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An Example: Cabinetmaker

Each week you make one cabinet

1) If you select u, then:

new order v ′ arrives
I deadline next week, reward

16 180 CZK

only one of v and v ′ served

2) If you select v , then:

no order arrives for next week

u expires unserved

These are worst-case scenarios
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Online optimization & algorithms

Online computation Offline computation

Online model

Sequence of events (orders), arrive over time
Algorithm knows only events that arrived so far
Some events ask to make decisions (Monday mornings)

Decisions influence the objective function (rewards served orders)
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Competitive ratio of online algorithms

Worst-case ratio between
I value of the optimum solution OPT and
I value of the algorithm’s solution ALG

Algorithm is R-competitive if for any instance I

OPT(I ) ≤ R · ALG(I )

(assuming maximization)

Game: the algorithm vs. an adversary
I The adversary decides on further input to maximize OPT/ALG
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Model & Result
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Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Goal: maximize total weight of scheduled packets

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in Quality of Service Switches
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Pavel Veselý Online Packet Scheduling 8 / 26



Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time

Each has a deadline and a weight

Time discrete, consisting of slots or steps

One packet transmitted in each step

wp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)
A.k.a. Buffer Management in Quality of Service Switches
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Pavel Veselý Online Packet Scheduling 8 / 26



Online Packet Scheduling with Deadlines

Network switch:

Buffer
Input port Output port

Packets arrive over time (orders)

Each has a deadline and a weight (reward)

Time discrete, consisting of slots or steps

One packet transmitted in each step (weeks)

ALG
OPTwp = 2

rp = 1 dp = 3

1 2 3

Goal: maximize total weight of scheduled packets

Scheduling problem 1|online, rj , pj = 1|
∑

wj(1− Uj)

A.k.a. Buffer Management in Quality of Service Switches
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Previous work

We focus on deterministic algorithms

Greedy algorithm 2-competitive
I Schedules always the heaviest pending packet

Lower bound of the golden ratio
φ = 1

2 (
√

5 + 1) ≈ 1.618 [Hájek ’01, Andelman et al. ’03,

Chin & Fung ’03]

1 +
1

φ
= φ

2
√

2− 1 ≈ 1.828-competitive algorithm [Englert & Westermann ’07]

φ-competitive algorithms for some special instances [Kesselman et al. ’01,

Chin et al. ’04, Li et al. ’05, Bienkowski et al. ’13, Böhm et al. ’16]

Is there a φ-competitive algorithm?

Yes!
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Pavel Veselý Online Packet Scheduling 9 / 26



Previous work

We focus on deterministic algorithms

Greedy algorithm 2-competitive
I Schedules always the heaviest pending packet

Lower bound of the golden ratio
φ = 1

2 (
√
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New result

Theorem

There is a φ-competitive deterministic algorithm.

Key technique: Plan

Max-weight feasible subset of pending packets in step t
I feasible = can be scheduled in slots t, t + 1, . . .

Optimal future profit unless new packets arrive

Scheduled plans (a.k.a. provisional schedules) used already by
[Li et al. ’05, Li et al. ’07, Englert & Westermann ’07]
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Algorithm Plan(φ)

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

Algorithm Plan(φ)

Schedule packet p ∈ P maximizing φ · wp + w(Qp)
I Qp is the plan after p is scheduled and time is incremented (p 6∈ Qp)

P
t

p

t+ 1

Qp

I wp is the gain in this step
I w(Qp) is the optimal future profit unless new packets arrive

Very elegant algorithm . . .
. . . but not φ-competitive
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Pavel Veselý Online Packet Scheduling 12 / 26



Algorithm Plan(φ)

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

Algorithm Plan(φ)

Schedule packet p ∈ P maximizing φ · wp + w(Qp)
I Qp is the plan after p is scheduled and time is incremented (p 6∈ Qp)

P
t

p

t+ 1

Qp

I wp is the gain in this step
I w(Qp) is the optimal future profit unless new packets arrive

Very elegant algorithm . . .

. . . but not φ-competitive
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Plan and its Structure

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

Definition
Slot τ is tight w.r.t. plan P iff

# of slots till τ = # of packets j ∈ P : dj ≤ τ

Definition

Segment = interval between tight slots
P
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Pavel Veselý Online Packet Scheduling 13 / 26



Plan and its Structure

Plan P
Max-weight feasible subset of pending packets in step t

I feasible = can be scheduled in slots t, t + 1, . . .

1 2 3 4 5

0.1

0.6

0.5
1.6
1

0.4

Plan:

6∈ plan

10.5 1.6 0.6 0.1

Definition
Slot τ is tight w.r.t. plan P iff

# of slots till τ = # of packets j ∈ P : dj ≤ τ

Definition

Segment = interval between tight slots
P
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Plan Updates After Packet p is Scheduled

p in the 1st segment (“greedy step”)

dp

p

dp

P

Qp

p in a later segment (“leap step”)

` = lightest in the 1st segment

% = heaviest not in P which can replace p
I replacement packet for p
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Pavel Veselý Online Packet Scheduling 14 / 26



Problem of Plan(φ): Weight Decreases in the Plan

minwt(τ) = min-weight in P till the next tight slot after τ
I In a schedule of P, any packet can be in the 1st slot of a segment

t τ

minwt(τ)

minwt after plan updates

minwt(τ) does not decrease for any τ :
I after arrival of a new packet
I after scheduling a packet from the 1st segment (greedy step)

minwt(τ) decreases for some τ after sch. a packet from later segment

dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)
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Solution: Maintaining Slot-Monotonicity of minwt

Idea: modify Plan(φ) so that minwt(τ) never decreases for any τ

dp

p

dp

d%

d%

%

`P

Qp

The problem:
% 6∈ P ⇒ w% < minwt(d%)

⇒ increase the weight of % to minwt(d%)

Not enough if segments merge:

t τ

minwt(τ)

t+ 1
τ

dp d%

dp d%

⇒ avoid merging segments
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Algorithm PlanM(φ) Maintaining Slot-Monotonicity

Schedule packet p ∈ P maximizing φ · wp + w(Qp)
I Qp is the plan after p is scheduled and time is incremented (p 6∈ Qp)

If p is not in the 1st segment of P (leap step):
I Increase the weight of % to minwt(d%)
I Avoid merging segments:

I ensure: whi ≥ minwt(τi−1)
F if whi < minwt(τi−1), then set new weight of hi to minwt(τi−1)
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I stop when τi = γ

I ensure: whi ≥ minwt(τi−1)
F if whi < minwt(τi−1), then set new weight of hi to minwt(τi−1)

In a nutshell
Avoid merging segments and minwt decreases in a right way

F Done by decreasing deadlines and increasing weights of certain packets
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Pavel Veselý Online Packet Scheduling 18 / 26



Analysis Overview

Competitive analysis
I Goal: w(OPT) ≤ φ · w(ALG) for any instance

I Game between algorithm and adversary
F Adversary schedules packets from OPT

Amortization Techniques

1 Increasing weights
I Algorithm’s future profit may get higher

F Decrease algorithm’s current profit by weight increase

2 Potential function

3 Modifications of the adversary (optimal) schedule ADV
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Adversary Schedule ADV

Consists of already-released packets from OPT in future slots

Packet in ADV can be replaced by

{
another lighter packet,

fictitious “treasure packets”

Adversary’s gain increased by total weight decrease in ADV

Fictitious “treasure packet”

Not pending for the algorithm

Tied to a slot τ in ADV, no release time or deadline, never changes in future

Deposit of profit to be collected by the adversary

Weight bounded by minwt(τ)

Slot-monotonicity: minwt(τ) never decrease

Invariant (A)

ADV consists of two types of packets:

{
(real) packets in plan P

all other packets are treasures
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Pavel Veselý Online Packet Scheduling 20 / 26



Adversary Schedule ADV

Consists of already-released packets from OPT in future slots

ADV

OPT

1 2 3 4 5

a b c d e

Adversary’s gain:b da

Packet in ADV can be replaced by

{
another lighter packet,

fictitious “treasure packets”

Adversary’s gain increased by total weight decrease in ADV

Fictitious “treasure packet”

Not pending for the algorithm

Tied to a slot τ in ADV, no release time or deadline, never changes in future

Deposit of profit to be collected by the adversary

Weight bounded by minwt(τ)

Slot-monotonicity: minwt(τ) never decrease

Invariant (A)

ADV consists of two types of packets:

{
(real) packets in plan P

all other packets are treasures
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Pavel Veselý Online Packet Scheduling 20 / 26



Adversary Schedule ADV

Consists of already-released packets from OPT in future slots

ADV

OPT

1 2 3 4 5

a b c d e

Adversary’s gain:b da wac e +wbftc +(wd − wf )+(wc − wtc) +wtc

Packet in ADV can be replaced by

{
another lighter packet,

fictitious “treasure packets”

Adversary’s gain increased by total weight decrease in ADV

Fictitious “treasure packet”

Not pending for the algorithm

Tied to a slot τ in ADV, no release time or deadline, never changes in future

Deposit of profit to be collected by the adversary

Weight bounded by minwt(τ)

Slot-monotonicity: minwt(τ) never decrease

Invariant (A)

ADV consists of two types of packets:

{
(real) packets in plan P

all other packets are treasures
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Potential Function

Relative advantage of the algorithm over the adversary:

P \ ADV = packets in the plan that the adversary will not schedule

Set F
I Pending packets forced out of the plan
I Can be used as replacement packets in a leap step

“Backup plan” R = P \ ADV ∪ R

Invariant

Backup plan R is feasible
R feasible = packets in R can be scheduled in future slots t, t + 1, . . .

Potential

Ψ :=
1

φ
w(R)
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Packet Types in the Analysis

pending for PlanM

not in plan P

F

plan P
ADV

fictitious
P ∩ ADVP \ ADV

“backup plan” R (potential)
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Overview of the Analysis

To prove

Packet arrival: ∆Ψ ≥ 0

Scheduling step t
I j = ADV[t] scheduled by the adversary (possibly j 6= OPT[t])
I p = ALG[t] scheduled by the algorithm
I Adversary gain advgaint = w t

j + credit for replacing packets
I ∆tWeights = amount by which the weights are increased in step t

advgaint ≤ φ · (w t
p −∆tWeights) + ∆Ψ

Proof of φ-competitiveness

Potential equal to 0 at the beginning and at the end

w0(OPT) =
∑
t

advgaint ≤
∑
t

[
φ · (w t(ALG[t])−∆tWeights)

]
≤ φ · w0(ALG)

Pavel Veselý Online Packet Scheduling 23 / 26



Overview of the Analysis

To prove

Packet arrival: ∆Ψ ≥ 0

Scheduling step t
I j = ADV[t] scheduled by the adversary (possibly j 6= OPT[t])
I p = ALG[t] scheduled by the algorithm

I Adversary gain advgaint = w t
j + credit for replacing packets

I ∆tWeights = amount by which the weights are increased in step t

advgaint ≤ φ · (w t
p −∆tWeights) + ∆Ψ

Proof of φ-competitiveness

Potential equal to 0 at the beginning and at the end

w0(OPT) =
∑
t

advgaint ≤
∑
t

[
φ · (w t(ALG[t])−∆tWeights)

]
≤ φ · w0(ALG)
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Pavel Veselý Online Packet Scheduling 23 / 26



Overview of the Analysis

To prove

Packet arrival: ∆Ψ ≥ 0

Scheduling step t
I j = ADV[t] scheduled by the adversary (possibly j 6= OPT[t])
I p = ALG[t] scheduled by the algorithm
I Adversary gain advgaint = w t

j + credit for replacing packets
I ∆tWeights = amount by which the weights are increased in step t

advgaint ≤ φ · (w t
p −∆tWeights) + ∆Ψ

Proof of φ-competitiveness

Potential equal to 0 at the beginning and at the end

w0(OPT) =
∑
t

advgaint ≤
∑
t

[
φ · (w t(ALG[t])−∆tWeights)

]

≤ φ · w0(ALG)
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]
≤ φ · w0(ALG)
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Summary

φ ≈ 1.618-competitive deterministic algorithm

Schedule packet p ∈ P maximizing φ · wp + w(Qp)
I Qp is the plan after p is scheduled and time is incremented (p 6∈ Qp)

Maintain slot-monotonicity of minwt
I Done by increasing weights and decreasing deadlines of certain packets

Analysis

Potential function
I Advantage of the algorithm over the adversary in future steps
I Invariant ensures that this advantage is feasible

Modifications of adversary schedule to maintain certain invariants
pending for PlanM

not in plan P

F

plan P
ADV

fictitious
P ∩ ADVP \ ADV

“backup plan” R (potential)
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Further Research Directions

m ≥ 1 packets are sent in each step

Our algorithm is φ ≈ 1.618-competitive for any m ≥ 1

The best algorithm has ratio 1

1−( m
m+1 )m

→ e
e−1
≈ 1.58 [Chin et al. ’04]

Can our algorithm be modified to give a better ratio for m > 1?

Randomized algorithms

Improve randomized algorithms using plans

Gap between 1.25 [Chin & Fung ’04] and e
e−1
≈ 1.58 [Chin et al. ’04]

Memoryless algorithms

Is there a lower bound > φ for memoryless algorithms?

What is the ratio of Plan(α)? (Schedule p ∈ P max. α · wp + w(Qp))

Thank you!

Pavel Veselý Online Packet Scheduling 26 / 26



Further Research Directions

m ≥ 1 packets are sent in each step

Our algorithm is φ ≈ 1.618-competitive for any m ≥ 1

The best algorithm has ratio 1

1−( m
m+1 )m

→ e
e−1
≈ 1.58 [Chin et al. ’04]

Can our algorithm be modified to give a better ratio for m > 1?

Randomized algorithms

Improve randomized algorithms using plans

Gap between 1.25 [Chin & Fung ’04] and e
e−1
≈ 1.58 [Chin et al. ’04]

Memoryless algorithms

Is there a lower bound > φ for memoryless algorithms?

What is the ratio of Plan(α)? (Schedule p ∈ P max. α · wp + w(Qp))

Thank you!
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Pavel Veselý Online Packet Scheduling 26 / 26


	Introduction to competitive analysis
	Model & Result
	Algorithm
	Analysis
	Conclusions

