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ONLINE PACKET SCHEDULING WITH DEADLINES

I Buffer 0
Network switch: nput pors Epm port
@ Packets arrive over time 1723
@ Each has a deadline and a weight wp = 2 — (A)IP%
e Time discrete, consisting of slots or steps * *

rp =1 d, =3
@ One packet transmitted in each step

@ Goal: maximize total weight of scheduled packets

Scheduling problem 1|online, rj, p; = 1| > wj(1 — U;)
A.k.a. BUFFER MANAGEMENT IN QOS SWITCHES
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Competitive ratio of online algorithms

@ Algorithm is R-competitive if for any instance /

OPT(/) < R - ALG(/)

@ Game: the algorithm vs. an adversary %
» The adversary decides on further input to maximize OPT/ALG
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New result

Theorem

There is a p-competitive deterministic algorithm.

Key technique: Plan
@ Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢t,t + 1, ...

@ Optimal future profit unless new packets arrive

@ Scheduled plans (a.k.a. provisional schedules) used already by
[Li et al. '05, Li et al. '07, Englert & Westermann '07]
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t
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w, is the immediate gain
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Plan Updates After Packet p is Scheduled

p in the 1st segment
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Plan Updates After Packet p is Scheduled

p in the 1st segment
dP
Pl o [ ]]
d | Q= P\{p}
o[l = [ 1
p in a later segment
d, d
Pl e | o [ [ "] ]
i C{p dy QP :’P\{f,p}U{Q}
o[l [ [~ o ||
@ ¢ = lightest in the 1st segment
@ o = heaviest not in P which can replace p

replacement packet for p
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Solution: Maintaining Slot-Monotonicity of minwt

o Idea: modify LESSGREEDY(¢) so that minwt(7) never decreases

» dg The problem:
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@ = increase the weight of ¢ to minwt(d,)
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Solution: Maintaining Slot-Monotonicity of minwt

o Idea: modify LESSGREEDY(¢) so that minwt(7) never decreases

b ‘ The problem:

P c T T 7T ] 0 &P = w, < minwt(d,)
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@ = increase the weight of ¢ to minwt(d,)
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@ Schedule packet p € P maximizing ¢ - wp, + w(Qp)
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|
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Algorithm PLANM(¢) Maintaining Slot-Monotonicity

@ Schedule packet p € P maximizing ¢ - wp, + w(Qp)
o If pisin a later segment of P:

> Increase the weight of ¢ to minwt(d,)
> Avoid merging segments:

6{,, To T Ty T3 Th—1 C{QVZTk

o i 7 7 9 s o S

ol [ [ wf[ [wf]l w[w[{ «f o[
» for i=1,2,...: h; = heaviest packet in (7;_1,7],

» decrease deadline of h; to 7;,_1
» stop when 7; =«
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@ Schedule packet p € P maximizing ¢ - wp, + w(Qp)
o If pisin a later segment of P:

> Increase the weight of ¢ to minwt(d,)
> Avoid merging segments:

6{,, To T Ty T3 Th—1 C{QVZTk

o i 7 7 9 s o S

ol [ [ wf[ [wf]l w[w[{ «f o[
» for i=1,2,...: h; = heaviest packet in (7;_1,7],

» decrease deadline of h; to 7;,_1
» stop when 7; =«

> if wp, < minwt(7;_1), then increase weight of h; to minwt(7;_1)
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Key Ideas of the Analysis

Amortization Techniques
© Increasing weights

@ Modifications of the adversary (optimal) schedule ADV
© Potential function

Potential function
Advantage of the algorithm over the adversary:

© P\ ADV = packets in the plan that the adversary will not schedule
@ F = subset of pending packets not in plan P
Candidates for replacement packets

1
potential = ¢w<73 \ ADV U .7-')

Invariant
@ set P\ ADV U F is feasible

Pavel Vesely Online Packet Scheduling 12 /13



Further Research Directions

m > 1 packets sent in each step

@ Our algorithm is ¢ ~ 1.618-competitive for any m >1

@ Best upper bound tends to —*; ~ 1.58 [Chin et al. '04]
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@ Our algorithm is ¢ ~ 1.618-competitive for any m >1

@ Best upper bound tends to —*; ~ 1.58 [Chin et al. '04]

Randomized algorithms O@

@ Gap between 1.25 [Chin & Fung '04] and %7 ~ 1.58 [Chin et al. '04]

Memoryless algorithms
@ Is there a lower bound > ¢ for memoryless algorithms?

@ What is the ratio of LESSGREEDY(«)? (Schedule p € P max. a - wp, + w(Q,))

Ratio ~ 1.893 for a similar algorithm [Englert & Westermann '07]

Thank you!
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