. N7
|dea: Introduce uncertainty
e too high uncertainty = not accurate-enough answers

e need to show: low uncertainty = many items stored = large space needed

: : 1
—> recursive construction of worst-case stream — lower bound 2 (— logeN
€

Pavel Vesely Tight Lower Bound for Quantile Summaries

9/ 10



Approximating Median & Quantiles: Conclusions & Open Problems

Problem solved: g

e Deterministic algorithms: space © ( -logeN | optimal [Greenwald & Khanna '01]

M | =

[Cormode, V. "20]

: . 1 .
e Randomized algorithms: space S, (— optimal (const. probability of too high error)
€

0@ [Karnin et al. '16]
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1
e Or can we do better than O (— - log l\/l)?
5
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Future work:
e Figure out constant factors

e Randomized algorithm with good expected space, but guaranteed 4+ error

e A non-trivial lower bound for integers {1,..., M}?
1
e Or can we do better than O (— - log l\/l)?
5

e Dynamic streams w/ insertions and deletions of items
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