A ¢-Competitive Algorithm
for Scheduling Packets with Deadlines

Pavel Vesely
University of Warwick

Joint work with Marek Chrobak (UC Riverside), tukasz Jez (Wroctaw),
and Ji¥i Sgall (Charles University, Prague)

DIMAP Seminar, October 2
To appear in SODA '19

Outline

Introduction to competitive analysis
Model & result
Algorithm

Analysis techniques

Further research directions

Pavel Vesely Online Packet Scheduling 2/26

Introduction to competitive analysis

Pavel Vesely Online Packet Scheduling 3/26

An Example: Cabinetmaker

@ Each week you make one cabinet

Online Packet Scheduling Ve

An Example: Cabinetmaker

@ Each week you make one cabinet
@ Customers order cabinets, each order has

» a deadline
> a reward

Online Packet Scheduling Ve

An Example: Cabinetmaker

@ Each week you make one cabinet
@ Customers order cabinets, each order has

» a deadline
> a reward

@ You have two orders on the table:

» u: deadline this week, reward 10000 CZK
» v: deadline next week, reward 16180 CZK

Online Packet Scheduling Ve

An Example: Cabinetmaker

@ Each week you make one cabinet
@ Customers order cabinets, each order has

» a deadline
> a reward

@ You have two orders on the table:
» u: deadline this week, reward 10000 CZK
» v: deadline next week, reward 16180 CZK

1) If you select u, then:

4/26

Pavel Vesely Online Packet Scheduling

An Example: Cabinetmaker

@ Each week you make one cabinet
@ Customers order cabinets, each order has

» a deadline
> a reward

@ You have two orders on the table:

» u: deadline this week, reward 10000 CZK
» v: deadline next week, reward 16180 CZK

1) If you select u, then:

@ new order v/ arrives

» deadline next week, reward
16180 CZK

Pavel Vesely Online Packet Scheduling

4/26

An Example: Cabinetmaker

@ Each week you make one cabinet
@ Customers order cabinets, each order has

» a deadline
> a reward

@ You have two orders on the table:
» u: deadline this week, reward 10000 CZK
» v: deadline next week, reward 16180 CZK

1) If you select u, then:
@ new order v/ arrives

» deadline next week, reward
16180 CZK

@ only one of v and v/ served

Online Packet Scheduling Ve

An Example: Cabinetmaker

@ Each week you make one cabinet
@ Customers order cabinets, each order has

» a deadline
> a reward

@ You have two orders on the table:
» u: deadline this week, reward 10000 CZK
» v: deadline next week, reward 16180 CZK

1) If you select u, then: 2) If you select v, then:

@ new order v/ arrives

» deadline next week, reward
16180 CZK

@ only one of v and v/ served

Online Packet Scheduling e

An Example: Cabinetmaker

@ Each week you make one cabinet
@ Customers order cabinets, each order has

» a deadline
> a reward

@ You have two orders on the table:

» u: deadline this week, reward 10000 CZK
» v: deadline next week, reward 16180 CZK

1) If you select u, then: 2) If you select v, then:
@ new order v/ arrives @ no order arrives for next week
» deadline next week, reward

@ u expires unserved
16180 CZK

@ only one of v and v/ served

Online Packet Scheduling e

An Example: Cabinetmaker

@ Each week you make one cabinet
@ Customers order cabinets, each order has

» a deadline
> a reward

@ You have two orders on the table:

» u: deadline this week, reward 10000 CZK
» v: deadline next week, reward 16180 CZK

1) If you select u, then: 2) If you select v, then:
@ new order v/ arrives @ no order arrives for next week
» deadline next week, reward

@ u expires unserved
16180 CZK

@ only one of v and v/ served

These are worst-case scenarios

Online Packet Scheduling e

Online optimization & algorithms

Online computation J Offline computation J
o

Pavel Vesely Online Packet Scheduling 5/26

Online optimization & algorithms

Online computation Offline computation
@ Input arriving piece by piece } @ Whole input available at the
beginning

Pavel Vesely Online Packet Scheduling 5/26

Online optimization & algorithms

Online computation Offline computation
@ Input arriving piece by piece @ Whole input available at the
@ Making decisions without beginning
knowing future @ All decisions made at once

Pavel Vesely Online Packet Scheduling 5/26

Online optimization & algorithms

Online computation Offline computation
@ Input arriving piece by piece @ Whole input available at the
@ Making decisions without beginning
knowing future @ All decisions made at once

@ Decisions irrevocable

Pavel Vesely Online Packet Scheduling 5/26

Online optimization & algorithms

Online computation Offline computation
@ Input arriving piece by piece @ Whole input available at the
@ Making decisions without beginning
knowing future @ All decisions made at once
@ Decisions irrevocable @ Find an optimal solution
@ Cannot be optimal (usually)

Pavel Vesely Online Packet Scheduling 5/26

Online optimization & algorithms

Online computation Offline computation
@ Input arriving piece by piece @ Whole input available at the
@ Making decisions without beginning
knowing future @ All decisions made at once
@ Decisions irrevocable @ Find an optimal solution
@ Cannot be optimal (usually) @ Time/memory efficient algorithms

Pavel Vesely Online Packet Scheduling 5/26

Online optimization & algorithms

Online computation Offline computation
@ Input arriving piece by piece @ Whole input available at the
@ Making decisions without beginning
knowing future @ All decisions made at once
@ Decisions irrevocable @ Find an optimal solution
@ Cannot be optimal (usually) @ Time/memory efficient algorithms

. 4 >

Pavel Vesely Online Packet Scheduling 5/26

Online optimization & algorithms

Online computation Offline computation
@ Input arriving piece by piece @ Whole input available at the
@ Making decisions without beginning
knowing future @ All decisions made at once
@ Decisions irrevocable @ Find an optimal solution
@ Cannot be optimal (usually) @ Time/memory efficient algorithms
X >

Online model

@ Sequence of events (orders), arrive over time

Pavel Vesely Online Packet Scheduling 5/26

Online optimization & algorithms

Online computation

Input arriving piece by piece

Making decisions without
knowing future

Decisions irrevocable

Cannot be optimal (usually)

X

Offline computation

@ Whole input available at the
beginning

@ All decisions made at once
@ Find an optimal solution

@ Time/memory efficient algorithms

Online model

@ Sequence of events (orders), arrive over time
@ Algorithm knows only events that arrived so far

Pavel Vesely

Online Packet Scheduling

5/26

Online optimization & algorithms

Online computation Offline computation
@ Input arriving piece by piece @ Whole input available at the
@ Making decisions without beginning
knowing future @ All decisions made at once
@ Decisions irrevocable @ Find an optimal solution
@ Cannot be optimal (usually) @ Time/memory efficient algorithms

. 4 >

@ Sequence of events (orders), arrive over time
@ Algorithm knows only events that arrived so far
@ Some events ask to make decisions (Monday mornings)

Online model

Pavel Vesely Online Packet Scheduling 5/26

Online optimization & algorithms

Online computation Offline computation
@ Input arriving piece by piece @ Whole input available at the
@ Making decisions without beginning
knowing future @ All decisions made at once
@ Decisions irrevocable @ Find an optimal solution
@ Cannot be optimal (usually) @ Time/memory efficient algorithms

X >

@ Sequence of events (orders), arrive over time

@ Algorithm knows only events that arrived so far

@ Some events ask to make decisions (Monday mornings)
@ Decisions influence the objective function (rewards served orders)

Online model

Pavel Vesely Online Packet Scheduling 5/26

Competitive ratio of online algorithms

@ Worst-case ratio between

» value of the optimum solution OPT and
» value of the algorithm's solution ALG

Pavel Vesely Online Packet Scheduling 6/26

Competitive ratio of online algorithms
o Worst-case ratio between

» value of the optimum solution OPT and
» value of the algorithm's solution ALG

@ Algorithm is R-competitive if for any instance /
OPT(/) < R-ALG(/)

(assuming maximization)

Pavel Vesely Online Packet Scheduling 6/26

Competitive ratio of online algorithms
o Worst-case ratio between

» value of the optimum solution OPT and
» value of the algorithm's solution ALG

@ Algorithm is R-competitive if for any instance /
OPT(/) < R-ALG(/)

(assuming maximization)

@ Game: the algorithm vs. an adversary %
» The adversary decides on further input to maximize OPT/ALG

Pavel Vesely Online Packet Scheduling 6/26

Model & Result

Pavel Vesely Online Packet Scheduling 7/26

ONLINE PACKET SCHEDULING WITH DEADLINES

Buffer
Input port Output port

Network switch:

Pavel Vesely Online Packet Scheduling 8/26

ONLINE PACKET SCHEDULING WITH DEADLINES

. I
Network switch: nput port

Buffer

@ Packets arrive over time

Output port

@ Each has a deadline and a weight

Pavel Vesely

Online Packet Scheduling

8/26

ONLINE PACKET SCHEDULING WITH DEADLINES

Buffer
Network switch: Tnput port Oitpm port
o Packets arrive over time 1123
@ Each has a deadline and a weight wy, =2 —+—+—
@ Time discrete, consisting of slots or steps - i 1 dpi 5

@ One packet transmitted in each step

Pavel Vesely Online Packet Scheduling 8/26

ONLINE PACKET SCHEDULING WITH DEADLINES

I Buffer 0
Network switch: nput port Epm port
@ Packets arrive over time 11213
@ Each has a deadline and a weight wy, = 2 F——+—
e Time discrete, consisting of slots or steps * *
rp =1 d, =3
@ One packet transmitted in each step
@ Goal: maximize total weight of scheduled packets
Online Packet Scheduling

8/26

ONLINE PACKET SCHEDULING WITH DEADLINES

Buffer
Input port Output port

Network switch:

@ Packets arrive over time (orders) 11213
o Each has a deadline and a weight (reward) — w, =2 F—+—+—

e Time discrete, consisting of slots or steps

@ One packet transmitted in each step (weeks)

@ Goal: maximize total weight of scheduled packets

Pavel Vesely Online Packet Scheduling

8/26

ONLINE PACKET SCHEDULING WITH DEADLINES

I Buffer 0
Network switch: nput port itpm port
@ Packets arrive over time (orders) 11213
@ Each has a deadline and a weight (reward) Wy = 2 T — (A)Ip%
e Time discrete, consisting of slots or steps *

rp =1 d, =3

@ One packet transmitted in each step (weeks)
@ Goal: maximize total weight of scheduled packets
| 11234

1
1.7 —+—

Pavel Vesely Online Packet Scheduling 8/26

ONLINE PACKET SCHEDULING WITH DEADLINES

I Buffer 0
Network switch: nput port itpm port
@ Packets arrive over time (orders) 11213
@ Each has a deadline and a weight (reward) Wy = 2 T — (A)Ip%
e Time discrete, consisting of slots or steps *

rp =1 d, =3

@ One packet transmitted in each step (weeks)
@ Goal: maximize total weight of scheduled packets
| 112314

1
1.7 F=—=—

Pavel Vesely Online Packet Scheduling 8/26

ONLINE PACKET SCHEDULING WITH DEADLINES

I Buffer 0
Network switch: nput port itpm port
@ Packets arrive over time (orders) 11213
@ Each has a deadline and a weight (reward) Wy = 2 T — (A)Ip%
e Time discrete, consisting of slots or steps *

rp =1 d, =3
@ One packet transmitted in each step (weeks)

@ Goal: maximize total weight of scheduled packets
| 11234

1 OPT _ LT+1 o 1 59
1.7 P ALG LT T

Pavel Vesely Online Packet Scheduling 8/26

ONLINE PACKET SCHEDULING WITH DEADLINES

I Buffer 0
Network switch: nput port itpm port
@ Packets arrive over time (orders) 11213
@ Each has a deadline and a weight (reward) Wy = 2 T — (A)Ip%
e Time discrete, consisting of slots or steps *

rp =1 d, =3

@ One packet transmitted in each step (weeks)
@ Goal: maximize total weight of scheduled packets
| 11234

1 -
1.7 —+—

Pavel Vesely Online Packet Scheduling 8/26

ONLINE PACKET SCHEDULING WITH DEADLINES

I Buffer 0
Network switch: nput port itpm port
@ Packets arrive over time (orders) 11213
@ Each has a deadline and a weight (reward) Wy = 2 T — (A)Ip%
e Time discrete, consisting of slots or steps *

rp =1 d, =3

@ One packet transmitted in each step (weeks)

@ Goal: maximize total weight of scheduled packets

| 1]2]3]4]

1 -
1.7 —+—
7 =
N0 e

N =

Pavel Vesely Online Packet Scheduling 8/26

ONLINE PACKET SCHEDULING WITH DEADLINES

I Buffer 0
Network switch: nput port itpm port
@ Packets arrive over time (orders) 11213
@ Each has a deadline and a weight (reward) Wy = 2 T — (A)Ip%
e Time discrete, consisting of slots or steps *

rp =1 d, =3

@ One packet transmitted in each step (weeks)

@ Goal: maximize total weight of scheduled packets

| 1]2]3]4]

1 -
1.7 —+—
7 =
7 -

N

Pavel Vesely Online Packet Scheduling 8/26

ONLINE PACKET SCHEDULING WITH DEADLINES

I Buffer 0
Network switch: nput port itpm port
@ Packets arrive over time (orders) 11213
@ Each has a deadline and a weight (reward) Wy = 2 T — (A)Ip%
e Time discrete, consisting of slots or steps *

rp =1 d, =3
@ One packet transmitted in each step (weeks)

@ Goal: maximize total weight of scheduled packets

OPT _ 2.1.742.7 .
L7 ALG — 1.a+27 ~ 1.39

Pavel Vesely Online Packet Scheduling 8/26

ONLINE PACKET SCHEDULING WITH DEADLINES

I Buffer 0
Network switch: nput port itpm port
@ Packets arrive over time (orders) 11213
@ Each has a deadline and a weight (reward) Wy = 2 T — (A)Ip%
e Time discrete, consisting of slots or steps *

rp =1 d, =3

@ One packet transmitted in each step (weeks)

@ Goal: maximize total weight of scheduled packets

Pavel Vesely Online Packet Scheduling 8/26

ONLINE PACKET SCHEDULING WITH DEADLINES

I Buffer 0
Network switch: nput port itpm port
@ Packets arrive over time (orders) 11213
@ Each has a deadline and a weight (reward) Wy = 2 T — (A)Ip%
e Time discrete, consisting of slots or steps *

rp =1 d, =3
@ One packet transmitted in each step (weeks)

@ Goal: maximize total weight of scheduled packets

Scheduling problem 1|online, rj, pj = 1| " wj(1 — U;)

Pavel Vesely Online Packet Scheduling 8/26

ONLINE PACKET SCHEDULING WITH DEADLINES

I Buffer 0
Network switch: nput port itpm port
@ Packets arrive over time (orders) 11213
@ Each has a deadline and a weight (reward) Wy = 2 T — (A)Ip%
e Time discrete, consisting of slots or steps *

rp =1 d, =3
@ One packet transmitted in each step (weeks)

@ Goal: maximize total weight of scheduled packets

Scheduling problem 1|online, rj, pj = 1| " wj(1 — U;)
A.k.a. BUFFER MANAGEMENT IN QUALITY OF SERVICE SWITCHES

Pavel Vesely Online Packet Scheduling 8/26

Previous work

@ We focus on deterministic algorithms

Pavel Vesely Online Packet Scheduling 9/26

Previous work

@ We focus on deterministic algorithms
@ Greedy algorithm 2-competitive
» Schedules always the heaviest pending packet

Pavel Vesely Online Packet Scheduling 9/26

Previous work

@ We focus on deterministic algorithms
@ Greedy algorithm 2-competitive
» Schedules always the heaviest pending packet

-
@ Lower bound of the golden ratio ¢* —+—
(b = %(\/g + 1) ~ 1.618 [H&jek '01, Andelman et al. '03
Chin & Fung '03]

I

&
3
1420 .

Pavel Vesely Online Packet Scheduling

9/26

Previous work

@ We focus on deterministic algorithms
@ Greedy algorithm 2-competitive
» Schedules always the heaviest pending packet

-
@ Lower bound of the golden ratio ¢* —+—
¢ = %(\/g + 1) ~ 1.618 [H&jek '01, Andelman et al. '03
Chin & Fung '03]

I

&
3
1420 .

5;@ y

Online Packet Scheduling

Pavel Vesely 9/26

Previous work

@ We focus on deterministic algorithms

@ Greedy algorithm 2-competitive 1
) : ¢ —1—
» Schedules always the heaviest pending packet
@ Lower bound of the golden ratio ¢* —+—
¢ = %(\/g + 1) /2 1.618 [Hajek '01, Andelman et al. '03, d)Q —
Chin & Fung '03] 1 ¢3 —+—

o 2\/§ — 1 =~ 1.828-competitive algorithm [Englert & Westermann '07]

Pavel Vesely Online Packet Scheduling 9/26

Previous work

@ We focus on deterministic algorithms

@ Greedy algorithm 2-competitive 1
: : ¢ —1—
» Schedules always the heaviest pending packet
@ Lower bound of the golden ratio ¢* —+—
¢ = %(\/g + 1) /2 1.618 [Hajek '01, Andelman et al. '03, d)Q —
Chin & Fung '03] 1 ¢3 —+—

o 2\/§ — 1 =~ 1.828-competitive algorithm [Englert & Westermann '07]

@ ¢-competitive algorithms for some special instances [Kesselman et al. 01,
Chin et al. '04, Li et al. '05, Bienkowski et al. '13, Bohm et al. '16]

Pavel Vesely Online Packet Scheduling 9/26

Previous work

@ We focus on deterministic algorithms

@ Greedy algorithm 2-competitive 1
) : ¢ —1—
» Schedules always the heaviest pending packet
@ Lower bound of the golden ratio ¢* —+—
¢ = %(\/g + 1) /2 1.618 [Hajek '01, Andelman et al. '03, d)Q —
Chin & Fung '03] 1 ¢3 —+—

o 2\/> — 1 =~ 1.828-competitive algorithm [Englert & Westermann '07]

@ ¢-competitive algorithms for some special instances [Kesselman et al. 01,
Chin et al. '04, Li et al. '05, Bienkowski et al. '13, Bohm et al. '16]

Is there a ¢-competitive algorithm?

Pavel Vesely Online Packet Scheduling 9/26

Previous work

@ We focus on deterministic algorithms

@ Greedy algorithm 2-competitive 1
: : ¢ —1—
» Schedules always the heaviest pending packet
@ Lower bound of the golden ratio ¢* —+—
¢ = %(\/g + 1) /2 1.618 [Hajek '01, Andelman et al. '03, d)Q —
Chin & Fung '03] 1 ¢3 —+—

o 2\/> — 1 =~ 1.828-competitive algorithm [Englert & Westermann '07]

@ ¢-competitive algorithms for some special instances [Kesselman et al. 01,
Chin et al. '04, Li et al. '05, Bienkowski et al. '13, Bohm et al. '16]

Is there a ¢-competitive algorithm?

Yes!

Pavel Vesely Online Packet Scheduling 9/26

New result

Theorem

There is a p-competitive deterministic algorithm.

Key technique: Plan

@ Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢t,t + 1, ...

Pavel Vesely Online Packet Scheduling 10 /26

New result

Theorem

There is a p-competitive deterministic algorithm.

Key technique: Plan

@ Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢t,t + 1, ...

@ Optimal future profit unless new packets arrive

Pavel Vesely Online Packet Scheduling 10 /26

New result

Theorem

There is a p-competitive deterministic algorithm.

Key technique: Plan
@ Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢t,t + 1, ...

@ Optimal future profit unless new packets arrive

@ Scheduled plans (a.k.a. provisional schedules) used already by
[Li et al. '05, Li et al. '07, Englert & Westermann '07]

Pavel Vesely Online Packet Scheduling 10 /26

Algorithm

Pavel Vesely Online Packet Scheduling 11/26

Algorithm PLAN(¢)

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots t,t +1,...

Pavel Vesely Online Packet Scheduling 12 /26

Algorithm PLAN(¢)

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢t,t+ 1, ...

Algorithm PLAN(¢)
o Schedule packet p € P maximizing ¢ - wp, + w(Qp)

Pavel Vesely Online Packet Scheduling 12 /26

Algorithm PLAN(¢)

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢t,t+ 1, ...

Algorithm PLAN(¢)

o Schedule packet p € P maximizing ¢ - wp, + w(Qp)

Q,, is the plan after p is scheduled and time is incremented (p & Q,)
t

P p |
0| |

Pavel Vesely Online Packet Scheduling 12 /26

Algorithm PLAN(¢)

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢t,t+ 1, ...

Algorithm PLAN(¢)

o Schedule packet p € P maximizing ¢ - wp, + w(Qp)

Q,, is the plan after p is scheduled and time is incremented (p & Q,)
t

P p |
0| |

w, is the gain in this step
w(Q)) is the optimal future profit unless new packets arrive

Pavel Vesely Online Packet Scheduling 12 /26

Algorithm PLAN(¢)

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢t,t+ 1, ...

Algorithm PLAN(¢)

o Schedule packet p € P maximizing ¢ - wp, + w(Qp)

Q,, is the plan after p is scheduled and time is incremented (p & Q,)
t

P p |
0| |

w, is the gain in this step
w(Q)) is the optimal future profit unless new packets arrive

@ Very elegant algorithm . ..

Pavel Vesely Online Packet Scheduling 12 /26

Algorithm PLAN(¢)

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢t,t+ 1, ...

Algorithm PLAN(¢)

o Schedule packet p € P maximizing ¢ - wp, + w(Qp)

Q,, is the plan after p is scheduled and time is incremented (p & Q,)
t

P p |
0| |

w, is the gain in this step
w(Q)) is the optimal future profit unless new packets arrive

@ Very elegant algorithm . ..
@ ...but not ¢-competitive

Pavel Vesely Online Packet Scheduling 12 /26

Plan and its Structure

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢, t + 1, ...

Pavel Vesely Online Packet Scheduling 13 /26

Plan and its Structure

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢, t + 1, ...
1123145
0.5 —+—
1.6 —+——+-
1
0.6 —+—+—"~+—-

04 F—+—"—+—"+-
0.1 —+—F——F—"~+-

Pavel Vesely Online Packet Scheduling 13 /26

Plan and its Structure

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢, t + 1, ...

[1]2]3]4]5]

0.5 ——

1.6 —+——+—
11—+
0.6 —+—+——+—

0.4 F+—+—"+—¢plan
|

0.1 —t—+—+—
Plan: 05 1 1.6 0.6 0.1

Pavel Vesely

Online Packet Scheduling

13/26

Plan and its Structure

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢, t + 1, ...

[1]2]3]4]5]

0.5 ——

1.6 —+——+—
11—+
0.6 —+—+——+—

0.4 F+—+—"+—¢plan
|

0.1 —+—4+—+—
Plan: 1 0516 0.6 0.1
L 4

Pavel Vesely

Online Packet Scheduling

13/26

Plan and its Structure

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢, t + 1, ...

[1]2]3]4]5]

0.5 ——

1.6 —+——+—
11—+
0.6 —+—+——+—

0.4 F+—+—"+—¢plan
|

0.1 —t—+—+—
Plan: 1.6 0.5 1 0.6 0.1
‘_/7

Pavel Vesely

Online Packet Scheduling

13/26

Plan and its Structure

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢, t + 1, ...
[11213145
0.5 —+— Definition
1.6 —+—+- Slot 7 is tight w.r.t. plan P iff
1 —+—+
0.6 —+——+— # of slots till 7 = # of packets j € P:d; <7
04 H—t+—+—+—¢plan
0.1 —t+—+—"+—+-
Plan: 1.6 0.5 1 0.6 0.1

bt ot
tight

Pavel Vesely Online Packet Scheduling 13 /26

Plan and its Structure

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢, t + 1, ...

[1]2]3]4]5]

0.5 —+— Definition
1.6 —+—+- Slot 7 is tight w.r.t. plan P iff
1 —+—+
0.6 —+——+— # of slots till 7 = # of packets j € P:d; <7
04 H—t+—+—+—¢plan
0.1 —t+—+—"+—+-

Plan: 1.6 0.5 1 0.6 0.1
Segments: ~—— 7

Definition
Segment = interval between tight slots

Pavel Vesely Online Packet Scheduling 13 /26

Plan and its Structure

Plan P

o Max-weight feasible subset of pending packets in step t
feasible = can be scheduled in slots ¢, t + 1, ...

[1]2]3]4]5]

0.5 —+— Definition
1.6 —+—+- Slot 7 is tight w.r.t. plan P iff
1 —+—+
0.6 —+——+— # of slots till 7 = # of packets j € P:d; <7
04 H—t+—+—+—¢plan
0.1 —t+—+—"+—+-

Plan: 1.6 0.5 1 0.6 0.1
Segments: ~—— 7

Definition
Segment = interval between tight slots
Pl [] [[]

Pavel Vesely Online Packet Scheduling 13 /26

Plan Updates After Packet p is Scheduled

p in the 1st segment (“greedy step”)

Pavel Vesely Online Packet Scheduling

14 /26

Plan Updates After Packet p is Scheduled

p in the 1st segment (“greedy step”)

Pl v [[]

oIl ~ []]

p in a later segment (“leap step”)

d [(- [[|

Pavel Vesely Online Packet Scheduling

14 /26

Plan Updates After Packet p is Scheduled

p in the 1st segment (“greedy step”)

Pl » []]

oIl ~ []]

p in a later segment (“leap step”)

dy
|

Pl e [Je | [|

‘b

oI [|

@ ¢ = lightest in the 1st segment

Pavel Vesely Online Packet Scheduling

14 /26

Plan Updates After Packet p is Scheduled

p in the 1st segment (“greedy step”)

Pl » []]

oIl ~ []]

p in a later segment (“leap step”)

Pl e [Je | [|

l dp do

oI [|

@ / = lightest in the 1st segment
@ 0 = heaviest not in P which can replace p
replacement packet for p

Pavel Vesely Online Packet Scheduling

14 /26

Problem of PLAN(¢): Weight Decreases in the Plan

Pavel Vesely Online Packet Scheduling 15 /26

Problem of PLAN(¢): Weight Decreases in the Plan

e minwt(7) = min-weight in P till the next tight slot after 7

Pavel Vesely Online Packet Scheduling 15 /26

Problem of PLAN(¢): Weight Decreases in the Plan

e minwt(7) = min-weight in P till the next tight slot after 7
> In a schedule of P, any packet can be in the 1st slot of a segment

Pavel Vesely Online Packet Scheduling 15 /26

Problem of PLAN(¢): Weight Decreases in the Plan

e minwt(7) = min-weight in P till the next tight slot after 7
> In a schedule of P, any packet can be in the 1st slot of a segment

Pavel Vesely Online Packet Scheduling 15 /26

Problem of PLAN(¢): Weight Decreases in the Plan

e minwt(7) = min-weight in P till the next tight slot after 7
> In a schedule of P, any packet can be in the 1st slot of a segment

77 (]1

Pavel Vesely Online Packet Scheduling 15 /26

Problem of PLAN(¢): Weight Decreases in the Plan

e minwt(7) = min-weight in P till the next tight slot after 7
> In a schedule of P, any packet can be in the 1st slot of a segment

minwt(7)
L I o [[
I I Q—?‘ : : : :
I I [S e — WY
T

Pavel Vesely Online Packet Scheduling 15 /26

Problem of PLAN(¢): Weight Decreases in the Plan

e minwt(7) = min-weight in P till the next tight slot after 7
> In a schedule of P, any packet can be in the 1st slot of a segment

minwt(7)
L I o [[
I I Q—?‘ : : : :
I I [S e — WY
T

minwt after plan updates

@ minwt(7) does not decrease for any 7:

after arrival of a new packet
after scheduling a packet from the 1st segment (greedy step)

Pavel Vesely Online Packet Scheduling 15 /26

Problem of PLAN(¢): Weight Decreases in the Plan

e minwt(7) = min-weight in P till the next tight slot after 7
> In a schedule of P, any packet can be in the 1st slot of a segment

minwt(7)
L I o [[
I I Q—?‘ : : : :
I I [S e — WY
T

minwt after plan updates

@ minwt(7) does not decrease for any 7:

after arrival of a new packet
after scheduling a packet from the 1st segment (greedy step)

@ minwt(7) decreases for some 7 after sch. a packet from later segment

Pavel Vesely Online Packet Scheduling 15 /26

Problem of PLAN(¢): Weight Decreases in the Plan

e minwt(7) = min-weight in P till the next tight slot after 7
> In a schedule of P, any packet can be in the 1st slot of a segment

minwt(7)
L I o [[
I I Q—?‘ : : : :
I I [S e — WY
T

minwt after plan updates

@ minwt(7) does not decrease for any 7:

after arrival of a new packet
after scheduling a packet from the 1st segment (greedy step)

@ minwt(7) decreases for some 7 after sch. a packet from later segment

dp do The problem:
P ¢ | | p} | | | | | 0 &P = w, < minwt(d,)
i ‘{P ‘{g
ol [[[e |]

Pavel Vesely Online Packet Scheduling 15 /26

Solution: Maintaining Slot-Monotonicity of minwt

o Idea: modify PLAN(¢) so that minwt(7) never decreases for any 7

Pavel Vesely Online Packet Scheduling 16 / 26

Solution: Maintaining Slot-Monotonicity of minwt

o Idea: modify PLAN(¢) so that minwt(7) never decreases for any 7

d‘p d‘g The problem:
P e 1 I T T 0 &P = w, < minwt(d,)
oy d,
o[[[o []

Pavel Vesely Online Packet Scheduling 16 / 26

Solution: Maintaining Slot-Monotonicity of minwt

o Idea: modify PLAN(¢) so that minwt(7) never decreases for any 7

d‘p d‘g The problem:
P e 1 I T T 0 &P = w, < minwt(d,)
oy d,
o[[[o []

@ = increase the weight of ¢ to minwt(d,)

Pavel Vesely Online Packet Scheduling 16 / 26

Solution: Maintaining Slot-Monotonicity of minwt

o Idea: modify PLAN(¢) so that minwt(7) never decreases for any 7

d‘p d‘g The problem:
P e 1 I T T 0 &P = w, < minwt(d,)
oy d,
o[[[o []

@ = increase the weight of ¢ to minwt(d,)
@ Not enough if segments merge:

Pavel Vesely Online Packet Scheduling 16 / 26

Solution: Maintaining Slot-Monotonicity of minwt

o Idea: modify PLAN(¢) so that minwt(7) never decreases for any 7

» dg The problem:

P c T T 7T] 0 &P = w, < minwt(d,)
b, ,

QU [[~ o [|

@ = increase the weight of ¢ to minwt(d,)

@ Not enough if segments merge:

minwt(7) Cfp Cf@
I I I I I I
& 1 4 I I
I I Q—Q‘ I I
I I o e—
7 T T : T T =T
dp l d,
I 0o [I
[SN I I
o I I I
o @ T s
T 1 T T =T
t+1

Pavel Vesely Online Packet Scheduling 16 / 26

Solution: Maintaining Slot-Monotonicity of minwt

o Idea: modify PLAN(¢) so that minwt(7) never decreases for any 7

b ‘ The problem:

P c T T 7T] 0 &P = w, < minwt(d,)
b, ,

QU [[~ o |]

@ = increase the weight of ¢ to minwt(d,)

@ Not enough if segments merge:

minwt(7) dp dg
[I I
& 1 4 | I I
I I Sam— I I
[[[o T —8_
7 T T T T T T
dp l d,
\ o [
[SN I I
o \ [\
o @ T s
T T T T T
t+1
@ = avoid merging segments
Online Packet Scheduling

16 /26

Algorithm PLANM(¢) Maintaining Slot-Monotonicity

@ Schedule packet p € P maximizing ¢ - w, + w(Qp)
» Q, is the plan after p is scheduled and time is incremented (p ¢ Q,)

Pavel Vesely Online Packet Scheduling 17 /26

Algorithm PLANM(¢) Maintaining Slot-Monotonicity

@ Schedule packet p € P maximizing ¢ - w, + w(Qp)

» Q, is the plan after p is scheduled and time is incremented (p ¢ Q,)
@ If pis not in the 1st segment of P (leap step):

> Increase the weight of ¢ to minwt(d,)

Pavel Vesely Online Packet Scheduling 17 /26

Algorithm PLANM(¢) Maintaining Slot-Monotonicity

@ Schedule packet p € P maximizing ¢ - w, + w(Qp)
» Q, is the plan after p is scheduled and time is incremented (p ¢ Q,)
@ If pis not in the 1st segment of P (leap step):

> Increase the weight of ¢ to minwt(d,)
» Avoid merging segments:

2 N NI N I N B O 3

Qp’ ‘ ‘ 0 “

Pavel Vesely Online Packet Scheduling 17 /26

Algorithm PLANM(¢) Maintaining Slot-Monotonicity

@ Schedule packet p € P maximizing ¢ - w, + w(Qp)
» Q, is the plan after p is scheduled and time is incremented (p ¢ Q,)
@ If pis not in the 1st segment of P (leap step):

> Increase the weight of ¢ to minwt(d,)
» Avoid merging segments:

Pl [fp [T] [[T |

o [] 0

» hy = heaviest packet in (79,7],

dp To Cfg 2
|
|

Pavel Vesely Online Packet Scheduling 17 /26

Algorithm PLANM(¢) Maintaining Slot-Monotonicity

@ Schedule packet p € P maximizing ¢ - w, + w(Qp)
» Q, is the plan after p is scheduled and time is incremented (p ¢ Q,)
@ If pis not in the 1st segment of P (leap step):

> Increase the weight of ¢ to minwt(d,)
» Avoid merging segments:

pl Tl I I [|] |
o | | wmf] | 0

» hy = heaviest packet in (79,7],
» decrease deadline of h; to g

dy, 7o T1 ng Y
|
|

Pavel Vesely Online Packet Scheduling 17 /26

Algorithm PLANM(¢) Maintaining Slot-Monotonicity

@ Schedule packet p € P maximizing ¢ - w, + w(Qp)
» Q, is the plan after p is scheduled and time is incremented (p ¢ Q,)
@ If pis not in the 1st segment of P (leap step):

> Increase the weight of ¢ to minwt(d,)
» Avoid merging segments:

Pl Lol [l I [[[] |
o [[mf[[w[] 0

» hy = heaviest packet in (71,7],
» decrease deadline of hy to 71

dy, 7o Ti T2 6%97
|
|

Pavel Vesely Online Packet Scheduling 17 /26

Algorithm PLANM(¢) Maintaining Slot-Monotonicity

@ Schedule packet p € P maximizing ¢ - w, + w(Qp)
» Q, is the plan after p is scheduled and time is incremented (p ¢ Q,)
@ If pis not in the 1st segment of P (leap step):

> Increase the weight of ¢ to minwt(d,)
» Avoid merging segments:

PL Ll [[In [Ip[] |
o [| mf[[ml[0

» hs = heaviest packet in (72,7],
» decrease deadline of h3 to

dy, 7o Ti Ty T3 6%97
|
|

Pavel Vesely Online Packet Scheduling 17 /26

Algorithm PLANM(¢) Maintaining Slot-Monotonicity

@ Schedule packet p € P maximizing ¢ - w, + w(Qp)
» Q, is the plan after p is scheduled and time is incremented (p ¢ Q,)
@ If pis not in the 1st segment of P (leap step):

> Increase the weight of ¢ to minwt(d,)
» Avoid merging segments:

c{p To Tl Ty T3 Th—1 CfgWZTk;

S 0 0 VPO P

o [[mfl [l wlwf{ wl o[]
» for i =1,2,...: h; = heaviest packet in (7;_1,7],

» decrease deadline of h; to 7_1
» stop when 7, =

Pavel Vesely Online Packet Scheduling 17 /26

Algorithm PLANM(¢) Maintaining Slot-Monotonicity

@ Schedule packet p € P maximizing ¢ - w, + w(Qp)
» Q, is the plan after p is scheduled and time is incremented (p ¢ Q,)
@ If pis not in the 1st segment of P (leap step):

> Increase the weight of ¢ to minwt(d,)
» Avoid merging segments:

cép To Tl Ty T3 Th—1 CfgWZTk;

S 0 0 VPO P

o [[mfl [l wlwf{ wl o[]
» for i =1,2,...: h; = heaviest packet in (7;_1,7],

» decrease deadline of h; to 7_1
» stop when 7, =

> ensure: wp, > minwt(7i_1)
* if wy, < minwt(7;_1), then set new weight of h; to minwt(7;_1)

Pavel Vesely Online Packet Scheduling 17 /26

Algorithm PLANM(¢) Maintaining Slot-Monotonicity

@ Schedule packet p € P maximizing ¢ - w, + w(Qp)
» Q, is the plan after p is scheduled and time is incremented (p ¢ Q,)
@ If pis not in the 1st segment of P (leap step):
> Increase the weight of ¢ to minwt(d,)
In a nutshell

Avoid merging segments and minwt decreases in a right way

Done by decreasing deadlines and increasing weights of certain packets

Pavel Vesely Online Packet Scheduling 17 /26

Analysis

Pavel Vesely Online Packet Scheduling 18 /26

Analysis Overview

o Competitive analysis
» Goal: w(OPT) < ¢ - w(ALG) for any instance

Pavel Vesely Online Packet Scheduling 19 /26

Analysis Overview

o Competitive analysis
» Goal: w(OPT) < ¢ - w(ALG) for any instance

» Game between algorithm and adversary %
* Adversary schedules packets from OPT

Pavel Vesely Online Packet Scheduling 19 /26

Analysis Overview

o Competitive analysis
» Goal: w(OPT) < ¢ - w(ALG) for any instance

» Game between algorithm and adversary %
* Adversary schedules packets from OPT

Amortization Techniques

© Increasing weights
Algorithm's future profit may get higher

Pavel Vesely Online Packet Scheduling 19 /26

Analysis Overview

o Competitive analysis
» Goal: w(OPT) < ¢ - w(ALG) for any instance

» Game between algorithm and adversary %
* Adversary schedules packets from OPT

Amortization Techniques

© Increasing weights
Algorithm's future profit may get higher
Decrease algorithm'’s current profit by weight increase

Pavel Vesely Online Packet Scheduling 19 /26

Analysis Overview

o Competitive analysis
» Goal: w(OPT) < ¢ - w(ALG) for any instance

» Game between algorithm and adversary %
* Adversary schedules packets from OPT

Amortization Techniques

© Increasing weights
Algorithm's future profit may get higher
Decrease algorithm'’s current profit by weight increase

@ Potential function
© Modifications of the adversary (optimal) schedule ADV

Pavel Vesely Online Packet Scheduling 19 /26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
D 2 3 4 5

ADV’ ‘ ‘ ‘ ‘ ‘Adversary’s gain:

OPT|a [b |c |d |e |

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
D 2 3 4 5

ADV’ ‘b ‘ ‘ ‘ ‘Adversary’s gain:

OPT|a [b |c |d |e |

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
D 2 3 4 5

ADV’ ‘b ‘ ‘d ‘ ‘ Adversary’s gain:

OPT|a [b |c |d |e |

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
D 2 3 4 5

ADV ’ a ‘ b ‘ ‘ d ‘ ‘ Adversary’s gain:

OPT|a [b |c |d |e |

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
1 ® 3 4 5

ADV’ ‘b ‘ ‘d ‘ ‘ Adversary’s gain: w,

OPT|a [b |c |d |e |

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
1 ® 3 4 5

ADV ’ ‘ b ‘ c ‘ d ‘ e ‘ Adversary’s gain: w,

OPT|a [b |c |d |e |

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
1 2 ® 4 5

ADV ’ ‘ ‘ c ‘ d ‘ e ‘ Adversary’s gain: w, +wy

OPT|a [b |c |d |e |

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
1 2 ® 4 5

ADV ’ ‘ ‘ c ‘ d ‘ e ‘ Adversary’s gain: w, +wy

OPT|a [b |c |d |e |

ther light ket
@ Packet in ADV can be replaced by {3”0 er lighter packet,

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
1 2 ® 4 5

ADV i i i c i d i e i Adversary’s gain: w, +wy

OPT|a [b |c |d |e |

“y

another lighter packet, f\,\l)

@ Packet in ADV can be replaced b
P y {fictitious “treasure packets” L*-’E

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
1 2 ® 4 5

ADV i i i c i d i e i Adversary’s gain: w, +wy

OPT|a [b |c |d |e |

“y

another lighter packet, f\\\l)

@ Packet in ADV can be replaced b
P y {fictitious “treasure packets” LJ

@ Adversary's gain increased by total weight decrease in ADV

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
1 2 ® 4 5

ADV i i i c i f i e i Adversary’s gain: w, +wp+(wqg — wy)

OPT|a [b |c |d |e |

“y

another lighter packet, f\\\l)

@ Packet in ADV can be replaced b
P y {fictitious “treasure packets” LJ

@ Adversary's gain increased by total weight decrease in ADV

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
1 2 ® 4 5

ADV i i i@ci f i e i Adversary’s gain: wg +wp+(wg — wy)+(we — wy,)
OPT|a [b |c |d |e |

another lighter packet, f\,\D

@ Packet in ADV can be replaced b
P y {fictitious “treasure packets” L*-’E

@ Adversary's gain increased by total weight decrease in ADV

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
1 2 3@ 5

ADV’ i i i f i e i Adversary’s gain: w, +wp+(wa — wyp)+(we — wy,) +wy,
OPT|a [b |c |d |e |

another lighter packet, f\,\D

@ Packet in ADV can be replaced b
P y {fictitious “treasure packets” L*-’E

@ Adversary's gain increased by total weight decrease in ADV

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
1 2 3@ 5

ADV’ i i i f i e i Adversary’s gain: w, +wp+(wa — wyp)+(we — wy,) +wy,
OPT|a [b |c |d |e |

another lighter packet, !"\\D

@ Packet in ADV can be replaced b
P y {fictitious “treasure packets” LJ

@ Adversary's gain increased by total weight decrease in ADV
- o [”
Fictitious “treasure packet” &%

@ Not pending for the algorithm

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
1 2 3@ 5

ADV’ i i i f i e i Adversary’s gain: w, +wp+(wa — wyp)+(we — wy,) +wy,
OPT|a [b |c |d |e |

another lighter packet, !"\\D

@ Packet in ADV can be replaced b
P y {fictitious “treasure packets” LJ

@ Adversary's gain increased by total weight decrease in ADV
- o [”
Fictitious “treasure packet” &%

@ Not pending for the algorithm

@ Tied to a slot 7 in ADV, no release time or deadline, never changes in future

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
1 2 3@ 5

ADV’ i i i f i e i Adversary’s gain: w, +wp+(wa — wyp)+(we — wy,) +wy,
OPT|a [b |c |d |e |

another lighter packet, f'\\D

@ Packet in ADV can be replaced b
P y {fictitious “treasure packets” LJ

@ Adversary's gain increased by total weight decrease in ADV
- o [”
Fictitious “treasure packet” &%

@ Not pending for the algorithm
@ Tied to a slot 7 in ADV, no release time or deadline, never changes in future

@ Deposit of profit to be collected by the adversary

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
1 2 3@ 5
ADV i i i i f i e i Adversary’s gain: w, +wp+(wa — wyp)+(we — wy,) +wy,

OPT|a [b |c |d |e |

another lighter packet, f\\\?\

@ Packet in ADV can be replaced b >
P y {fictitious “treasure packets” L.,El)

@ Adversary's gain increased by total weight decrease in ADV
- o [” !'\‘i\‘?
Fictitious “treasure packet
@ Not pending for the algorithm
@ Tied to a slot 7 in ADV, no release time or deadline, never changes in future

@ Deposit of profit to be collected by the adversary
@ Weight bounded by minwt(7)

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
1 2 3@ 5

ADV i i i i f i e i Adversary’s gain: w, +wp+(wqg — wyp)+(we — wy,) +wy

c

OPT|a [b |c |d |e |

another lighter packet, f\\D

@ Packet in ADV can be replaced b
P y {fictitious “treasure packets” LJ

@ Adversary's gain increased by total weight decrease in ADV
- o [”
Fictitious “treasure packet” &%

Not pending for the algorithm

Tied to a slot 7 in ADV, no release time or deadline, never changes in future
Deposit of profit to be collected by the adversary

Weight bounded by minwt(7)

Slot-monotonicity: minwt(7) never decrease

Pavel Vesely Online Packet Scheduling 20/26

Adversary Schedule ADV

@ Consists of already-released packets from OPT in future slots
another lighter packet,

@ Packet in ADV can be replaced by ¢ = . i .
fictitious “treasure packets

@ Adversary’s gain increased by total weight decrease in ADV

. b b " f-\h“‘?
Fictitious “treasure packet

Not pending for the algorithm

Tied to a slot 7 in ADV, no release time or deadline, never changes in future
Deposit of profit to be collected by the adversary

Weight bounded by minwt(7)

Slot-monotonicity: minwt(7) never decrease

e 6 6 6 o

Invariant (A)

(real) packets in plan P

ADV consists of two types of packets:
yP P {all other packets are treasures @

v,

Pavel Vesely Online Packet Scheduling 20/26

Potential Function

Relative advantage of the algorithm over the adversary:

Pavel Vesely Online Packet Scheduling 21/26

Potential Function

Relative advantage of the algorithm over the adversary:
@ P\ ADV = packets in the plan that the adversary will not schedule

Pavel Vesely Online Packet Scheduling 21/26

Potential Function

Relative advantage of the algorithm over the adversary:

@ P\ ADV = packets in the plan that the adversary will not schedule

o Set F
» Pending packets forced out of the plan

Pavel Vesely Online Packet Scheduling 21/26

Potential Function

Relative advantage of the algorithm over the adversary:

@ P\ ADV = packets in the plan that the adversary will not schedule

@ Set F

» Pending packets forced out of the plan
» Can be used as replacement packets in a leap step

Pavel Vesely Online Packet Scheduling 21/26

Potential Function

Relative advantage of the algorithm over the adversary:

@ P\ ADV = packets in the plan that the adversary will not schedule

@ Set F

» Pending packets forced out of the plan
» Can be used as replacement packets in a leap step

e “Backup plan” R=P\ ADVUR

Pavel Vesely Online Packet Scheduling 21/26

Potential Function

Relative advantage of the algorithm over the adversary:

@ P\ ADV = packets in the plan that the adversary will not schedule

@ Set F

» Pending packets forced out of the plan
» Can be used as replacement packets in a leap step

e “Backup plan” R=P\ ADVUR

Invariant

Backup plan R is feasible
R feasible = packets in R can be scheduled in future slots t, ¢t +1,...

Pavel Vesely Online Packet Scheduling 21/26

Potential Function

Relative advantage of the algorithm over the adversary:

@ P\ ADV = packets in the plan that the adversary will not schedule
o Set F

» Pending packets forced out of the plan
» Can be used as replacement packets in a leap step

e “Backup plan” R=P\ ADVUR

Invariant

Backup plan R is feasible
R feasible = packets in R can be scheduled in future slots t,t +1,...

Potential
1
¢

V.= — w(R)

Pavel Vesely Online Packet Scheduling 21/26

Packet Types in the Analysis

ending for PlanM
b 8 ADV

not in plan P plan P

e

“backup plan” R (potential)

fictitious

Online Packet Scheduling VT

Overview of the Analysis

To prove
o Packet arrival: AV >0

Pavel Vesely Online Packet Scheduling 23/26

Overview of the Analysis

To prove
o Packet arrival: AV >0

@ Scheduling step t

Jj = ADV[t] scheduled by the adversary (possibly j # OPT[t])
p = ALG[t] scheduled by the algorithm

Pavel Vesely Online Packet Scheduling 23/26

Overview of the Analysis

To prove
o Packet arrival: AV >0

@ Scheduling step t

Jj = ADV[t] scheduled by the adversary (possibly j # OPT[t])
p = ALG[t] scheduled by the algorithm
Adversary gain advgain® = th—&— credit for replacing packets

Pavel Vesely Online Packet Scheduling 23/26

Overview of the Analysis

To prove

@ Packet arrival: AV >0
@ Scheduling step t
Jj = ADV[t] scheduled by the adversary (possibly j # OPT(t])
p = ALG[t] scheduled by the algorithm
Adversary gain advgain® = th—&— credit for replacing packets
A*Weights = amount by which the weights are increased in step t

advgain® < ¢ - (w; — A*Weights) + AW

Pavel Vesely Online Packet Scheduling

23/26

Overview of the Analysis

To prove

@ Packet arrival: AV >0
@ Scheduling step t
Jj = ADV[t] scheduled by the adversary (possibly j # OPT(t])
p = ALG[t] scheduled by the algorithm
Adversary gain advgain® = th—&— credit for replacing packets
A*Weights = amount by which the weights are increased in step t

advgain® < ¢ - (w; — A*Weights) + AW

Proof of ¢-competitiveness

@ Potential equal to 0 at the beginning and at the end

Pavel Vesely Online Packet Scheduling

23/26

Overview of the Analysis

To prove

@ Packet arrival: AV >0
@ Scheduling step t
Jj = ADV[t] scheduled by the adversary (possibly j # OPT(t])
p = ALG[t] scheduled by the algorithm
Adversary gain advgain® = th—&— credit for replacing packets
A*Weights = amount by which the weights are increased in step t

advgain® < ¢ - (w; — A*Weights) + AW

Proof of ¢-competitiveness

@ Potential equal to 0 at the beginning and at the end

w’(OPT) = Z advgain®

t

Pavel Vesely Online Packet Scheduling

23/26

Overview of the Analysis

To prove

@ Packet arrival: AV >0
@ Scheduling step t
Jj = ADV[t] scheduled by the adversary (possibly j # OPT(t])
p = ALG[t] scheduled by the algorithm
Adversary gain advgain® = th—&— credit for replacing packets
A*Weights = amount by which the weights are increased in step t

advgain® < ¢ - (w; — A*Weights) + AW

Proof of ¢-competitiveness

@ Potential equal to 0 at the beginning and at the end

w(OPT) = advgain® < 3 {¢> - (W'(ALG[t]) — Afweights)}

Pavel Vesely Online Packet Scheduling

23/26

Overview of the Analysis

To prove

@ Packet arrival: AV >0
@ Scheduling step t
Jj = ADV[t] scheduled by the adversary (possibly j # OPT(t])
p = ALG[t] scheduled by the algorithm
Adversary gain advgain® = th—&— credit for replacing packets
A*Weights = amount by which the weights are increased in step t

advgain® < ¢ - (w; — A*Weights) + AW

Proof of ¢-competitiveness

@ Potential equal to 0 at the beginning and at the end

w(OPT) = advgain® < 3 {¢> - (W'(ALG[t]) — Afweights)} < ¢- w*(ALG)

~

Pavel Vesely Online Packet Scheduling

23/26

Conclusions

Pavel Vesely Online Packet Scheduling 24 /26

Summary

¢ ~ 1.618-competitive deterministic algorithm

@ Schedule packet p € P maximizing ¢ - wp, + w(Q)p)
Q, is the plan after p is scheduled and time is incremented (p & Q,)

Pavel Vesely Online Packet Scheduling 25/26

Summary

¢ ~ 1.618-competitive deterministic algorithm
@ Schedule packet p € P maximizing ¢ - wp, + w(Q)p)
Q, is the plan after p is scheduled and time is incremented (p & Q,)
@ Maintain slot-monotonicity of minwt
Done by increasing weights and decreasing deadlines of certain packets

Pavel Vesely Online Packet Scheduling 25/26

Summary

¢ ~ 1.618-competitive deterministic algorithm
@ Schedule packet p € P maximizing ¢ - wp, + w(Q)p)
Q, is the plan after p is scheduled and time is incremented (p & Q,)
@ Maintain slot-monotonicity of minwt
Done by increasing weights and decreasing deadlines of certain packets

Analysis
@ Potential function

Advantage of the algorithm over the adversary in future steps
Invariant ensures that this advantage is feasible

Pavel Vesely Online Packet Scheduling 25/26

Summary

¢ ~ 1.618-competitive deterministic algorithm
@ Schedule packet p € P maximizing ¢ - wp, + w(Q)p)
Q, is the plan after p is scheduled and time is incremented (p & Q,)
@ Maintain slot-monotonicity of minwt
Done by increasing weights and decreasing deadlines of certain packets

Analysis
@ Potential function

Advantage of the algorithm over the adversary in future steps
Invariant ensures that this advantage is feasible

@ Modifications of adversary schedule to maintain certain invariants

pending for PlanM

ADV
plan P
° @ ious
“backup plan” R (potential)

Pavel Vesely Online Packet Scheduling 25/26

Further Research Directions

m > 1 packets are sent in each step

@ Our algorithm is ¢ ~ 1.618-competitive for any m > 1
— <& — =%, ~ 1.58 [Chin et al. '04]
1—(55) €

@ Can our algorithm be modified to give a better ratio for m > 17

@ The best algorithm has ratio

Pavel Vesely Online Packet Scheduling 26 /26

Further Research Directions

m > 1 packets are sent in each step

@ Our algorithm is ¢ ~ 1.618-competitive for any m > 1
@ The best algorithm has ratio W — 55 ~ 1.58 [Chin et al. '04]
s

@ Can our algorithm be modified to give a better ratio for m > 17

Randomized algorithms O@

@ Improve randomized algorithms using plans

@ Gap between 1.25 [Chin & Fung '04] and %5 ~ 1.58 [Chin et al. '04]

Pavel Vesely Online Packet Scheduling 26 /26

Further Research Directions

m > 1 packets are sent in each step

@ Our algorithm is ¢ ~ 1.618-competitive for any m > 1
@ The best algorithm has ratio W — 55 ~ 1.58 [Chin et al. '04]
s

@ Can our algorithm be modified to give a better ratio for m > 17

Randomized algorithms 0@

@ Improve randomized algorithms using plans

@ Gap between 1.25 [Chin & Fung '04] and —%= & 1.58 [Chin et al. '04]

e—1

Memoryless algorithms

@ s there a lower bound > ¢ for memoryless algorithms?

@ What is the ratio of PLAN(«)? (Schedule p € P max. a - wp + w(Q,))

Pavel Vesely Online Packet Scheduling 26 /26

Further Research Directions

m > 1 packets are sent in each step

@ Our algorithm is ¢ ~ 1.618-competitive for any m > 1
@ The best algorithm has ratio W — 55 ~ 1.58 [Chin et al. '04]
s

@ Can our algorithm be modified to give a better ratio for m > 17

Randomized algorithms 0@

@ Improve randomized algorithms using plans

@ Gap between 1.25 [Chin & Fung '04] and —%= & 1.58 [Chin et al. '04]

e—1

Memoryless algorithms

@ s there a lower bound > ¢ for memoryless algorithms?

@ What is the ratio of PLAN(«)? (Schedule p € P max. a - wp + w(Q,))

Thank you!

Pavel Vesely Online Packet Scheduling 26 /26

	Introduction to competitive analysis
	Model & Result
	Algorithm
	Analysis
	Conclusions

