Relative Error Streaming Quantiles

Pavel Veselý
University of Warwick

WOLA 2020 (recorded 1 July 2020)

Joint work in progress with Graham Cormode (Warwick), Zohar Karnin (Amazon), Edo Liberty (HyperCube), and Justin Thaler (Georgetown)

• Input: *N* numbers

• Goal: find the k-th smallest

• e.g.: the median, 99th percentile

• $\mathcal{O}(N)$ time offline algorithm [Blum et al. '73]

- Input: *N* numbers
- Goal: find the k-th smallest
 - e.g.: the median, 99th percentile
- $\mathcal{O}(N)$ time offline algorithm [Blum *et al.* '73]
- Streaming restrictions:
 - just one pass over the data
 - limited memory: o(N)
 - provide worst-case guarantees

Main objective: space

- Input: *N* numbers
- Goal: find the k-th smallest
 - e.g.: the median, 99th percentile
- $\mathcal{O}(N)$ time offline algorithm [Blum *et al.* '73]
- Streaming restrictions:
 - just one pass over the data
 - limited memory: o(N)
 - provide worst-case guarantees

Main objective: **space**

- Input: *N* numbers
- Goal: find the k-th smallest
 - e.g.: the median, 99th percentile
- $\mathcal{O}(N)$ time offline algorithm [Blum *et al.* '73]
- Streaming restrictions:
 - just one pass over the data
 - limited memory: o(N)
 - provide worst-case guarantees

Main objective: space

No streaming algorithm for exact selection

 $\Omega(N)$ space needed to find the median [Munro & Paterson '80, Guha & McGregor '07]

- Input: *N* numbers
- Goal: find the k-th smallest
 - e.g.: the median, 99th percentile
- $\mathcal{O}(N)$ time offline algorithm [Blum *et al.* '73]
- Streaming restrictions:
 - just one pass over the data
 - limited memory: o(N)
 - provide worst-case guarantees

Main objective: space

No streaming algorithm for exact selection

 $\Omega(N)$ space needed to find the median [Munro & Paterson '80, Guha & McGregor '07]

What about finding an approximate median?

How to define an approximate median?

How to define an approximate median?

```
\phi-quantile = \lceil \phi \cdot \textit{N} 
ceil -th smallest element (\phi \in [0,1])
```

• Median = .5-quantile

How to define an approximate median?

 ϕ -quantile $= \lceil \phi \cdot N
ceil$ -th smallest element $(\phi \in [0,1])$ - Sorted data

- Median = .5-quantile
- Quartiles = .25, .5, and .75-quantiles
- Percentiles = .01, .02, ..., .99-quantiles

How to define an approximate median?

$$\phi$$
-quantile = $\lceil \phi \cdot \textit{N} \rceil$ -th smallest element ($\phi \in [0,1]$)

- Median = .5-quantile
- Quartiles = .25, .5, and .75-quantiles
- Percentiles = .01, .02, ..., .99-quantiles

$$\varepsilon$$
-approximate ϕ -quantile = any ϕ' -quantile for $\phi' = [\phi - \varepsilon, \phi + \varepsilon]$

• .01-approximate medians are .49- and .51-quantiles (and items in between)

How to define an approximate median?

 ϕ -quantile = $\lceil \phi \cdot N \rceil$ -th smallest element $(\phi \in [0,1])$

- Median = .5-quantile
- Quartiles = .25, .5, and .75-quantiles
- Percentiles = .01, .02,99-quantiles

 ε -approximate ϕ -quantile = any ϕ' -quantile for $\phi' = [\phi - \varepsilon, \phi + \varepsilon]$

• .01-approximate medians are .49- and .51-quantiles (and items in between)

Offline summary: sort data & select $\sim \frac{1}{2\varepsilon}$ items

min.
$$2arepsilon$$
-quantile $4arepsilon$ -quantile \ldots

How to define an approximate median?

$$\phi\text{-quantile} = \lceil \phi \cdot N \rceil \text{-th smallest element } (\phi \in [0,1]) \text{ Sorted data}$$

$$\bullet \text{ Median} = .5\text{-quantile}$$

$$\bullet \text{ Quartiles} = .25, .5, \text{ and } .75\text{-quantiles}$$

• Percentiles = .01, .02, ..., .99-quantiles .25-quantile median .75-quantile

$$\varepsilon$$
-approximate ϕ -quantile = any ϕ' -quantile for $\phi' = [\phi - \varepsilon, \phi + \varepsilon]$

• .01-approximate medians are .49- and .51-quantiles (and items in between)

Offline summary: sort data & select
$$\sim \frac{1}{2\varepsilon}$$
 items

$$\begin{array}{c} \text{min.} \\ \text{(0-quantile)} \end{array} 2 \varepsilon \text{-quantile} \quad 4 \varepsilon \text{-quantile} \quad \dots$$

Very well-solved both in theory & practice:

- Deterministic algs.: space $\Theta\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$ optimal [Greenwald & Khanna '01, Cormode, **V.** '20]
- Randomized algs.: space $\Theta\left(\frac{1}{\varepsilon}\right)$ optimal (w/ const. probability of too high error) [Karnin *et al.* '16]

Often need to track percentiles 50, 70, 90, 95, 99, 99.5, ...

Often need to track percentiles 50, 70, 90, 95, 99, 99.5, ...

• e.g.: network latencies are long-tailed [Masson et al. '19]

Source: C. Masson, J.E. Rim, and H.K. Lee. Ddsketch: A fast and fully-mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12):2195-2205, 2019.

- 98.5th percentile = 2s
- 99.5th percentile = 20s

ullet maximum ≥ 1 minute

Often need to track percentiles 50, 70, 90, 95, 99, 99.5, ...

• e.g.: network latencies are long-tailed [Masson et al. '19]

Source: C. Masson, J.E. Rim, and H.K. Lee. Ddsketch: A fast and fully-mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12):2195-2205, 2019.

• 98.5th percentile = 2s

• maximum > 1 minute

- 99.5th percentile = 20s
- uniform error $\varepsilon = 0.01$ not useful for 99.5th percentile

Often need to track percentiles 50, 70, 90, 95, 99, 99.5, ...

• e.g.: network latencies are long-tailed [Masson et al. '19]

Source: C. Masson, J.E. Rim, and H.K. Lee. Ddsketch: A fast and fully-mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12):2195-2205, 2019.

• 98.5th percentile = 2s

• maximum > 1 minute

- 99.5th percentile = 20s
- uniform error $\varepsilon = 0.01$ not useful for 99.5th percentile

Can we have a stronger error guarantee? Can we understand the **tails** of the distribution better?

Query ϕ -quantile for $\phi \in [0,1] \to \text{return } \phi'$ -quantile for $\phi' = \phi \pm \varepsilon \phi$ uniform error: $\phi' = \phi \pm \varepsilon$

Query ϕ -quantile for $\phi \in [0,1] \to \text{return } \phi'$ -quantile for $\phi' = \phi \pm \varepsilon \phi$ uniform error: $\phi' = \phi \pm \varepsilon$

- Essentially the same for $\phi = \Omega(1)$, say $\phi = 0.5$
- ullet Much stronger for extreme values of ϕ such as $\phi=1/\sqrt{N}$

Query ϕ -quantile for $\phi \in [0,1] \to \text{return } \phi'$ -quantile for $\phi' = \phi \pm \varepsilon \phi$ uniform error: $\phi' = \phi \pm \varepsilon$

- ullet Essentially the same for $\phi=\Omega(1)$, say $\phi=0.5$
- ullet Much stronger for extreme values of ϕ such as $\phi=1/\sqrt{N}$

Cumulative distribution function:

Query ϕ -quantile for $\phi \in [0,1] \to \text{return } \phi'$ -quantile for $\phi' = \phi \pm \varepsilon \phi$ uniform error: $\phi' = \phi \pm \varepsilon$

- ullet Essentially the same for $\phi=\Omega(1)$, say $\phi=0.5$
- ullet Much stronger for extreme values of ϕ such as $\phi=1/\sqrt{N}$

Cumulative distribution function:

Selection: query k-th smallest \rightarrow return $(k \pm \varepsilon k)$ -th smallest in the stream

Query ϕ -quantile for $\phi \in [0,1] \to \text{return } \phi'$ -quantile for $\phi' = \phi \pm \varepsilon \phi$ uniform error: $\phi' = \phi \pm \varepsilon$

- ullet Essentially the same for $\phi=\Omega(1)$, say $\phi=0.5$
- ullet Much stronger for extreme values of ϕ such as $\phi=1/\sqrt{N}$

Cumulative distribution function:

Selection: query k-th smallest \rightarrow return $(k \pm \varepsilon k)$ -th smallest in the stream

Offline summary: sort data & select $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$ items

• example for $\varepsilon = 0.25$:

$$\frac{2}{\varepsilon}$$
 items

$$\frac{4}{\varepsilon}$$
 items

$$\frac{8}{\varepsilon}$$
 items

State of the art: space $\sim \#$ of stored items

• Deterministic: $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N \cdot \log M\right)$ for integers $\{1, \dots, M\}$

State of the art: space $\sim \#$ of stored items

• Deterministic: $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N \cdot \log M\right)$ for integers $\{1, \dots, M\}$

$$\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log^3 \varepsilon N\right) \text{ [Zhang \& Wang '07]}$$

State of the art: space $\sim \#$ of stored items

• Deterministic: $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N \cdot \log M\right)$ for integers $\{1, \dots, M\}$

$$\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log^3 \varepsilon N\right) \text{ [Zhang \& Wang '07]}$$

$$\Omega\left(\frac{1}{\varepsilon} \cdot \log^2 \varepsilon N\right)$$
 [Cormode & **V**. '20]

State of the art: space $\sim \#$ of stored items

• Deterministic: $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N \cdot \log M\right)$ for integers $\{1, \dots, M\}$

$$\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log^3 \varepsilon N\right) \text{ [Zhang \& Wang '07]}$$

 $\Omega\left(\frac{1}{\varepsilon} \cdot \log^2 \varepsilon N\right)$ [Cormode & **V**. '20]

• Randomized: $\mathcal{O}\left(\frac{1}{\varepsilon^2} \cdot \log \varepsilon N\right)$ (by sampling) [Gupta & Zane '03, Zhang *et al.* '06]

State of the art: space $\sim \#$ of stored items

• Deterministic: $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N \cdot \log M\right)$ for integers $\{1, \dots, M\}$ [Cormode et al. '06]

$$\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log^3 \varepsilon N\right) \text{ [Zhang \& Wang '07]}$$

 $\Omega\left(\frac{1}{\varepsilon} \cdot \log^2 \varepsilon N\right)$ [Cormode & **V**. '20]

• Randomized:
$$\mathcal{O}\left(\frac{1}{\varepsilon^2} \cdot \log \varepsilon N\right)$$
 (by sampling) [Gupta & Zane '03, Zhang *et al.* '06]

$$\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log^{1.5} \varepsilon N\right)$$
 [Cormode, Karnin, Liberty, Thaler, **V.** '20+]

State of the art: space $\sim \#$ of stored items

• Deterministic: $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N \cdot \log M\right)$ for integers $\{1, \dots, M\}$

$$\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log^3 \varepsilon N\right) \text{ [Zhang \& Wang '07]}$$

$$\Omega\left(\frac{1}{\varepsilon} \cdot \log^2 \varepsilon N\right)$$
 [Cormode & **V.** '20]

• Randomized:
$$\mathcal{O}\left(\frac{1}{\varepsilon^2} \cdot \log \varepsilon N\right)$$
 (by sampling) [Gupta & Zane '03, Zhang *et al.* '06]

$$\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log^{1.5} \varepsilon N\right)$$
 [Cormode, Karnin, Liberty, Thaler, **V.** '20+]

$$\Omega\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$$
 [Cormode *et al.* '05]

Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

• Buffers of size B arranged at $\mathcal{O}(\log N)$ levels

Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

• Buffers of size B arranged at $\mathcal{O}(\log N)$ levels

Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

• Buffers of size B arranged at $\mathcal{O}(\log N)$ levels

Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

• Buffers of size B arranged at $\mathcal{O}(\log N)$ levels

Buffer full \Rightarrow compact: 1. Sort items

Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

• Buffers of size B arranged at $\mathcal{O}(\log N)$ levels

Buffer full \Rightarrow compact:

- 1. Sort items
- 2. Select even or odd indexes with equal probability
 - Promote items at selected indexes
 - Discard the rest

Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

• Buffers of size B arranged at $\mathcal{O}(\log N)$ levels

Buffer full \Rightarrow compact: **1.** Sort items

- 2. Select even or odd indexes with equal probability
 - Promote items at selected indexes
 - Discard the rest

Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

• Buffers of size B arranged at $\mathcal{O}(\log N)$ levels

Buffer full \Rightarrow compact: **1.** Sort items

- 2. Select even or odd indexes with equal probability
 - Promote items at selected indexes
 - Discard the rest

Technique for Designing Randomized Algorithms

Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

• Buffers of size B arranged at $\mathcal{O}(\log N)$ levels

Buffer full \Rightarrow compact: **1.** Sort items

- 2. Select even or odd indexes with equal probability
 - Promote items at selected indexes
 - Discard the rest

Technique for Designing Randomized Algorithms

Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

• Buffers of size B arranged at $\mathcal{O}(\log N)$ levels

Buffer full \Rightarrow compact: **1.** Sort items

- 2. Select even or odd indexes with equal probability
 - Promote items at selected indexes
 - Discard the rest
- A compaction at level h adds $\pm 2^h$ to the error of an item y iff odd number of items $x \le y$ compacted

Technique for Designing Randomized Algorithms

Used in: [Manku et al. '99, Agarwal et al. '12, Wang et al. '13, Karnin et al. '16]

• Buffers of size B arranged at $\mathcal{O}(\log N)$ levels

Buffer full \Rightarrow compact:

- 1. Sort items
- 2. Select even or odd indexes with equal probability
 - Promote items at selected indexes
 - Discard the rest
- A compaction at level h adds $\pm 2^h$ to the error of an item y iff odd number of items $x \le y$ compacted

Fix item y: \bullet $R(y) = \text{rank of } y \text{ in the input stream} = \# \text{ of items } x \leq y$

- $\hat{R}(y) = \text{estimated rank of } y$
- $\operatorname{Err}(y) = |R(y) \hat{R}(y)|$ is the error

- Fix item y: \bullet $R(y) = \text{rank of } y \text{ in the input stream} = \# \text{ of items } x \leq y$
 - $\hat{R}(y) = \text{estimated rank of } y$
 - $\operatorname{Err}(y) = |R(y) \hat{R}(y)|$ is the error

Goal: show that $Err(y) \leq \varepsilon R(y)$ with constant probability

• A compaction at level h adds $\pm 2^h$ to the error

iff odd number of items $x \leq y$ compacted

- Fix item y: \bullet $R(y) = \text{rank of } y \text{ in the input stream} = \# \text{ of items } x \leq y$
 - $\hat{R}(y) = \text{estimated rank of } y$
 - $\operatorname{Err}(y) = |R(y) \hat{R}(y)|$ is the error

- A compaction at level h adds $\pm 2^h$ to the error iff odd number of items $x \le y$ compacted
- At most $\frac{R(y)}{2^h}$ compactions involving items $x \le y$
 - \bullet rank of y decreases by factor of \sim 2 at every level

- Fix item y: \bullet $R(y) = \text{rank of } y \text{ in the input stream} = \# \text{ of items } x \leq y$
 - $\hat{R}(y) = \text{estimated rank of } y$
 - $\operatorname{Err}(y) = |R(y) \hat{R}(y)|$ is the error

- A compaction at level h adds $\pm 2^h$ to the error iff odd number of items $x \le y$ compacted
- At most $\frac{R(y)}{2^h}$ compactions involving items $x \le y$
 - ullet rank of y decreases by factor of \sim 2 at every level
- Highest level H(y) affecting the error for y satisfies $2^{H(y)} \leq \mathcal{O}(R(y)/B)$

Fix item y: \bullet $R(y) = \text{rank of } y \text{ in the input stream} = \# \text{ of items } x \leq y$

- $\hat{R}(y) = \text{estimated rank of } y$
- $Err(y) = |R(y) \hat{R}(y)|$ is the error

- A compaction at level h adds $\pm 2^h$ to the error iff odd number of items $x \le y$ compacted
- At most $\frac{R(y)}{2^h}$ compactions involving items $x \leq y$
 - ullet rank of y decreases by factor of \sim 2 at every level
- Highest level H(y) affecting the error for y satisfies $2^{H(y)} \leq \mathcal{O}(R(y)/B)$

Variance of
$$\operatorname{Err}(y) \leq \sum_{h=0}^{H(y)} 2^{2h} \frac{R(y)}{2^h} \leq 2^{H(y)} R(y) \leq \frac{R(y)^2}{B}$$
 (up to constant factors)

Fix item y: \bullet $R(y) = \text{rank of } y \text{ in the input stream} = \# \text{ of items } x \leq y$

- $\hat{R}(y) = \text{estimated rank of } y$
- Err $(y) = |R(y) \hat{R}(y)|$ is the error

- A compaction at level h adds $\pm 2^h$ to the error iff odd number of items $x \le y$ compacted
- At most $\frac{R(y)}{2^h}$ compactions involving items $x \le y$
 - ullet rank of y decreases by factor of \sim 2 at every level
- Highest level H(y) affecting the error for y satisfies $2^{H(y)} \leq \mathcal{O}(R(y)/B)$

Variance of Err(y)
$$\leq \sum_{h=0}^{H(y)} 2^{2h} \frac{R(y)}{2^h} \leq 2^{H(y)} R(y) \leq \frac{R(y)^2}{B}$$
 (up to constant factors)

For
$$\operatorname{Err}(y) \leq \varepsilon \cdot R(y)$$
 w/ const. probability, we need $\operatorname{Var}[\operatorname{Err}(y)] \leq \varepsilon^2 R(y)^2$ \Rightarrow need to choose $B \sim \frac{1}{\varepsilon^2}$

Relative compactor

Compaction affecting the error should remove k items $x \leq y$ on average

• \Rightarrow at most $\frac{R(y)}{2^h \cdot k}$ compactions involving items $x \leq y$ at level h

Relative compactor

Compaction affecting the error should remove k items $x \leq y$ on average

- \Rightarrow at most $\frac{R(y)}{2^h \cdot k}$ compactions involving items $x \leq y$ at level h
- Split buffer into sections

• Section j compacted in every 2^{j} -th time

Relative compactor

Compaction affecting the error should remove k items $x \leq y$ on average

- \Rightarrow at most $\frac{R(y)}{2^h \cdot k}$ compactions involving items $x \leq y$ at level h
- Split buffer into sections

	6	5	4	3	2	1	0
B/2 slots (never compacted)	$\lceil \log_2$	2(n/k)] sec	ctions	with	$k \operatorname{slc}$	ts eac

- Section j compacted in every 2^{j} -th time
- $B = 2 \cdot k \cdot \lceil \log_2(n/k) \rceil$

Fix item y: \bullet $R(y) = \text{rank of } y \text{ in the input stream} = \# \text{ of items } x \leq y$

- $\hat{R}(y) = \text{estimated rank of } y$
- $\operatorname{Err}(y) = |R(y) \hat{R}(y)|$ is the error

- Fix item y: \bullet $R(y) = \text{rank of } y \text{ in the input stream} = \# \text{ of items } x \leq y$
 - $\hat{R}(y) = \text{estimated rank of } y$
 - $\operatorname{Err}(y) = |R(y) \hat{R}(y)|$ is the error

Goal: show that $Err(y) \leq \varepsilon R(y)$ with constant probability

• A compaction at level h adds $\pm 2^h$ to the error

iff odd number of items $x \leq y$ compacted

- Fix item y: \bullet $R(y) = \text{rank of } y \text{ in the input stream} = \# \text{ of items } x \leq y$
 - $\hat{R}(y) = \text{estimated rank of } y$
 - $\operatorname{Err}(y) = |R(y) \hat{R}(y)|$ is the error

- A compaction at level h adds $\pm 2^h$ to the error iff odd number of items $x \le y$ compacted
- At most $\frac{R(y)}{2^h \cdot k}$ compactions involving items $x \leq y$

Fix item y: \bullet $R(y) = \text{rank of } y \text{ in the input stream} = \# \text{ of items } x \leq y$

- $\hat{R}(y) = \text{estimated rank of } y$
- $\operatorname{Err}(y) = |R(y) \hat{R}(y)|$ is the error

- A compaction at level h adds $\pm 2^h$ to the error iff odd number of items $x \le y$ compacted
- At most $\frac{R(y)}{2^h \cdot k}$ compactions involving items $x \leq y$
- Highest level H(y) affecting the error for y satisfies $2^{H(y)} \leq \mathcal{O}(R(y)/B)$

Fix item y: \bullet $R(y) = \text{rank of } y \text{ in the input stream} = \# \text{ of items } x \leq y$

- $\hat{R}(y) = \text{estimated rank of } y$
- $\operatorname{Err}(y) = |R(y) \hat{R}(y)|$ is the error

Goal: show that $Err(y) \leq \varepsilon R(y)$ with constant probability

- A compaction at level h adds $\pm 2^h$ to the error iff odd number of items $x \le y$ compacted
- At most $\frac{R(y)}{2^h \cdot k}$ compactions involving items $x \leq y$
- Highest level H(y) affecting the error for y satisfies $2^{H(y)} \leq \mathcal{O}(R(y)/B)$

Variance of Err(y) at most (up to constants)

$$\sum_{h=0}^{H(y)} 2^{2h} \frac{R(y)}{2^h \cdot k} \le 2^{H(y)} \frac{R(y)}{k} \le \frac{R(y)^2}{kB} \le \frac{R(y)^2}{k^2 \cdot \log(\varepsilon N)}$$

Fix item y: \bullet $R(y) = \text{rank of } y \text{ in the input stream} = \# \text{ of items } x \leq y$

- $\hat{R}(y) = \text{estimated rank of } y$
- $\operatorname{Err}(y) = |R(y) \hat{R}(y)|$ is the error

Goal: show that $Err(y) \leq \varepsilon R(y)$ with constant probability

- A compaction at level h adds $\pm 2^h$ to the error iff odd number of items $x \le y$ compacted
- At most $\frac{R(y)}{2^h \cdot k}$ compactions involving items $x \leq y$
- Highest level H(y) affecting the error for y satisfies $2^{H(y)} \le \mathcal{O}(R(y)/B)$

Variance of Err(y) at most (up to constants)

$$\sum_{h=0}^{H(y)} 2^{2h} \frac{R(y)}{2^h \cdot k} \le 2^{H(y)} \frac{R(y)}{k} \le \frac{R(y)^2}{kB} \le \frac{R(y)^2}{k^2 \cdot \log(\varepsilon N)}$$

- Choose $k = \frac{1}{\varepsilon \cdot \sqrt{\log(\varepsilon N)}}$, so that $Var(Err(y)) \le \varepsilon^2 R(y)^2$
- Then $B = \mathcal{O}\left(\frac{1}{\varepsilon} \cdot \sqrt{\log(\varepsilon N)}\right)$ and $O(\log(\varepsilon N))$ levels \Rightarrow space $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log^{1.5} \varepsilon N\right)$

Relative Error: Conclusions

Randomized sketch of size $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log^{1.5} \varepsilon N\right)$ (const. probability of error)

• $\sqrt{\log(1/\delta)}$ dependence on failure probability δ

Lower bound
$$\Omega\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right) \Rightarrow \operatorname{\mathsf{gap}} \sqrt{\log(\varepsilon N)}$$

Relative Error: Conclusions

Randomized sketch of size $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log^{1.5} \varepsilon N\right)$ (const. probability of error)

• $\sqrt{\log(1/\delta)}$ dependence on failure probability δ

Lower bound
$$\Omega\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right) \Rightarrow \operatorname{gap} \sqrt{\log(\varepsilon N)}$$

Extensions: • Handling unknown stream lengths

- Mergeability, and more
- Python code at GitHub

More: paper Relative Error Streaming Quantiles at arXiv (to be updated till WOLA)

Relative Error: Conclusions

Randomized sketch of size $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log^{1.5} \varepsilon N\right)$ (const. probability of error)

• $\sqrt{\log(1/\delta)}$ dependence on failure probability δ

Lower bound
$$\Omega\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right) \Rightarrow \operatorname{gap} \sqrt{\log(\varepsilon N)}$$

Extensions: • Handling unknown stream lengths

- Mergeability, and more
- Python code at GitHub

More: paper Relative Error Streaming Quantiles at arXiv (to be updated till WOLA)

Questions welcomed at Slack or pavel.vesely@warwick.ac.uk

