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Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Goal: maximize total weight of scheduled packets

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches
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Pavel Veselý Online Packet Scheduling 2 / 13



Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

ALG
OPTwp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

1
1.7

1 2 3 4

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches

Pavel Veselý Online Packet Scheduling 2 / 13



Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

ALG
OPTwp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

1
1.7

OPT
ALG = 1.7+1

1.7 ≈ 1.59

1 2 3 4

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in QoS Switches
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Competitive ratio of online algorithms

Algorithm is R-competitive if for any instance I

OPT(I ) ≤ R · ALG(I )

Game: the algorithm vs. an adversary
I The adversary decides on further input to maximize OPT/ALG
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Pavel Veselý Online Packet Scheduling 3 / 13



Previous work

We focus on deterministic algorithms

Greedy algorithm 2-competitive
I Schedules always the heaviest pending packet

Lower bound of the golden ratio
φ = 1

2 (
√

5 + 1) ≈ 1.618 [Hájek ’01, Andelman et al. ’03,

Chin & Fung ’03]

φ+ 1 = φ2

1.939-competitive algorithm [Chrobak et al.’04]

1.854-competitive algorithm [Li et al.’07]

1.828-competitive algorithm [Englert & Westermann ’07]

Ratio φ for special instances [Kesselman et al. ’01, Chin et al. ’04, Li et al. ’05,

Bienkowski et al. ’13, Böhm et al. ’16]

Is there a φ-competitive algorithm?

Yes!
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New result

Theorem

There is a φ-competitive deterministic algorithm.

Key technique: Plan

Max-weight feasible subset of pending packets in step t
I feasible = can be scheduled in slots t, t + 1, . . .

Optimal future profit unless new packets arrive

Scheduled plans (a.k.a. provisional schedules) used already by
[Li et al. ’05, Li et al. ’07, Englert & Westermann ’07]
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Algorithm LessGreedy(φ)

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

Algorithm LessGreedy(φ)

Schedule packet p ∈ P maximizing φ · wp + w(Qp)
I Qp is the plan after p is scheduled and time is incremented (p 6∈ Qp)

P
t

p

t+ 1

Qp

I wp is the immediate gain
I w(Qp) is the optimal future profit unless new packets arrive

Very elegant algorithm . . .
. . . but not φ-competitive
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Pavel Veselý Online Packet Scheduling 6 / 13



Algorithm LessGreedy(φ)

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

Algorithm LessGreedy(φ)

Schedule packet p ∈ P maximizing φ · wp + w(Qp)
I Qp is the plan after p is scheduled and time is incremented (p 6∈ Qp)

P
t

p

t+ 1

Qp

I wp is the immediate gain
I w(Qp) is the optimal future profit unless new packets arrive

Very elegant algorithm . . .
. . . but not φ-competitive
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Plan and its Structure

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

Definition
Slot τ is tight iff

# of slots till τ = # of packets j ∈ P : dj ≤ τ

Definition

Segment = interval between tight slots
P
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Plan Updates After Packet p is Scheduled

p in the 1st segment

dp

p

dp

P

Qp

Qp = P \{p}

p in a later segment

` = lightest in the 1st segment

% = heaviest not in P which can replace p

Qp = P \ {`, p} ∪ {%}

I replacement packet for p
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Problem of LessGreedy: Weight Decreases in the Plan

minwt(τ) = min-weight in P that can be on a slot up to τ

= min-weight in P till the next tight slot after τ

t τ

minwt(τ)

minwt(τ) after plan updates

for any fixed τ , minwt(τ) does not decrease:
I after arrival of a new packet
I after scheduling a packet from the 1st segment

minwt(τ) decreases for some τ after sch. a packet from later segment

dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)
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Pavel Veselý Online Packet Scheduling 9 / 13



Problem of LessGreedy: Weight Decreases in the Plan

minwt(τ) = min-weight in P that can be on a slot up to τ

= min-weight in P till the next tight slot after τ

t τ

minwt(τ)

minwt(τ) after plan updates

for any fixed τ , minwt(τ) does not decrease:
I after arrival of a new packet
I after scheduling a packet from the 1st segment

minwt(τ) decreases for some τ after sch. a packet from later segment

dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)
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Solution: Maintaining Slot-Monotonicity of minwt

Idea: modify LessGreedy(φ) so that minwt(τ) never decreases

dp
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%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

⇒ increase the weight of % to minwt(d%)

Not enough if segments merge:

t τ

minwt(τ)

t+ 1
τ

dp d%

dp d%

⇒ avoid merging segments
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Algorithm PlanM(φ) Maintaining Slot-Monotonicity

Schedule packet p ∈ P maximizing φ · wp + w(Qp)

If p is in a later segment of P:
I Increase the weight of % to minwt(d%)
I Avoid merging segments:

I if whi < minwt(τi−1), then increase weight of hi to minwt(τi−1)
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Key Ideas of the Analysis

Goal: OPT(I ) ≤ φ · ALG(I ) for any instance I

Amortization Techniques

1 Increasing weights
I Algorithm’s future profit may get higher

F Decrease algorithm’s current profit by weight increase

2 Modifications of the adversary (optimal) schedule ADV

3 Potential function

Potential function

Advantage of the algorithm over the adversary:

1 P \ ADV = packets in the plan that the adversary will not schedule
2 F = subset of pending packets not in plan P

I Candidates for replacement packets

potential =
1

φ
w

(
P \ ADV ∪ F

)
Invariant

set P \ ADV ∪ F is feasible
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Further Research Directions

m ≥ 1 packets sent in each step

Our algorithm is φ ≈ 1.618-competitive for any m ≥ 1

Best upper bound tends to e
e−1
≈ 1.58 [Chin et al. ’04]

Randomized algorithms

Gap between 1.25 [Chin & Fung ’04] and e
e−1
≈ 1.58 [Chin et al. ’04]

Memoryless algorithms

Is there a lower bound > φ for memoryless algorithms?

What is the ratio of LessGreedy(α)? (Schedule p ∈ P max. α · wp + w(Qp))

I Ratio ≈ 1.893 for a similar algorithm [Englert & Westermann ’07]

Thank you!
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