
A φ-Competitive Algorithm
for Scheduling Packets with Deadlines

Pavel Veselý
University of Warwick

Joint work with Marek Chrobak (UC Riverside),
 Lukasz Jeż (Wroc law Univ.), and
Jǐŕı Sgall (Charles Univ., Prague).

SODA’19, January 6

Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Goal: maximize total weight of scheduled packets

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13

Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight wp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13

Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

wp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13

Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

ALG
OPTwp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13

Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

ALG
OPTwp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13

Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

ALG
OPTwp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

1
1.7

1 2 3 4

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13

Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

ALG
OPTwp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

1
1.7

1 2 3 4

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13

Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

ALG
OPTwp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

1
1.7

OPT
ALG = 1.7+1

1.7 ≈ 1.59

1 2 3 4

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13

Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

ALG
OPTwp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

1
1.7

1 2 3 4

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13

Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

ALG
OPTwp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

1
1.7

1.7
2.7

1 2 3 4

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13

Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

ALG
OPTwp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

1
1.7

1.7
2.7

1 2 3 4

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13

Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

ALG
OPTwp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

1
1.7

1.7
2.7

OPT
ALG = 2·1.7+2.7

1.7+2.7 ≈ 1.39

1 2 3 4

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13

Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

ALG
OPTwp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

1
1.7

1.7
2.7

2.7
4.3

1 2 3 4

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13

Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

ALG
OPTwp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13

Competitive ratio of online algorithms

Algorithm is R-competitive if for any instance I

OPT(I) ≤ R · ALG(I)

Game: the algorithm vs. an adversary
I The adversary decides on further input to maximize OPT/ALG

Pavel Veselý Online Packet Scheduling 3 / 13

Competitive ratio of online algorithms

Algorithm is R-competitive if for any instance I

OPT(I) ≤ R · ALG(I)

Game: the algorithm vs. an adversary
I The adversary decides on further input to maximize OPT/ALG

Pavel Veselý Online Packet Scheduling 3 / 13

Previous work

We focus on deterministic algorithms

Greedy algorithm 2-competitive
I Schedules always the heaviest pending packet

Lower bound of the golden ratio
φ = 1

2 (
√

5 + 1) ≈ 1.618 [Hájek ’01, Andelman et al. ’03,

Chin & Fung ’03]

φ+ 1 = φ2

1.939-competitive algorithm [Chrobak et al.’04]

1.854-competitive algorithm [Li et al.’07]

1.828-competitive algorithm [Englert & Westermann ’07]

Ratio φ for special instances [Kesselman et al. ’01, Chin et al. ’04, Li et al. ’05,

Bienkowski et al. ’13, Böhm et al. ’16]

Is there a φ-competitive algorithm?

Yes!

Pavel Veselý Online Packet Scheduling 4 / 13

Previous work

We focus on deterministic algorithms

Greedy algorithm 2-competitive
I Schedules always the heaviest pending packet

Lower bound of the golden ratio
φ = 1

2 (
√

5 + 1) ≈ 1.618 [Hájek ’01, Andelman et al. ’03,

Chin & Fung ’03]

φ+ 1 = φ2

1.939-competitive algorithm [Chrobak et al.’04]

1.854-competitive algorithm [Li et al.’07]

1.828-competitive algorithm [Englert & Westermann ’07]

Ratio φ for special instances [Kesselman et al. ’01, Chin et al. ’04, Li et al. ’05,

Bienkowski et al. ’13, Böhm et al. ’16]

Is there a φ-competitive algorithm?

Yes!

Pavel Veselý Online Packet Scheduling 4 / 13

Previous work

We focus on deterministic algorithms

Greedy algorithm 2-competitive
I Schedules always the heaviest pending packet

Lower bound of the golden ratio
φ = 1

2 (
√

5 + 1) ≈ 1.618 [Hájek ’01, Andelman et al. ’03,

Chin & Fung ’03]

φ+ 1 = φ2

1
φ

φ
φ2

φ2

φ3
. . .

1.939-competitive algorithm [Chrobak et al.’04]

1.854-competitive algorithm [Li et al.’07]

1.828-competitive algorithm [Englert & Westermann ’07]

Ratio φ for special instances [Kesselman et al. ’01, Chin et al. ’04, Li et al. ’05,

Bienkowski et al. ’13, Böhm et al. ’16]

Is there a φ-competitive algorithm?

Yes!

Pavel Veselý Online Packet Scheduling 4 / 13

Previous work

We focus on deterministic algorithms

Greedy algorithm 2-competitive
I Schedules always the heaviest pending packet

Lower bound of the golden ratio
φ = 1

2 (
√

5 + 1) ≈ 1.618 [Hájek ’01, Andelman et al. ’03,

Chin & Fung ’03]

φ+ 1 = φ2

1
φ

φ
φ2

φ2

φ3
. . .

1.939-competitive algorithm [Chrobak et al.’04]

1.854-competitive algorithm [Li et al.’07]

1.828-competitive algorithm [Englert & Westermann ’07]

Ratio φ for special instances [Kesselman et al. ’01, Chin et al. ’04, Li et al. ’05,

Bienkowski et al. ’13, Böhm et al. ’16]

Is there a φ-competitive algorithm?

Yes!

Pavel Veselý Online Packet Scheduling 4 / 13

Previous work

We focus on deterministic algorithms

Greedy algorithm 2-competitive
I Schedules always the heaviest pending packet

Lower bound of the golden ratio
φ = 1

2 (
√

5 + 1) ≈ 1.618 [Hájek ’01, Andelman et al. ’03,

Chin & Fung ’03]

φ+ 1 = φ2

1
φ

φ
φ2

φ2

φ3
. . .

1.939-competitive algorithm [Chrobak et al.’04]

1.854-competitive algorithm [Li et al.’07]

1.828-competitive algorithm [Englert & Westermann ’07]

Ratio φ for special instances [Kesselman et al. ’01, Chin et al. ’04, Li et al. ’05,

Bienkowski et al. ’13, Böhm et al. ’16]

Is there a φ-competitive algorithm?

Yes!

Pavel Veselý Online Packet Scheduling 4 / 13

Previous work

We focus on deterministic algorithms

Greedy algorithm 2-competitive
I Schedules always the heaviest pending packet

Lower bound of the golden ratio
φ = 1

2 (
√

5 + 1) ≈ 1.618 [Hájek ’01, Andelman et al. ’03,

Chin & Fung ’03]

φ+ 1 = φ2

1
φ

φ
φ2

φ2

φ3
. . .

1.939-competitive algorithm [Chrobak et al.’04]

1.854-competitive algorithm [Li et al.’07]

1.828-competitive algorithm [Englert & Westermann ’07]

Ratio φ for special instances [Kesselman et al. ’01, Chin et al. ’04, Li et al. ’05,

Bienkowski et al. ’13, Böhm et al. ’16]

Is there a φ-competitive algorithm?

Yes!

Pavel Veselý Online Packet Scheduling 4 / 13

Previous work

We focus on deterministic algorithms

Greedy algorithm 2-competitive
I Schedules always the heaviest pending packet

Lower bound of the golden ratio
φ = 1

2 (
√

5 + 1) ≈ 1.618 [Hájek ’01, Andelman et al. ’03,

Chin & Fung ’03]

φ+ 1 = φ2

1
φ

φ
φ2

φ2

φ3
. . .

1.939-competitive algorithm [Chrobak et al.’04]

1.854-competitive algorithm [Li et al.’07]

1.828-competitive algorithm [Englert & Westermann ’07]

Ratio φ for special instances [Kesselman et al. ’01, Chin et al. ’04, Li et al. ’05,

Bienkowski et al. ’13, Böhm et al. ’16]

Is there a φ-competitive algorithm?

Yes!

Pavel Veselý Online Packet Scheduling 4 / 13

New result

Theorem

There is a φ-competitive deterministic algorithm.

Key technique: Plan

Max-weight feasible subset of pending packets in step t
I feasible = can be scheduled in slots t, t + 1, . . .

Optimal future profit unless new packets arrive

Scheduled plans (a.k.a. provisional schedules) used already by
[Li et al. ’05, Li et al. ’07, Englert & Westermann ’07]

Pavel Veselý Online Packet Scheduling 5 / 13

New result

Theorem

There is a φ-competitive deterministic algorithm.

Key technique: Plan

Max-weight feasible subset of pending packets in step t
I feasible = can be scheduled in slots t, t + 1, . . .

Optimal future profit unless new packets arrive

Scheduled plans (a.k.a. provisional schedules) used already by
[Li et al. ’05, Li et al. ’07, Englert & Westermann ’07]

Pavel Veselý Online Packet Scheduling 5 / 13

New result

Theorem

There is a φ-competitive deterministic algorithm.

Key technique: Plan

Max-weight feasible subset of pending packets in step t
I feasible = can be scheduled in slots t, t + 1, . . .

Optimal future profit unless new packets arrive

Scheduled plans (a.k.a. provisional schedules) used already by
[Li et al. ’05, Li et al. ’07, Englert & Westermann ’07]

Pavel Veselý Online Packet Scheduling 5 / 13

New result

Theorem

There is a φ-competitive deterministic algorithm.

Key technique: Plan

Max-weight feasible subset of pending packets in step t
I feasible = can be scheduled in slots t, t + 1, . . .

Optimal future profit unless new packets arrive

Scheduled plans (a.k.a. provisional schedules) used already by
[Li et al. ’05, Li et al. ’07, Englert & Westermann ’07]

Pavel Veselý Online Packet Scheduling 5 / 13

Algorithm LessGreedy(φ)

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

Algorithm LessGreedy(φ)

Schedule packet p ∈ P maximizing φ · wp + w(Qp)
I Qp is the plan after p is scheduled and time is incremented (p 6∈ Qp)

P
t

p

t+ 1

Qp

I wp is the immediate gain
I w(Qp) is the optimal future profit unless new packets arrive

Very elegant algorithm . . .
. . . but not φ-competitive

Pavel Veselý Online Packet Scheduling 6 / 13

Algorithm LessGreedy(φ)

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

Algorithm LessGreedy(φ)

Schedule packet p ∈ P maximizing φ · wp + w(Qp)

I Qp is the plan after p is scheduled and time is incremented (p 6∈ Qp)

P
t

p

t+ 1

Qp

I wp is the immediate gain
I w(Qp) is the optimal future profit unless new packets arrive

Very elegant algorithm . . .
. . . but not φ-competitive

Pavel Veselý Online Packet Scheduling 6 / 13

Algorithm LessGreedy(φ)

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

Algorithm LessGreedy(φ)

Schedule packet p ∈ P maximizing φ · wp + w(Qp)
I Qp is the plan after p is scheduled and time is incremented (p 6∈ Qp)

P
t

p

t+ 1

Qp

I wp is the immediate gain
I w(Qp) is the optimal future profit unless new packets arrive

Very elegant algorithm . . .
. . . but not φ-competitive

Pavel Veselý Online Packet Scheduling 6 / 13

Algorithm LessGreedy(φ)

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

Algorithm LessGreedy(φ)

Schedule packet p ∈ P maximizing φ · wp + w(Qp)
I Qp is the plan after p is scheduled and time is incremented (p 6∈ Qp)

P
t

p

t+ 1

Qp

I wp is the immediate gain
I w(Qp) is the optimal future profit unless new packets arrive

Very elegant algorithm . . .
. . . but not φ-competitive

Pavel Veselý Online Packet Scheduling 6 / 13

Algorithm LessGreedy(φ)

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

Algorithm LessGreedy(φ)

Schedule packet p ∈ P maximizing φ · wp + w(Qp)
I Qp is the plan after p is scheduled and time is incremented (p 6∈ Qp)

P
t

p

t+ 1

Qp

I wp is the immediate gain
I w(Qp) is the optimal future profit unless new packets arrive

Very elegant algorithm . . .

. . . but not φ-competitive

Pavel Veselý Online Packet Scheduling 6 / 13

Algorithm LessGreedy(φ)

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

Algorithm LessGreedy(φ)

Schedule packet p ∈ P maximizing φ · wp + w(Qp)
I Qp is the plan after p is scheduled and time is incremented (p 6∈ Qp)

P
t

p

t+ 1

Qp

I wp is the immediate gain
I w(Qp) is the optimal future profit unless new packets arrive

Very elegant algorithm . . .
. . . but not φ-competitive

Pavel Veselý Online Packet Scheduling 6 / 13

Plan and its Structure

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

Definition
Slot τ is tight iff

of slots till τ = # of packets j ∈ P : dj ≤ τ

Definition

Segment = interval between tight slots
P

Pavel Veselý Online Packet Scheduling 7 / 13

Plan and its Structure

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

1 2 3 4 5

0.1

0.6

0.5
1.6
1

0.4

Definition
Slot τ is tight iff

of slots till τ = # of packets j ∈ P : dj ≤ τ

Definition

Segment = interval between tight slots
P

Pavel Veselý Online Packet Scheduling 7 / 13

Plan and its Structure

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

1 2 3 4 5

0.1

0.6

0.5
1.6
1

0.4

Plan:

6∈ plan

10.5 1.6 0.6 0.1

Definition
Slot τ is tight iff

of slots till τ = # of packets j ∈ P : dj ≤ τ

Definition

Segment = interval between tight slots
P

Pavel Veselý Online Packet Scheduling 7 / 13

Plan and its Structure

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

1 2 3 4 5

0.1

0.6

0.5
1.6
1

0.4

Plan:

6∈ plan

Plan: 1 0.5 1.6 0.6 0.1

Definition
Slot τ is tight iff

of slots till τ = # of packets j ∈ P : dj ≤ τ

Definition

Segment = interval between tight slots
P

Pavel Veselý Online Packet Scheduling 7 / 13

Plan and its Structure

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

1 2 3 4 5

0.1

0.6

0.5
1.6
1

0.4

Plan:

6∈ plan

Plan: 10.51.6 0.6 0.1

Definition
Slot τ is tight iff

of slots till τ = # of packets j ∈ P : dj ≤ τ

Definition

Segment = interval between tight slots
P

Pavel Veselý Online Packet Scheduling 7 / 13

Plan and its Structure

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

1 2 3 4 5

0.1

0.6

0.5
1.6
1

0.4

Plan:

6∈ plan

Plan:

tight

10.51.6 0.6 0.1

Definition
Slot τ is tight iff

of slots till τ = # of packets j ∈ P : dj ≤ τ

Definition

Segment = interval between tight slots
P

Pavel Veselý Online Packet Scheduling 7 / 13

Plan and its Structure

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

1 2 3 4 5

0.1

0.6

0.5
1.6
1

0.4

Plan:

6∈ plan

Plan:
Segments:

10.51.6 0.6 0.1

Definition
Slot τ is tight iff

of slots till τ = # of packets j ∈ P : dj ≤ τ

Definition

Segment = interval between tight slots

P

Pavel Veselý Online Packet Scheduling 7 / 13

Plan and its Structure

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

1 2 3 4 5

0.1

0.6

0.5
1.6
1

0.4

Plan:

6∈ plan

Plan:
Segments:

10.51.6 0.6 0.1

Definition
Slot τ is tight iff

of slots till τ = # of packets j ∈ P : dj ≤ τ

Definition

Segment = interval between tight slots
P

Pavel Veselý Online Packet Scheduling 7 / 13

Plan Updates After Packet p is Scheduled

p in the 1st segment

dp

p

dp

P

Qp

Qp = P \{p}

p in a later segment

` = lightest in the 1st segment

% = heaviest not in P which can replace p

Qp = P \ {`, p} ∪ {%}

I replacement packet for p

Pavel Veselý Online Packet Scheduling 8 / 13

Plan Updates After Packet p is Scheduled

p in the 1st segment

dp

p

dp

P

Qp

Qp = P \{p}

p in a later segment

dp

pP

` = lightest in the 1st segment

% = heaviest not in P which can replace p

Qp = P \ {`, p} ∪ {%}

I replacement packet for p

Pavel Veselý Online Packet Scheduling 8 / 13

Plan Updates After Packet p is Scheduled

p in the 1st segment

dp

p

dp

P

Qp

Qp = P \{p}

p in a later segment

dp

p

dp

`P

Qp

` = lightest in the 1st segment

% = heaviest not in P which can replace p

Qp = P \ {`, p} ∪ {%}

I replacement packet for p

Pavel Veselý Online Packet Scheduling 8 / 13

Plan Updates After Packet p is Scheduled

p in the 1st segment

dp

p

dp

P

Qp

Qp = P \{p}

p in a later segment

dp

p

dp

d%

d%

%

`P

Qp

` = lightest in the 1st segment

% = heaviest not in P which can replace p

Qp = P \ {`, p} ∪ {%}

I replacement packet for p

Pavel Veselý Online Packet Scheduling 8 / 13

Problem of LessGreedy: Weight Decreases in the Plan

minwt(τ) = min-weight in P that can be on a slot up to τ

= min-weight in P till the next tight slot after τ

t τ

minwt(τ)

minwt(τ) after plan updates

for any fixed τ , minwt(τ) does not decrease:
I after arrival of a new packet
I after scheduling a packet from the 1st segment

minwt(τ) decreases for some τ after sch. a packet from later segment

dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

Pavel Veselý Online Packet Scheduling 9 / 13

Problem of LessGreedy: Weight Decreases in the Plan

minwt(τ) = min-weight in P that can be on a slot up to τ

= min-weight in P till the next tight slot after τ

t τ

minwt(τ)

minwt(τ) after plan updates

for any fixed τ , minwt(τ) does not decrease:
I after arrival of a new packet
I after scheduling a packet from the 1st segment

minwt(τ) decreases for some τ after sch. a packet from later segment

dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

Pavel Veselý Online Packet Scheduling 9 / 13

Problem of LessGreedy: Weight Decreases in the Plan

minwt(τ) = min-weight in P that can be on a slot up to τ

= min-weight in P till the next tight slot after τ

τ

t τ

minwt(τ)

minwt(τ) after plan updates

for any fixed τ , minwt(τ) does not decrease:
I after arrival of a new packet
I after scheduling a packet from the 1st segment

minwt(τ) decreases for some τ after sch. a packet from later segment

dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

Pavel Veselý Online Packet Scheduling 9 / 13

Problem of LessGreedy: Weight Decreases in the Plan

minwt(τ) = min-weight in P that can be on a slot up to τ

= min-weight in P till the next tight slot after τ

τ

`

d`

t τ

minwt(τ)

minwt(τ) after plan updates

for any fixed τ , minwt(τ) does not decrease:
I after arrival of a new packet
I after scheduling a packet from the 1st segment

minwt(τ) decreases for some τ after sch. a packet from later segment

dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

Pavel Veselý Online Packet Scheduling 9 / 13

Problem of LessGreedy: Weight Decreases in the Plan

minwt(τ) = min-weight in P that can be on a slot up to τ

= min-weight in P till the next tight slot after τ

τ

`

d`

t τ

minwt(τ)

minwt(τ) after plan updates

for any fixed τ , minwt(τ) does not decrease:
I after arrival of a new packet
I after scheduling a packet from the 1st segment

minwt(τ) decreases for some τ after sch. a packet from later segment

dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

Pavel Veselý Online Packet Scheduling 9 / 13

Problem of LessGreedy: Weight Decreases in the Plan

minwt(τ) = min-weight in P that can be on a slot up to τ

= min-weight in P till the next tight slot after τ

t τ

minwt(τ)

minwt(τ) after plan updates

for any fixed τ , minwt(τ) does not decrease:
I after arrival of a new packet
I after scheduling a packet from the 1st segment

minwt(τ) decreases for some τ after sch. a packet from later segment

dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

Pavel Veselý Online Packet Scheduling 9 / 13

Problem of LessGreedy: Weight Decreases in the Plan

minwt(τ) = min-weight in P that can be on a slot up to τ

= min-weight in P till the next tight slot after τ

t τ

minwt(τ)

minwt(τ) after plan updates

for any fixed τ , minwt(τ) does not decrease:
I after arrival of a new packet
I after scheduling a packet from the 1st segment

minwt(τ) decreases for some τ after sch. a packet from later segment

dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

Pavel Veselý Online Packet Scheduling 9 / 13

Problem of LessGreedy: Weight Decreases in the Plan

minwt(τ) = min-weight in P that can be on a slot up to τ

= min-weight in P till the next tight slot after τ

t τ

minwt(τ)

minwt(τ) after plan updates

for any fixed τ , minwt(τ) does not decrease:
I after arrival of a new packet
I after scheduling a packet from the 1st segment

minwt(τ) decreases for some τ after sch. a packet from later segment

dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

Pavel Veselý Online Packet Scheduling 9 / 13

Problem of LessGreedy: Weight Decreases in the Plan

minwt(τ) = min-weight in P that can be on a slot up to τ

= min-weight in P till the next tight slot after τ

t τ

minwt(τ)

minwt(τ) after plan updates

for any fixed τ , minwt(τ) does not decrease:
I after arrival of a new packet
I after scheduling a packet from the 1st segment

minwt(τ) decreases for some τ after sch. a packet from later segment

dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

Pavel Veselý Online Packet Scheduling 9 / 13

Solution: Maintaining Slot-Monotonicity of minwt

Idea: modify LessGreedy(φ) so that minwt(τ) never decreases

dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

⇒ increase the weight of % to minwt(d%)

Not enough if segments merge:

t τ

minwt(τ)

t+ 1
τ

dp d%

dp d%

⇒ avoid merging segments

Pavel Veselý Online Packet Scheduling 10 / 13

Solution: Maintaining Slot-Monotonicity of minwt

Idea: modify LessGreedy(φ) so that minwt(τ) never decreases
dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

⇒ increase the weight of % to minwt(d%)

Not enough if segments merge:

t τ

minwt(τ)

t+ 1
τ

dp d%

dp d%

⇒ avoid merging segments

Pavel Veselý Online Packet Scheduling 10 / 13

Solution: Maintaining Slot-Monotonicity of minwt

Idea: modify LessGreedy(φ) so that minwt(τ) never decreases
dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

⇒ increase the weight of % to minwt(d%)

Not enough if segments merge:

t τ

minwt(τ)

t+ 1
τ

dp d%

dp d%

⇒ avoid merging segments

Pavel Veselý Online Packet Scheduling 10 / 13

Solution: Maintaining Slot-Monotonicity of minwt

Idea: modify LessGreedy(φ) so that minwt(τ) never decreases
dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

⇒ increase the weight of % to minwt(d%)

Not enough if segments merge:

t τ

minwt(τ)

t+ 1
τ

dp d%

dp d%

⇒ avoid merging segments

Pavel Veselý Online Packet Scheduling 10 / 13

Solution: Maintaining Slot-Monotonicity of minwt

Idea: modify LessGreedy(φ) so that minwt(τ) never decreases
dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

⇒ increase the weight of % to minwt(d%)

Not enough if segments merge:

t τ

minwt(τ)

t+ 1
τ

dp d%

dp d%

⇒ avoid merging segments

Pavel Veselý Online Packet Scheduling 10 / 13

Solution: Maintaining Slot-Monotonicity of minwt

Idea: modify LessGreedy(φ) so that minwt(τ) never decreases
dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

⇒ increase the weight of % to minwt(d%)

Not enough if segments merge:

t τ

minwt(τ)

t+ 1
τ

dp d%

dp d%

⇒ avoid merging segments

Pavel Veselý Online Packet Scheduling 10 / 13

Algorithm PlanM(φ) Maintaining Slot-Monotonicity

Schedule packet p ∈ P maximizing φ · wp + w(Qp)

If p is in a later segment of P:
I Increase the weight of % to minwt(d%)
I Avoid merging segments:

I if whi < minwt(τi−1), then increase weight of hi to minwt(τi−1)

Pavel Veselý Online Packet Scheduling 11 / 13

Algorithm PlanM(φ) Maintaining Slot-Monotonicity

Schedule packet p ∈ P maximizing φ · wp + w(Qp)

If p is in a later segment of P:
I Increase the weight of % to minwt(d%)

I Avoid merging segments:

I if whi < minwt(τi−1), then increase weight of hi to minwt(τi−1)

Pavel Veselý Online Packet Scheduling 11 / 13

Algorithm PlanM(φ) Maintaining Slot-Monotonicity

Schedule packet p ∈ P maximizing φ · wp + w(Qp)

If p is in a later segment of P:
I Increase the weight of % to minwt(d%)
I Avoid merging segments:

.p

%.

d%dp

P

Qp

I if whi < minwt(τi−1), then increase weight of hi to minwt(τi−1)

Pavel Veselý Online Packet Scheduling 11 / 13

Algorithm PlanM(φ) Maintaining Slot-Monotonicity

Schedule packet p ∈ P maximizing φ · wp + w(Qp)

If p is in a later segment of P:
I Increase the weight of % to minwt(d%)
I Avoid merging segments:

.p

%.

h1

τ0 γd%dp

P

Qp

I h1 = heaviest packet in (τ0, γ],

I decrease deadline of h1 to τ0

I if whi < minwt(τi−1), then increase weight of hi to minwt(τi−1)

Pavel Veselý Online Packet Scheduling 11 / 13

Algorithm PlanM(φ) Maintaining Slot-Monotonicity

Schedule packet p ∈ P maximizing φ · wp + w(Qp)

If p is in a later segment of P:
I Increase the weight of % to minwt(d%)
I Avoid merging segments:

.p

%.h1

h1

τ0 τ1 γd%dp

P

Qp

I h1 = heaviest packet in (τ0, γ],
I decrease deadline of h1 to τ0

I if whi < minwt(τi−1), then increase weight of hi to minwt(τi−1)

Pavel Veselý Online Packet Scheduling 11 / 13

Algorithm PlanM(φ) Maintaining Slot-Monotonicity

Schedule packet p ∈ P maximizing φ · wp + w(Qp)

If p is in a later segment of P:
I Increase the weight of % to minwt(d%)
I Avoid merging segments:

.p

%.h1

h1

h2

h2

τ0 τ1 τ2 γd%dp

P

Qp h1

h1

I h2 = heaviest packet in (τ1, γ],
I decrease deadline of h2 to τ1

I if whi < minwt(τi−1), then increase weight of hi to minwt(τi−1)

Pavel Veselý Online Packet Scheduling 11 / 13

Algorithm PlanM(φ) Maintaining Slot-Monotonicity

Schedule packet p ∈ P maximizing φ · wp + w(Qp)

If p is in a later segment of P:
I Increase the weight of % to minwt(d%)
I Avoid merging segments:

.p

%.h1

h1

h2

h2

h3

h3

τ0 τ1 τ2 τ3 γd%dp

P

Qp h1

h1

h2

h2

I h3 = heaviest packet in (τ2, γ],
I decrease deadline of h3 to τ2

I if whi < minwt(τi−1), then increase weight of hi to minwt(τi−1)

Pavel Veselý Online Packet Scheduling 11 / 13

Algorithm PlanM(φ) Maintaining Slot-Monotonicity

Schedule packet p ∈ P maximizing φ · wp + w(Qp)

If p is in a later segment of P:
I Increase the weight of % to minwt(d%)
I Avoid merging segments:

.p

%.

hk

hk

hk−1
. . .

. . .h1

h1

h2

h2

h3

h3

h4

τ0 τ1 τ2 τ3 τk−1 γ = τkd%dp

P

Qp h1

h1

h2

h2

h3

h3

I for i = 1, 2, . . . : hi = heaviest packet in (τi−1, γ],
I decrease deadline of hi to τi−1

I stop when τi = γ

I if whi < minwt(τi−1), then increase weight of hi to minwt(τi−1)

Pavel Veselý Online Packet Scheduling 11 / 13

Algorithm PlanM(φ) Maintaining Slot-Monotonicity

Schedule packet p ∈ P maximizing φ · wp + w(Qp)

If p is in a later segment of P:
I Increase the weight of % to minwt(d%)
I Avoid merging segments:

.p

%.

hk

hk

hk−1
. . .

. . .h1

h1

h2

h2

h3

h3

h4

τ0 τ1 τ2 τ3 τk−1 γ = τkd%dp

P

Qp h1

h1

h2

h2

h3

h3

I for i = 1, 2, . . . : hi = heaviest packet in (τi−1, γ],
I decrease deadline of hi to τi−1

I stop when τi = γ

I if whi < minwt(τi−1), then increase weight of hi to minwt(τi−1)

Pavel Veselý Online Packet Scheduling 11 / 13

Key Ideas of the Analysis

Goal: OPT(I) ≤ φ · ALG(I) for any instance I

Amortization Techniques

1 Increasing weights
I Algorithm’s future profit may get higher

F Decrease algorithm’s current profit by weight increase

2 Modifications of the adversary (optimal) schedule ADV

3 Potential function

Potential function

Advantage of the algorithm over the adversary:

1 P \ ADV = packets in the plan that the adversary will not schedule
2 F = subset of pending packets not in plan P

I Candidates for replacement packets

potential =
1

φ
w

(
P \ ADV ∪ F

)
Invariant

set P \ ADV ∪ F is feasible

Pavel Veselý Online Packet Scheduling 12 / 13

Key Ideas of the Analysis

Goal: OPT(I) ≤ φ · ALG(I) for any instance I

Amortization Techniques

1 Increasing weights
I Algorithm’s future profit may get higher

F Decrease algorithm’s current profit by weight increase

2 Modifications of the adversary (optimal) schedule ADV

3 Potential function

Potential function

Advantage of the algorithm over the adversary:

1 P \ ADV = packets in the plan that the adversary will not schedule
2 F = subset of pending packets not in plan P

I Candidates for replacement packets

potential =
1

φ
w

(
P \ ADV ∪ F

)
Invariant

set P \ ADV ∪ F is feasible

Pavel Veselý Online Packet Scheduling 12 / 13

Key Ideas of the Analysis

Goal: OPT(I) ≤ φ · ALG(I) for any instance I

Amortization Techniques

1 Increasing weights
I Algorithm’s future profit may get higher

F Decrease algorithm’s current profit by weight increase

2 Modifications of the adversary (optimal) schedule ADV

3 Potential function

Potential function

Advantage of the algorithm over the adversary:

1 P \ ADV = packets in the plan that the adversary will not schedule
2 F = subset of pending packets not in plan P

I Candidates for replacement packets

potential =
1

φ
w

(
P \ ADV ∪ F

)
Invariant

set P \ ADV ∪ F is feasible

Pavel Veselý Online Packet Scheduling 12 / 13

Key Ideas of the Analysis

Goal: OPT(I) ≤ φ · ALG(I) for any instance I

Amortization Techniques

1 Increasing weights
I Algorithm’s future profit may get higher

F Decrease algorithm’s current profit by weight increase

2 Modifications of the adversary (optimal) schedule ADV

3 Potential function

Potential function

Advantage of the algorithm over the adversary:

1 P \ ADV = packets in the plan that the adversary will not schedule
2 F = subset of pending packets not in plan P

I Candidates for replacement packets

potential =
1

φ
w

(
P \ ADV ∪ F

)
Invariant

set P \ ADV ∪ F is feasible

Pavel Veselý Online Packet Scheduling 12 / 13

Key Ideas of the Analysis

Goal: OPT(I) ≤ φ · ALG(I) for any instance I

Amortization Techniques

1 Increasing weights
I Algorithm’s future profit may get higher

F Decrease algorithm’s current profit by weight increase

2 Modifications of the adversary (optimal) schedule ADV

3 Potential function

Potential function

Advantage of the algorithm over the adversary:

1 P \ ADV = packets in the plan that the adversary will not schedule
2 F = subset of pending packets not in plan P

I Candidates for replacement packets

potential =
1

φ
w

(
P \ ADV ∪ F

)
Invariant

set P \ ADV ∪ F is feasible

Pavel Veselý Online Packet Scheduling 12 / 13

Key Ideas of the Analysis

Amortization Techniques

1 Increasing weights

2 Modifications of the adversary (optimal) schedule ADV

3 Potential function

Potential function

Advantage of the algorithm over the adversary:

1 P \ ADV = packets in the plan that the adversary will not schedule

2 F = subset of pending packets not in plan P
I Candidates for replacement packets

potential =
1

φ
w

(
P \ ADV ∪ F

)
Invariant

set P \ ADV ∪ F is feasible

Pavel Veselý Online Packet Scheduling 12 / 13

Key Ideas of the Analysis

Amortization Techniques

1 Increasing weights

2 Modifications of the adversary (optimal) schedule ADV

3 Potential function

Potential function

Advantage of the algorithm over the adversary:

1 P \ ADV = packets in the plan that the adversary will not schedule
2 F = subset of pending packets not in plan P

I Candidates for replacement packets

potential =
1

φ
w

(
P \ ADV ∪ F

)
Invariant

set P \ ADV ∪ F is feasible

Pavel Veselý Online Packet Scheduling 12 / 13

Key Ideas of the Analysis

Amortization Techniques

1 Increasing weights

2 Modifications of the adversary (optimal) schedule ADV

3 Potential function

Potential function

Advantage of the algorithm over the adversary:

1 P \ ADV = packets in the plan that the adversary will not schedule
2 F = subset of pending packets not in plan P

I Candidates for replacement packets

potential =
1

φ
w

(
P \ ADV ∪ F

)

Invariant

set P \ ADV ∪ F is feasible

Pavel Veselý Online Packet Scheduling 12 / 13

Key Ideas of the Analysis

Amortization Techniques

1 Increasing weights

2 Modifications of the adversary (optimal) schedule ADV

3 Potential function

Potential function

Advantage of the algorithm over the adversary:

1 P \ ADV = packets in the plan that the adversary will not schedule
2 F = subset of pending packets not in plan P

I Candidates for replacement packets

potential =
1

φ
w

(
P \ ADV ∪ F

)
Invariant

set P \ ADV ∪ F is feasible

Pavel Veselý Online Packet Scheduling 12 / 13

Further Research Directions

m ≥ 1 packets sent in each step

Our algorithm is φ ≈ 1.618-competitive for any m ≥ 1

Best upper bound tends to e
e−1
≈ 1.58 [Chin et al. ’04]

Randomized algorithms

Gap between 1.25 [Chin & Fung ’04] and e
e−1
≈ 1.58 [Chin et al. ’04]

Memoryless algorithms

Is there a lower bound > φ for memoryless algorithms?

What is the ratio of LessGreedy(α)? (Schedule p ∈ P max. α · wp + w(Qp))

I Ratio ≈ 1.893 for a similar algorithm [Englert & Westermann ’07]

Thank you!

Pavel Veselý Online Packet Scheduling 13 / 13

Further Research Directions

m ≥ 1 packets sent in each step

Our algorithm is φ ≈ 1.618-competitive for any m ≥ 1

Best upper bound tends to e
e−1
≈ 1.58 [Chin et al. ’04]

Randomized algorithms

Gap between 1.25 [Chin & Fung ’04] and e
e−1
≈ 1.58 [Chin et al. ’04]

Memoryless algorithms

Is there a lower bound > φ for memoryless algorithms?

What is the ratio of LessGreedy(α)? (Schedule p ∈ P max. α · wp + w(Qp))

I Ratio ≈ 1.893 for a similar algorithm [Englert & Westermann ’07]

Thank you!

Pavel Veselý Online Packet Scheduling 13 / 13

Further Research Directions

m ≥ 1 packets sent in each step

Our algorithm is φ ≈ 1.618-competitive for any m ≥ 1

Best upper bound tends to e
e−1
≈ 1.58 [Chin et al. ’04]

Randomized algorithms

Gap between 1.25 [Chin & Fung ’04] and e
e−1
≈ 1.58 [Chin et al. ’04]

Memoryless algorithms

Is there a lower bound > φ for memoryless algorithms?

What is the ratio of LessGreedy(α)? (Schedule p ∈ P max. α · wp + w(Qp))

I Ratio ≈ 1.893 for a similar algorithm [Englert & Westermann ’07]

Thank you!

Pavel Veselý Online Packet Scheduling 13 / 13

Further Research Directions

m ≥ 1 packets sent in each step

Our algorithm is φ ≈ 1.618-competitive for any m ≥ 1

Best upper bound tends to e
e−1
≈ 1.58 [Chin et al. ’04]

Randomized algorithms

Gap between 1.25 [Chin & Fung ’04] and e
e−1
≈ 1.58 [Chin et al. ’04]

Memoryless algorithms

Is there a lower bound > φ for memoryless algorithms?

What is the ratio of LessGreedy(α)? (Schedule p ∈ P max. α · wp + w(Qp))

I Ratio ≈ 1.893 for a similar algorithm [Englert & Westermann ’07]

Thank you!
Pavel Veselý Online Packet Scheduling 13 / 13

