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An Example: Cabinetmaker

@ Each week you make one cabinet
@ Customers order cabinets, each order has

» a deadline
> a reward

@ You have two orders on the table:

» u: deadline this week, reward 10000 CZK
» v: deadline next week, reward 16180 CZK

1) If you select u, then: 2) If you select v, then:
@ new order v/ arrives @ no order arrives for next week
» deadline next week, reward

@ u expires unserved
16180 CZK

@ only one of v and v/ served

These are worst-case scenarios
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Online optimization & algorithms

Online computation

Input arriving piece by piece

Making decisions without
knowing future

Decisions irrevocable

Cannot be optimal (usually)

X

Offline computation

@ Whole input available at the
beginning

@ All decisions made at once
@ Find an optimal solution

@ Time/memory efficient algorithms
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Online optimization & algorithms

Online computation Offline computation
@ Input arriving piece by piece @ Whole input available at the
@ Making decisions without beginning
knowing future @ All decisions made at once
@ Decisions irrevocable @ Find an optimal solution
@ Cannot be optimal (usually) @ Time/memory efficient algorithms

X >

@ Sequence of events (orders), arrive over time

@ Algorithm knows only events that arrived so far

@ Some events ask to make decisions (Monday mornings)
@ Decisions influence the objective function (rewards served orders)

Online model
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Competitive ratio of online algorithms
o Worst-case ratio between

» value of the optimum solution OPT and
» value of the algorithm's solution ALG

@ Algorithm is R-competitive if for any instance /
OPT(/) < R-ALG(/)

(assuming maximization)

@ Game: the algorithm vs. an adversary %
» The adversary decides on further input to maximize OPT/ALG
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I Buffer 0
Network switch: nput port itpm port
@ Packets arrive over time (orders) 11213
@ Each has a deadline and a weight (reward) Wy = 2 T — (A)Ip%
e Time discrete, consisting of slots or steps *

rp =1 d, =3
@ One packet transmitted in each step (weeks)

@ Goal: maximize total weight of scheduled packets

Scheduling problem 1|online, rj, pj = 1| " wj(1 — U;)
A.k.a. BUFFER MANAGEMENT IN QUALITY OF SERVICE SWITCHES
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New result

Theorem

There is a p-competitive deterministic algorithm.

Key technique: Plan
@ Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢t,t + 1, ...

@ Optimal future profit unless new packets arrive

@ Scheduled plans (a.k.a. provisional schedules) used already by
[Li et al. '05, Li et al. '07, Englert & Westermann '07]

Pavel Vesely Online Packet Scheduling 10 /26




Algorithm

Pavel Vesely Online Packet Scheduling 11/26



Algorithm PLAN(¢)

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots t,t +1,...

Pavel Vesely Online Packet Scheduling 12 /26



Algorithm PLAN(¢)

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢t,t+ 1, ...

Algorithm PLAN(¢)
o Schedule packet p € P maximizing ¢ - wp, + w(Qp)

Pavel Vesely Online Packet Scheduling 12 /26



Algorithm PLAN(¢)

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢t,t+ 1, ...

Algorithm PLAN(¢)

o Schedule packet p € P maximizing ¢ - wp, + w(Qp)

Q,, is the plan after p is scheduled and time is incremented (p & Q,)
t

P p |
0| |

Pavel Vesely Online Packet Scheduling 12 /26



Algorithm PLAN(¢)

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢t,t+ 1, ...

Algorithm PLAN(¢)

o Schedule packet p € P maximizing ¢ - wp, + w(Qp)

Q,, is the plan after p is scheduled and time is incremented (p & Q,)
t

P p |
0| |

w, is the gain in this step
w(Q)) is the optimal future profit unless new packets arrive

Pavel Vesely Online Packet Scheduling 12 /26



Algorithm PLAN(¢)

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢t,t+ 1, ...

Algorithm PLAN(¢)

o Schedule packet p € P maximizing ¢ - wp, + w(Qp)

Q,, is the plan after p is scheduled and time is incremented (p & Q,)
t

P p |
0| |

w, is the gain in this step
w(Q)) is the optimal future profit unless new packets arrive

@ Very elegant algorithm . ..

Pavel Vesely Online Packet Scheduling 12 /26



Algorithm PLAN(¢)

Plan P

o Max-weight feasible subset of pending packets in step t
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Algorithm PLAN(¢)

o Schedule packet p € P maximizing ¢ - wp, + w(Qp)

Q,, is the plan after p is scheduled and time is incremented (p & Q,)
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w, is the gain in this step
w(Q)) is the optimal future profit unless new packets arrive

@ Very elegant algorithm . ..
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p in the 1st segment (“greedy step”)

Pl » [ ]]
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p in a later segment (“leap step”)
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|
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Plan Updates After Packet p is Scheduled

p in the 1st segment (“greedy step”)

Pl » [ ]]

oIl ~ [ ]]

p in a later segment (“leap step”)

Pl e [ Je | [ |

l dp do

oI [ |

@ / = lightest in the 1st segment
@ 0 = heaviest not in P which can replace p
replacement packet for p
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Solution: Maintaining Slot-Monotonicity of minwt

o Idea: modify PLAN(¢) so that minwt(7) never decreases for any 7

b ‘ The problem:

P c T T 7T ] 0 &P = w, < minwt(d,)
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> ensure: wp, > minwt(7i_1)
* if wy, < minwt(7;_1), then set new weight of h; to minwt(7;_1)
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Algorithm PLANM(¢) Maintaining Slot-Monotonicity

@ Schedule packet p € P maximizing ¢ - w, + w(Qp)
» Q, is the plan after p is scheduled and time is incremented (p ¢ Q,)
@ If pis not in the 1st segment of P (leap step):
> Increase the weight of ¢ to minwt(d,)
In a nutshell

Avoid merging segments and minwt decreases in a right way

Done by decreasing deadlines and increasing weights of certain packets
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@ Potential function
© Modifications of the adversary (optimal) schedule ADV
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Adversary Schedule ADV
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@ Adversary’s gain increased by total weight decrease in ADV
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Fictitious “treasure packet

Not pending for the algorithm

Tied to a slot 7 in ADV, no release time or deadline, never changes in future
Deposit of profit to be collected by the adversary

Weight bounded by minwt(7)

Slot-monotonicity: minwt(7) never decrease

e 6 6 6 o

Invariant (A)

(real) packets in plan P

ADV consists of two types of packets:
yP P {all other packets are treasures @

v,
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Potential Function

Relative advantage of the algorithm over the adversary:

@ P\ ADV = packets in the plan that the adversary will not schedule
o Set F

» Pending packets forced out of the plan
» Can be used as replacement packets in a leap step

e “Backup plan” R=P\ ADVUR

Invariant

Backup plan R is feasible
R feasible = packets in R can be scheduled in future slots t,t +1,...

Potential
1
¢

V.= — w(R)
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Packet Types in the Analysis

ending for PlanM
b 8 ADV

not in plan P plan P

e

“backup plan” R (potential)

fictitious
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@ Schedule packet p € P maximizing ¢ - wp, + w(Q)p)
Q, is the plan after p is scheduled and time is incremented (p & Q,)
@ Maintain slot-monotonicity of minwt
Done by increasing weights and decreasing deadlines of certain packets

Analysis
@ Potential function

Advantage of the algorithm over the adversary in future steps
Invariant ensures that this advantage is feasible

@ Modifications of adversary schedule to maintain certain invariants

pending for PlanM

ADV
plan P
° @ ious
“backup plan” R (potential)
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Further Research Directions

m > 1 packets are sent in each step

@ Our algorithm is ¢ ~ 1.618-competitive for any m > 1
— <& — =%, ~ 1.58 [Chin et al. '04]
1—(55) €

@ Can our algorithm be modified to give a better ratio for m > 17

@ The best algorithm has ratio

Pavel Vesely Online Packet Scheduling 26 /26



Further Research Directions

m > 1 packets are sent in each step

@ Our algorithm is ¢ ~ 1.618-competitive for any m > 1
@ The best algorithm has ratio W — 55 ~ 1.58 [Chin et al. '04]
s

@ Can our algorithm be modified to give a better ratio for m > 17
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Memoryless algorithms
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Further Research Directions

m > 1 packets are sent in each step

@ Our algorithm is ¢ ~ 1.618-competitive for any m > 1
@ The best algorithm has ratio W — 55 ~ 1.58 [Chin et al. '04]
s

@ Can our algorithm be modified to give a better ratio for m > 17

Randomized algorithms 0@

@ Improve randomized algorithms using plans

@ Gap between 1.25 [Chin & Fung '04] and —%= & 1.58 [Chin et al. '04]

e—1

Memoryless algorithms

@ s there a lower bound > ¢ for memoryless algorithms?

@ What is the ratio of PLAN(«)? (Schedule p € P max. a - wp + w(Q,))

Thank you!
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