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Selection Problem & Streaming

e Input: N numbers

e Goal: find the k-th smallest
e e.g.: the median, 99th percentile

e O(N) time offline algorithm [Blum et al. '73]
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Selection Problem & Streaming

e Input: N numbers

find the k-th smallest

e Goal:

e e.g.: the median, 99th percentile

e O(N) time offline algorithm [Blum et al. '73]

e Streaming restrictions:

e just one pass over the data

e limited memory: o(N)

e provide worst-case guarantees

Main objective: space
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e Input: N numbers

e Goal: find the k-th smallest
e e.g.: the median, 99th percentile

e O(N) time offline algorithm [Blum et al. '73]

e Streaming restrictions: 1 A
e just one pass over the data
e limited memory: o(N)

e provide worst-case guarantees

Main objective: space

0 -
No streaming algorithm for exact selection

Q(N) space needed to find the median [Munro & Paterson '80, Guha & McGregor '07]
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Selection Problem & Streaming
8468 8:5Q

e Input: N numbers

e Goal: find the k-th smallest
e e.g.: the median, 99th percentile

e O(N) time offline algorithm [Blum et al. '73]

e Streaming restrictions: 1 A
e just one pass over the data
e limited memory: o(N)

e provide worst-case guarantees

Main objective: space

0 -
No streaming algorithm for exact selection

Q(N) space needed to find the median [Munro & Paterson '80, Guha & McGregor '07]

What about finding an approximate median?
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Approximate Median & Quantiles with Uniform Error

How to define an approximate median?
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Approximate Median & Quantiles with Uniform Error

How to define an approximate median?
¢-quantile = [¢ - N'|-th smallest element (¢ € [0,1])
e Median = .5-quantile
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Approximate Median & Quantiles with Uniform Error

How to define an approximate median?
¢-quantile = [¢ - N1-th smallest element (¢ € [0,1]) >°rted data

e Median = .5-quantile

e Quartiles = .25, .5, and .75-quantiles

e Percentiles = .01, .02, ..., .99-quantiles 25.quantile  median 75.quantile
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Approximate Median & Quantiles with Uniform Error

How to define an approximate median?
¢-quantile = [¢ - N1-th smallest element (¢ € [0,1]) >°rted data

e Median = .5-quantile

e Quartiles = .25, .5, and .75-quantiles

e Percentiles = .01, .02, ..., .99-quantiles 25.quantile  median 75.quantile

e-approximate ¢-quantile = any ¢’-quantile for ¢/ = [¢p — €, ¢ + €]

e .0l-approximate medians are .49- and .51-quantiles (and items in between)

: I
Offline summary: sort data & select ~ % items
£

R
min.

(0-quantile) 2e-quantile 4e-quantile ...
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Approximate Median & Quantiles with Uniform Error

How to define an approximate median?

¢-quantile = [¢ - N1-th smallest element (¢ € [0,1]) >°rted data

e Median = .5-quantile
e Quartiles = .25, .5, and .75-quantiles

e Percentiles = .01, .02, ..., .99-quantiles 25.quantile  median 75.quantile
e-approximate ¢-quantile = any ¢'-quantile for ¢’ = [¢p — €, ¢ + €]

e .0l-approximate medians are .49- and .51-quantiles (and items in between)

Offline summary: sort data & select ~ > items
€
R
min. _ _
(0-quantile) 2e-quantile 4e-quantile ...

Very well-solved both in theory & practice:

1
® Deterministic algs.: space © (— : IogsN) optimal [Greenwald & Khanna '01, Cormode, V. '20]
£

1 : :
® Randomized algs.: space © <—> optimal (w/ const. probability of too high error) [Karnin et al. '16]
S
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Motivation for Relative Error

Often need to track percentiles 50, 70, 90, 95, 99, 99.5, ...
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Motivation for Relative Error

Often need to track percentiles 50, 70, 90, 95, 99, 99.5, ...

e e.g.: network latencies are long-tailed [Masson et al. "19]

p50 p75 pgo p9s
60.0k
40.0k
20.0k
0 T T 1
ons 200ms 40.0 ms 60.0 ms 80.0 ms 1000 ms 1200 ms 140.0 ms 160.0 ms

Source: C. Masson, J.E. Rim, and H.K. Lee. Ddsketch: A fast and fully-mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12):2195-2205, 2019.
e 98.5th percentile = 2s e maximum > 1 minute

e 99.5th percentile = 20s
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Often need to track percentiles 50, 70, 90, 95, 99, 99.5, ...

e e.g.: network latencies are long-tailed [Masson et al. "19]
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e 98.5th percentile = 2s e maximum > 1 minute

e 99.5th percentile = 20s

e uniform error € = 0.01 not useful for 99.5th percentile
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Motivation for Relative Error

Often need to track percentiles 50, 70, 90, 95, 99, 99.5, ...

e e.g.: network latencies are long-tailed [Masson et al. "19]
p30 p75 p9o0 p9s

40.0k
20.0k

0

T T 1
Ons 20.0ms 40.0 ms 60.0 ms 80.0ms 100.0 ms 1200 ms 140.0 ms 160.0 ms

Source: C. Masson, J.E. Rim, and H.K. Lee. Ddsketch: A fast and fully-mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12):2195-2205, 2019.

e 98.5th percentile = 2s e maximum > 1 minute

e 99.5th percentile = 20s

e uniform error € = 0.01 not useful for 99.5th percentile

Can we have a stronger error guarantee?
Can we understand the tails of the distribution better?

Pavel Vesely Relative Error Streaming Quantiles
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Quantiles with Relative Error
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Quantiles with Relative Error
Query ¢-quantile for ¢ € [0, 1] — return ¢’-quantile for ¢’ = ¢ e

uniform error: ¢ = p L ¢
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Quantiles with Relative Error
Query ¢-quantile for ¢ € [0, 1] — return ¢’-quantile for ¢’ = ¢ e

uniform error: ¢ = p L ¢
e Essentially the same for ¢ = Q(1), say ¢ = 0.5
e Much stronger for extreme values of ¢ such as ¢ = 1/\/N
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Quantiles with Relative Error
Query ¢-quantile for ¢ € [0, 1] — return ¢’-quantile for ¢’ = ¢ e

uniform error: ¢ = p L ¢
e Essentially the same for ¢ = Q(1), say ¢ = 0.5
e Much stronger for extreme values of ¢ such as ¢ = 1/\/N

Cumulative distribution function:

A . A .
1+ uniform error ¢ 1+ relative error ¢
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Quantiles with Relative Error
Query ¢-quantile for ¢ € [0, 1] — return ¢’-quantile for ¢’ = ¢ e

uniform error: ¢ = p L ¢
e Essentially the same for ¢ = Q(1), say ¢ = 0.5
e Much stronger for extreme values of ¢ such as ¢ = 1/\/N

Cumulative distribution function:

A . A .
1+ uniform error ¢ 1+ relative error ¢

0 - 0 -
Selection: query k-th smallest — return (k &= ck)-th smallest in the stream
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Quantiles with Relative Error
Query ¢-quantile for ¢ € [0, 1] — return ¢’-quantile for ¢’ = ¢ e

uniform error: ¢ = p L ¢
e Essentially the same for ¢ = Q(1), say ¢ = 0.5
e Much stronger for extreme values of ¢ such as ¢ = 1/\/N

Cumulative distribution function:

A . A .
1+ uniform error ¢ 1+ relative error ¢

0 - 0 >~
Selection: query k-th smallest — return (k &= ck)-th smallest in the stream

1
Offline summary: sort data & select O (— - log sN) items
€
e example for ¢ = 0.25:

R

~ ~" e~

. . . 8 -
2 Iitems 2 Iitems 4 Iitems = Iitems
15} IS g
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Streaming Algorithms for Relative Error ¢
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Streaming Algorithms for Relative Error ¢

State of the art:  space ~ # of stored items

1
e Deterministic: O (— -logeN - log M) for integers {1,..., M}
£
[Cormode et al. '06]
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Streaming Algorithms for Relative Error ¢

State of the art:  space ~ # of stored items

1
e Deterministic: O (— -logeN - log M) for integers {1,..., M}
£

1 [Cormode et al. '06]
g O (— : |Og3 6N> [Zhang & Wang '07]
9
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Streaming Algorithms for Relative Error ¢

State of the art:  space ~ # of stored items

1
e Deterministic: O (— -logeN - log M) for integers {1,..., M}
£

[Cormode et al. '06]
log® 6N> [Zhang & Wang '07]

Q (—  log? EN) [Cormode & V. '20]
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Streaming Algorithms for Relative Error ¢

State of the art:  space ~ # of stored items

1
e Deterministic: O (— -logeN - log M) for integers {1,..., M}

S

[Cormode et al. '06]

QS

9
1 3
— -log”eN | [Zhang & Wang '07]
9

1
Q (—  log? SN> [Cormode & V. '20]
€

1
e Randomized: O (—2 - log 5N) (by sampling) [Gupta & Zane '03, Zhang et al. '06]
£

iy

Pavel Vesely Relative Error Streaming Quantiles 5/ 10



Streaming Algorithms for Relative Error ¢

State of the art:  space ~ # of stored items

1
e Deterministic: O (— -logeN - log M) for integers {1,..., M}
£

1
g O (— : |Og3 EN) [Zhang & Wang '07]
9
1 1
€

[Cormode et al. '06]

- log €N) (by sampling) [Gupta & Zane '03, Zhang et al. '06]

iy

e Randomized: (’)(

) [Cormode, Karnin, Liberty, Thaler, V. '20-+]
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Streaming Algorithms for Relative Error ¢

State of the art:  space ~ # of stored items

1
e Deterministic: O (— -logeN - log M) for integers {1,..., M}
£

[Cormode et al. '06]
S °

: |Og3 EN) [Zhang & Wang '07]

e Randomized: O

o !
|

5 - log €N) (by sampling) [Gupta & Zane '03, Zhang et al. '06]
. |0g1'5 &?N) [Cormode, Karnin, Liberty, Thaler, V. '20+]

1
Q <— - log €N) [Cormode et al. '05]
€
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Technique for Designing Randomized Algorithms
Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

e Buffers of size B arranged at O(log ) levels
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Technique for Designing Randomized Algorithms
Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

e Buffers of size B arranged at O(log ) levels

Input stream — »

~ Y _
5 — T

5 smallest items g largest items sorted

Buffer full = compact: 1. Sort items
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Technique for Designing Randomized Algorithms
Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]
e Buffers of size B arranged at O(log ) levels

x| P ] T T Ix] T x

Input stream — »

B i B iy
5 smallest items 5 largest items sorted

Buffer full = compact: 1. Sort items
2. Select even or odd indexes with equal probability

e Promote items at selected indexes

e Discard the rest
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Technique for Designing Randomized Algorithms
Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

e Buffers of size B arranged at O(log ) levels

Level 1

input stream —» [l

Buffer full = compact: 1. Sort items

2. Select even or odd indexes with equal probability
e Promote items at selected indexes

e Discard the rest
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Technique for Designing Randomized Algorithms
Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

e Buffers of size B arranged at O(log ) levels

Level 1

input stream —» [

new items

Buffer full = compact: 1. Sort items

2. Select even or odd indexes with equal probability
e Promote items at selected indexes

e Discard the rest
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Technique for Designing Randomized Algorithms
Used in: [Manku et al. ‘99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

e Buffers of size B arranged at O(log ) levels

input stream —» [N [ ] oo

Buffer full = compact: 1. Sort items

2. Select even or odd indexes with equal probability
e Promote items at selected indexes

e Discard the rest
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Technique for Designing Randomized Algorithms
Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

e Buffers of size B arranged at O(log ) levels

Level 2

Level 1

input stream —» [

Buffer full = compact: 1. Sort items

2. Select even or odd indexes with equal probability
e Promote items at selected indexes

e Discard the rest
e A compaction at level h adds 2" to the error of an item y

iff odd number of items x < y compacted
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Technique for Designing Randomized Algorithms
Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]
e Buffers of size B arranged at O(log ) levels

L4 44
Input stream —» P P T ] T X
| - o N _— g
B i B iy
= smallest items 5 largest items sorted

2
Buffer full = compact: 1. Sort items

2. Select even or odd indexes with equal probability
e Promote items at selected indexes

e Discard the rest
e A compaction at level h adds 2" to the error of an item y

iff odd number of items x < y compacted
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Analysis with a Simple Compactor
Fix item y: @ R(y) = rank of y in the input stream = # of items x < y
e R(y) = estimated rank of y
e Err(y) = |R(y) — R(y)| is the error
Goal: show that Err(y) < eR(y) with constant probability

Pavel Vesely Relative Error Streaming Quantiles

7/ 10



Analysis with a Simple Compactor
Fix item y: @ R(y) = rank of y in the input stream = # of items x < y
e R(y) = estimated rank of y
e Err(y) = |R(y) — R(y)| is the error
Goal: show that Err(y) < eR(y) with constant probability
e A compaction at level h adds 2" to the error

iff odd number of items x < y compacted

Pavel Vesely Relative Error Streaming Quantiles

7/ 10



Analysis with a Simple Compactor
Fix item y: @ R(y) = rank of y in the input stream = # of items x < y
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e Err(y) = |R(y) — R(y)| is the error
Goal: show that Err(y) < eR(y) with constant probability
e A compaction at level h adds 2" to the error

iff odd number of items x < y compacted

R(y)

2h

e At most compactions involving items x < y

e rank of y decreases by factor of ~ 2 at every level
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e rank of y decreases by factor of ~ 2 at every level
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Analysis with a Simple Compactor
Fix item y: @ R(y) = rank of y in the input stream = # of items x < y
e R(y) = estimated rank of y
e Err(y) = |R(y) — R(y)| is the error
Goal: show that Err(y) < eR(y) with constant probability
e A compaction at level h adds 2" to the error

iff odd number of items x < y compacted

R(y)

2h

e At most compactions involving items x < y

e rank of y decreases by factor of ~ 2 at every level

e Highest level H(y) affecting the error for y satisfies 2") < O(R(y)/B)

H(y) 2
R R
Variance Of Err(Y) S hEZO 22h% S 2H(y)R(y) S (é/) (up to constant factors)
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Analysis with a Simple Compactor
Fix item y: @ R(y) = rank of y in the input stream = # of items x < y
e R(y) = estimated rank of y
e Err(y) = |R(y) — R(y)| is the error
Goal: show that Err(y) < eR(y) with constant probability
e A compaction at level h adds 2" to the error

iff odd number of items x < y compacted

R(y)

2h

e At most compactions involving items x < y

e rank of y decreases by factor of ~ 2 at every level

e Highest level H(y) affecting the error for y satisfies 2") < O(R(y)/B)

H(y) 2
R R
Variance Of Err(Y) S hEZO 22h% S 2H(y)R(y) S (é/) (up to constant factors)

For Err(y) < e- R(y) w/ const. probability, we need Var[Err(y)] < £2R(y)?

= need to choose B ~ =2 2 %

Pavel Vesely Relative Error Streaming Quantiles
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Relative compactor

Compaction affecting the error should remove k items x < y on average

R(y)
oh .

e = at most compactions involving items x < y at level h
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Relative compactor

Compaction affecting the error should remove k items x < y on average

R(y)
oh .

e = at most compactions involving items x < y at level h

e Split buffer into sections

B/2 slots (never compacted) [logy(n/k)] sections with k slots each

e Section j compacted in every 2-th time
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Relative compactor

Compaction affecting the error should remove k items x < y on average

R(y)
oh .

e = at most compactions involving items x < y at level h

e Split buffer into sections

B/2 slots (never compacted) [logy(n/k)] sections with k slots each

e Section j compacted in every 2-th time

e B=2 k- [logy(n/k)]
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Analysis with Relative Compactor
Fix item y: @ R(y) = rank of y in the input stream = # of items x < y
e R(y) = estimated rank of y
e Err(y) = |R(y) — R(y)| is the error
Goal: show that Err(y) < eR(y) with constant probability
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R(y)
oh .k
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e Err(y) = |R(y) — R(y)| is the error
Goal: show that Err(y) < eR(y) with constant probability
e A compaction at level h adds 2" to the error

iff odd number of items x < y compacted

R(y)
2h . k
e Highest level H(y) affecting the error for y satisfies 2") < O(R(y)/B)
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Analysis with Relative Compactor
Fix item y: @ R(y) = rank of y in the input stream = # of items x < y
e R(y) = estimated rank of y
e Err(y) = |R(y) — R(y)| is the error
Goal: show that Err(y) < eR(y) with constant probability
e A compaction at level h adds 2" to the error

iff odd number of items x < y compacted

R(y)
2h . k
e Highest level H(y) affecting the error for y satisfies 2") < O(R(y)/B)

e At most compactions involving items x < y

Variance of Err(y) at most (up to constants)
H(y)

3 o RY) o unRY) - RO RUy)
oh k= k = kB ~ K2-log(eN)
h=0
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Analysis with Relative Compactor
Fix item y: @ R(y) = rank of y in the input stream = # of items x < y
e R(y) = estimated rank of y
e Err(y) = |R(y) — R(y)| is the error
Goal: show that Err(y) < eR(y) with constant probability
e A compaction at level h adds 2" to the error

iff odd number of items x < y compacted

R(y)
2h . k
e Highest level H(y) affecting the error for y satisfies 2") < O(R(y)/B)

e At most compactions involving items x < y

Variance of Err(y) at most (up to constants)
H(y)

2 2
2h k = kB — K2 log(eN)
h=0
1
e Choose k = , so that Var(Err(y)) < 2R(y)?

e+ +/log(eN)

e Then B=0 (% : \/Iog(sN)> and O(log(eN)) levels = space O (* - log™® eN)
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Relative Error: Conclusions

1
Randomized sketch of size O <— log!® €N> (const. probability of error)
€

e /log(1/9) dependence on failure probability §

1
Lower bound Q (— - log 5N) = gap /log(eN)
€
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Relative Error: Conclusions

1
Randomized sketch of size O <— log!® €N> (const. probability of error)
9

e /log(1/9) dependence on failure probability §

1
Lower bound Q (— - log 8/\/) = gap /log(eN)
€

Extensions: e Handling unknown stream lengths
e Mergeability, and more
e Python code at GitHub
More: paper Relative Error Streaming Quantiles at arXiv (to be updated till WOLA)
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Relative Error: Conclusions

1
Randomized sketch of size O <— log!® €N> (const. probability of error)
9

e /log(1/9) dependence on failure probability §

1
Lower bound Q (— - log 5N) = gap /log(eN)
€

Extensions: e Handling unknown stream lengths
e Mergeability, and more
e Python code at GitHub
More: paper Relative Error Streaming Quantiles at arXiv (to be updated till WOLA)
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