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Abstract

Online packet scheduling with deadlines is one of the fundamental models in buffer
management. Recently, the author together with Chrobak, Jeż, and Sgall (SODA 2019)
designed an optimal φ-competitive algorithm for this problem, where φ ≈ 1.618 is the golden
ratio. In this column, we sketch ideas that led us to the development of this algorithm and
outline the concepts in its analysis. We also highlight open questions in packet scheduling.

1 Introduction

In the online packet scheduling problem with deadlines (PacketSchD), packets arrive over time to
a buffer of unlimited capacity to be transmitted over a network link. Each packet is characterized
by its deadline dp, corresponding to its urgency, and weight wp, which represents its priority.
In each time step, only one packet can be selected for transmission, while all packets with
expired deadlines are dropped from the buffer. Naturally, the algorithm aims to maximize
its profit, equal to the total weight of transmitted packets. This problem is also referred to
as the bounded-delay buffer management in QoS switches and was introduced independently
by Hajek [15] and Kesselman et al. [18]; in the former paper, Hajek stated it equivalently as
a scheduling problem on a single machine with jobs of unit processing time characterized by
weights, release times, and deadlines, where the goal is to maximize the weighted throughput.

While in the offline setting the problem reduces to a weighted bipartite matching, we are
naturally interested in online algorithms and in particular, in determining the competitive ratio,
which is the worst-case ratio between the optimal profit, computed by an offline algorithm, and
the profit of the best online algorithm. Both Hajek [15] and Kesselman et al. [18] showed the
2-competitiveness of the Greedy algorithm that always transmits the heaviest pending packet,
where a pending packet is any (non-expired) packet in the buffer. Hajek also discovered a lower
bound of φ on the competitive ratio of any deterministic algorithm, where φ = (1+

√
5)/2 ≈ 1.618

is the famous golden ratio, defined as the positive root of equation φ2 = φ+ 1. The same lower
bound was independently proven by Andelman et al. [2, 25] and by Chin and Fung [9].

Improving upon the (very simple) 2-competitive Greedy is non-trivial. Chrobak et al. [10]
were the first to beat it by giving a 64/33 ≈ 1.939-competitive algorithm that selects either the
heaviest packet h or the earliest-deadline packet e with we ≥ (7/11) · wh. Li, Sethuraman, and
Stein [20] improved the ratio to 3/φ ≈ 1.854, and Englert and Westermann [13] pushed the ratio
further to 2

√
2− 1 ≈ 1.828, which remained the best result for over 10 years. The latter two

algorithms rely on concepts similar to those described in Section 2. Many other papers made
progress on this problem by studying restricted instances or by designing randomized algorithms;
we outline these results in Section 6.

Recently, the author together with Chrobak, Jeż, and Sgall [24, 23] determined the competitive
ratio by developing a deterministic φ-competitive algorithm, thus matching the aforementioned
lower bound. This article is mainly devoted to providing an insight into this result, in a more
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accessible way than in the full paper [24, 23], necessarily skipping some technical details and
proofs (in fact, we only sketch the analysis of the algorithm, which would by no means fit into
this column). Here, concepts are presented in a slightly different way than in [24, 23], similarly
as we discovered them during 2016-2018. We refer an interested reader to the original paper [24]
and its full version [23] for details and formal proofs. We hope that such an insight inspires
other researchers and will lead to further exciting results!

Organization. Section 2 introduces the concept of a plan together with an algorithm, which
is a “linear combination” of Greedy and its opposite. We delve into the structure of plans in
Section 3, and we sketch why a certain monotonicity property is useful in Section 4, which also
describes our φ-competitive algorithm. Section 5 provides a bird’s eye view of the analysis. We
close by giving several open problems in packet scheduling in Section 6, together with more
related work.

Preliminaries. We need a few simplifying assumptions. First, we assume that all packet
weights are distinct, which is without loss of generality (w.l.o.g.) by an infinitesimal perturbation
of weights. Second, in any step t and for any τ ≥ t, we assume that there is a pending packet
with deadline τ (or even more such packets if needed), which is w.l.o.g. by releasing virtual
0-weight packets with deadline τ .1

2 Why Not Make a Plan?

The first idea that may come to mind when designing an algorithm is to select the heaviest
pending packet (i.e., the one with the largest weight) for transmission in each step. This Greedy
algorithm is 2-competitive [15, 18], and its analysis is nearly as simple as the algorithm: The
adversary profit is amortized using a charging scheme, which charges the adversary profit of wj
from transmitting a packet j in step t to the algorithm’s profit in step t if j is pending for Greedy,
and otherwise, to the step t′ < t in which Greedy sends j; see Figure 1(a) for an illustration. It
is not difficult to complete the analysis, and we leave it as an exercise. Figure 1(a) also shows a
tight instance, consisting of just two packets.

Greedy transmits the heaviest packet regardless of its deadline, thus in a sense making an
implicit assumption that similarly heavy packets will arrive in subsequent steps. One may replace
this overly “optimistic” approach by a “pessimistic” one: Transmit a packet that maximizes the
total profit starting from the current step, assuming that no more packets arrive in subsequent
steps. To describe this pessimistic approach more precisely, we define plans:

Definition 1. A plan X at a certain time step t (w.r.t. an algorithm under consideration) is a
feasible subset of pending packets, where feasible means that packets in X can be scheduled in
slots t, t+ 1, . . . without violating their deadlines.

Among many plans at time t, of particular importance is the optimal plan, denoted P t,
which is the plan of the largest total weight of packets; see Figure 1(c) for an example. A
useful property is that P t can be computed by the (offline) greedy algorithm that adds pending
packets in the order of decreasing weights subject to the set remaining feasible; this works as
the set of plans forms a matroid (see [18] for a more general proof). Thus, the optimal plan
is unique under the assumption about distinct weights. Note that an (optimal) plan is only a
set of pending packets and not a schedule (i.e., an assignment of packets to time slots). The
algorithms in [20, 13] rely on the optimal provisional schedule, which is a schedule of the optimal
plan with packets ordered by deadlines.

1In fact, by the first assumption, these virtual packets have distinct infinitesimal positive weights. Also, we
gloss over some technical issues in these assumptions, which are discussed in [23].
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Figure 1: In the tight examples, each packet p is depicted by a line segment, split into slots in
which the packet can be transmitted, and wp appears to the left of this segment. The slot in
which the algorithm transmits p (if any) is depicted by a red rectangle. In examples (a) and (b),
the optimal schedule transmits both heavy packets, implying that the ratio is 2. In (a), we also
illustrate a charging scheme for Greedy; note that packet p is pending in step t+ 1. In (c), the
packet (of weight) 0.4 is not in the optimal plan P 1, and we show a particular schedule of P 1;
note that, for example, the slots of packets 1.6 and 0.5 can be swapped. As defined in Section 3,
the tight slots of P 1 are 3, 4, and 5, and the segments are [1, 3], [4, 4], and [5, 5].

Now, the pessimistic algorithm, that we call PlanGreedy, is as follows: Transmit packet p ∈ P t
that maximizes the total weight of the optimal plan Qt+1

p in the next step after transmitting
p, assuming no packets arrive in the next step (ties are broken in favor of heavier packets).
Naturally, the algorithm is not aware of packets arriving in the next step, and p /∈ Qt+1

p . The
idea is that we are trying to “save” heavy packets for future steps, unless they are urgent. This
algorithm can also be defined in a different way: Select a packet with the smallest deadline
in the optimal plan P t. (These two formulations are not really equivalent but the details are
beyond the scope of this column.) As it turns out, PlanGreedy is also 2-competitive (by a more
involved proof than for Greedy, using some ideas from Section 5), and a tight instance is depicted
in Figure 1(b).

As one can observe, the tight instances for Greedy and PlanGreedy are somewhat opposite.
The first key idea on the way to a φ-competitive algorithm is to consider a linear combination
of these “opposite” algorithms. Namely, for a parameter α ≥ 0, consider algorithm Plan(α)
that transmits packet p maximizing α ·wp +w(Qt+1

p ), where Qt+1
p is defined in the same way as

for PlanGreedy. Observe that for α = 0, we get PlanGreedy, whereas for α→∞ we obtain an
algorithm arbitrarily close to Greedy. Naturally, the selected packet p is always in the optimal
plan. An analysis of 2-bounded instances, where each packet can only be transmitted in one or
two times steps, as well as other examples reveal that one should set the parameter α to φ in
order to obtain a φ-competitive algorithm.

Unfortunately, Plan(φ) is not φ-competitive, and a (somewhat involved) counterexample is
described in Appendix C in [23]. In order to understand why and to be able to fix it, we first
need to describe the structure of the optimal plan and its changes after packet transmissions.

3 Properties of Plans

As defined above, an (optimal) plan is not a schedule, just a feasible set of pending packets.
Thus, there is often some flexibility in assigning packets from P t into time slots, and our goal is
to understand this flexibility, using the following definition.

Definition 2. A slot τ is tight w.r.t. the optimal plan P t in step t if the number of packets
in P t with deadline at most τ equals τ − t+ 1.
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Figure 2: Illustration of changes in the optimal plan in three cases: (a) an ordinary step, (b)
a leap step with dρ ≤ dp, and (c) a leap step with dρ > dp. Optimal plans are depicted by a
rectangle, with tight slots given by vertical line segments.

Note that the number of slots t, t+ 1, . . . , τ is τ − t+ 1 and thus, P t could contain no more
than τ − t+ 1 packets with deadline at most τ . Let α1 < α2 < α3 < · · · be the tight slots in P t.
Tight slots naturally divide time slots t, t+ 1, . . . into intervals, called segments. Namely, the
segments are [α0 + 1, α1], [α1 + 1, α2], . . . , where slot α0 = t− 1 is also considered to be tight.
A moment’s thought reveals that in any schedule of P t, packets with deadline in [αi−1 + 1, αi]
must be assigned to slots [αi−1 + 1, αi]. Thus, packets in P t are also divided into the segments
by their deadlines, and a packet from one segment cannot be scheduled in another segment.
Within a segment, there exists some limited flexibility and in particular, any packet in P t can
be assigned to the first slot of its segment. See Figure 1(c) for an example.

The first step in understanding Plan(φ) (or any algorithm based on plans) is to figure out
how the optimal plan changes just after the transmission of a packet p and incrementing the
time but before new packets arrive in step t+ 1; as above, we denote this new optimal plan by
Qt+1
p . We distinguish two types of transmissions by Plan(φ) w.r.t. changes in the optimal plan:

“Ordinary” step: A packet p from the first segment [t, α1] is transmitted. Then we simply have
Qt+1
p = P t \ {p}, which can be proven using matroid properties of plans.

“Leap” step: The algorithm chooses a packet p with dp > α1. In this case, the change in the
optimal plan is more involved: Let ` be the lightest packet in the first segment, and let αi
be the tight slot such that dp ∈ [αi + 1, αi+1], i.e., p belongs to the segment just after αi.
Finally, let ρ be the heaviest pending packet not in P t with dρ > αi. Then the new optimal
plan is Qt+1

p = P t \ {`, p} ∪ {ρ}. Intuitively, ` is pushed out because of incrementing the
time step (as slot t cannot be used any more), while p is replaced by ρ. For this reason, ρ
is called the substitute packet for p.

The structure of the new optimal plan, i.e., the tight slots, may change. Namely, in both cases,
the first segment may be split into more segments as new tight slots may appear in (t, α1).
Moreover, for a leap step, the replacement of p by ρ may either cause new tight slots to appear
in [dρ, dp) if dρ ≤ dp, or in the case dρ > dp, all tight slots in [dp, dρ) (if there are any) are
no longer tight in Qt+1

p , i.e., the segments containing dp and dρ and any segments in between
are merged. Otherwise, tight slots are preserved between P t and Qt+1

p . See Figure 2 for an
illustration. Similarly, we can derive how the optimal plan changes after a packet arrival, but
this is not going to be important in this article. An interested reader is referred to Appendix A
in [23] for a detailed treatment of these changes in response to packet arrivals and transmissions.

4 It’s All About Monotonicity

The next key step that led us to obtaining the result was to consider the function that for a
given slot τ , captures the minimum weight that can appear in a slot τ ′ ≤ τ in a schedule of P t.
More precisely, for a plan P t in step t and a slot τ ≥ t, let nextts(P t, τ) = min{αi : αi ≥ τ} be
the next tight slot at or after τ , and define:
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Figure 3: An example of a graph of minwt on the left. Tight slots are depicted by vertical dashed
lines. The graph on the right shows how minwt changes after a leap step with dρ > dp, when
some segments get merged.

minwt(P t, τ) = min{wq : q ∈ P t & dq ≤ nextts(P t, τ)}.

We consider the next tight slot at or after τ because of the aforementioned flexibility in the
schedules of P t, namely, that any packet in P t may appear in the first slot of its segment.
Observe that minwt(P t, τ) for a fixed P t is non-increasing for increasing τ and constant within
a segment; see Figure 3 for an example.

This function is useful as it upper bounds the weights of packets not in the optimal plan
P t, i.e., for any pending packet q /∈ P t, it holds that wq < minwt(P t, dq). Note that at any time
step t, the adversary may release a packet with weight just below minwt(P t, t) and deadline t
(i.e., expiring immediately) without modifying the optimal plan P t or the behavior of algorithm
Plan(φ).

Our focus will be on how the value of minwt(P t, τ) for a fixed τ changes as packets arrive and
are transmitted. It is relatively easy to see that when a new packet arrives, minwt(P t, τ) does
not decrease for any τ , and the same holds when a packet from the first segment is transmitted,
i.e., in an ordinary step. However, after a leap step, the value of minwt(P t, τ) decreases for some
τ , e.g., for τ = dρ, as the substitute packet ρ is not in P t, implying that wρ < minwt(P t, dρ),
but ρ gets added to Qt+1

p .

Slot-monotonicity. One major step in designing a φ-competitive algorithm was to prove
φ-competitiveness of Plan(φ) on instances in which the following slot-monotonicity property
holds: For any τ , the value of minwt(P t, τ) does not decrease in any step until τ . By the above
discussion, these are instances on which Plan(φ) doesn’t execute leap steps (so these are not
some “natural” instances as their definition is based on the behavior of a specific algorithm).
This analysis of Plan(φ) uses the concepts described in Section 5. On the other hand, in the
aforementioned example with a ratio over φ for Plan(φ), the algorithm executes a few leap steps,
which cause significant decreases of minwt(P t, τ) for some slots τ .

And here comes the main idea: While the slot-monotonicity property doesn’t hold on general
instances, our algorithm increases weights and decreases deadlines of pending packets so that
minwt(P t, τ) does not decrease for any τ , even in leap steps. Thus, for a packet p, wp and dp
are no longer constant during the computation, and by wtp and dtp we denote the weight and
deadline, respectively, of packet p in step t. Naturally, the actual profit of the algorithm from
transmitting p is w0

p, the original weight of p. However, the optimal plan P t is always computed
w.r.t. the current weights and deadlines of packets, i.e., taking the adjustments into account.

Figuring out the particular adjustments to maintain the slot-monotonicity property still
requires some care. As argued above, this is only needed in leap steps, and the most obvious
adjustment is to increase the weight of ρ to minwt(P t, dtρ). While this is sufficient when dtρ ≤ dtp,
the value of minwt(P t, τ) may still decrease if dtρ > nextts(P t, dtp) as at least two segments of p
get merged into one segment; see the right part of Figure 3. Hence, we want to avoid merging
segments, and we achieve this by decreasing deadlines.

One of the simplest options is to set the new deadline of ρ to min(dtp, dtρ), thus ensuring that
dt+1
ρ ≤ dtp (after the deadline adjustment), which prevents merging segments. In a way, we “shift”
ρ from its segment in P t to the segment of p. Unfortunately, this and other simple ways to avoid
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Figure 4: Illustration of the “iterative shift” of packets h1, . . . , hk in a leap step with dtρ > dtp.

merging segments in a leap step do not yield a φ-competitive algorithm (see Appendix C in [23]
for counterexamples). In a nutshell, the reason is that there may be a packet g that is nearly as
heavy as p and belongs to a segment somewhere in between the segments containing dtp and dtρ.
If we decrease the deadline of ρ (or of another packet from the segment containing dtρ) to dtp,
then ρ would become more urgent than a possibly much heavier packet g, and this is intuitively
not right — we should rather decrease the deadline of g.

Based on this observation, a right way to avoid merging segments is to do a rather involved
“iterative shift“ of certain, carefully selected heavy packets. Recall that tight slots of P t belonging
to [dtp, dtρ) would disappear after replacing p by ρ in the optimal plan unless we make suitable
adjustments of deadlines. Let τ0 = nextts(P t, dtp) and γ = nextts(P t, dtρ). First, if dtρ > τ0 (i.e.,
dtρ is in a later segment than dtp), we select the heaviest packet h1 in P t with deadline in (τ0, γ].
We decrease the deadline of h1 to τ0, which restores all tight slots of P t in [τ0, d

t
h1

).2 Next, we
let τ1 = nextts(P t, dth1

) and if τ1 = γ, then we’re done. Otherwise, we iterate the above, with h1
taking the role of p. Namely, we select h2 as the heaviest packet in P t with deadline in (τ1, γ],
decrease the deadline of h2 to τ1, and let τ2 = nextts(P t, dth2

). Then, if τ2 < γ, we do another
iteration, and so on, until τi = γ. This iterative shift is illustrated in Figure 4.

This is not as simple as one would like and moreover, not even sufficient for the slot-
monotonicity property. One last bit is needed: When we shift packet hi to an earlier segment (by
decreasing its deadline to τi−1), it may happen that wthi

< minwt(P t, τi−1), i.e., hi is too light
for its new segment. To rectify this final issue, we increase the weight of hi to minwt(P t, τi−1).
With all these adjustments, the slot-monotonicity property holds and finally, it is possible to
prove φ-competitiveness.

Algorithm 1 provides a pseudocode of the resulting algorithm PlanM. We use notation wtp
and dtp for the weight and deadline, respectively, of a packet p in step t, before the algorithm
transmits a packet (note that there are no adjustments done upon packet arrivals). We remark
that line 1 corresponds to algorithm Plan(φ), and is stated in a different, but equivalent way
compared to [24, 23].

Algorithm 1 Algorithm PlanM(t)
1: transmit packet p ∈ P t that maximizes φ · wtp + wt(Qt+1

p ) . P t is the optimal plan
2: if dtp > α1 then . “leap step”
3: let ρ be the (only) packet in Qt+1

p \ P t
4: wt+1

ρ ←minwt(P t, dtρ) . increase wρ
5: γ← nextts(P t, dtρ) and τ0← nextts(P t, dtp)
6: i← 0
7: while τi < γ do
8: i← i+ 1
9: hi← the heaviest packet in P t(τi−1, γ]

10: τi← nextts(P t, dthi
)

11: dt+1
hi
← τi−1 and wt+1

hi
← max(wthi

,minwt(P t, τi−1)) . adjusting packet hi

2One may ask why we don’t set the new deadline of h1 to dt
p, instead of τ0 ≥ dt

p. The reason is that a certain
argument in the analysis would not work, while using τ1 is sufficient for slot-monotonicity.
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Figure 5: Illustrations of the schedules of PlanM and of OPT in the two cases described in
Section 5. The arrows depict our charging in these cases, and they are labeled with the amount
being charged.

5 A Few Bits of the Analysis

Intuition. Before we introduce the main concepts used to prove φ-competitiveness of PlanM,
it is helpful to consider the following two cases. The first case repeatedly appears in the lower
bound of φ in [15, 2, 25, 9]. Namely, suppose that in step t, PlanM selected a packet e with de = t,
while the adversary transmits a heavy packet h with dh > t that appears in the optimal plan
P t, and we have that we = wh/φ

2. (A calculation shows that if we < wh/φ
2, PlanM wouldn’t

transmit e. Here, we drop index t from weights and deadlines for simplicity.) In the analysis,
the adversary’s profit of wh in step t is split into two parts: wh/φ2 is charged to the algorithm’s
profit of we = wh/φ

2 in step t, while the remaining part of wh/φ (using φ−2 + φ−1 = 1) is
charged to a future step t′ > t — if h is eventually transmitted by PlanM in step t′′, then t′ = t′′;
otherwise, t′ is a step when another packet heavier than h is transmitted. See Figure 5(a) for an
illustration.

Thus, the algorithm’s profit of φ · we (scaled up by φ to facilitate φ-competitiveness) is
split into we used to cover wh/φ2, while the rest (i.e., we/φ) covers a possible charge from an
adversary transmission before step t (which is the transmission of e or of a packet lighter than
e). Intuitively, in such situations, the algorithm is only “catching up” with the adversary, which
transmits heavy packets sooner. Consequently, the algorithm has a certain advantage in future
steps, namely, still having those heavy packets in the buffer, and this is naturally quantified by
a suitable potential function in the analysis.

Still, we are not done as the opposite case may happen: The algorithm transmits a relatively
heavy packet p in step t that the adversary saves for a future step t′ > t. As p is no longer
pending in step t′, the algorithm may select a very light packet at t′, even of weight below wp/φ

2.
Thus, we are not able to charge wp/φ2 to the algorithm’s profit in step t′. Instead, we amortize
the adversary profit so that it receives an additional profit of wp −minwt(P t, t′) in step t, while
we decrease the adversary profit in step t′ to minwt(P t, t′). As minwt(P t′ , t′) ≥ minwt(P t, t′),
a packet of weight at least minwt(P t, t′) is transmitted in step t′; here, we crucially rely on
having the slot-monotonicity property. This amortization of the adversary profit, illustrated in
Figure 5(b), comes in handy also in similar cases.

Such intuition (together with considering more involved examples) eventually led us to
developing the following three amortization techniques, which we use to show φ · w0(ALG) ≥
w0(OPT) for the schedule ALG computed by PlanM and the optimal schedule OPT (recall that
w0 refers to the original packet weights):

• In the analysis, the algorithm’s profit in step t is the current weight of the transmitted
packet that may have been increased in a previous step t′ < t. Thus, when the algorithm
increases the weight of a packet in a leap step t′, we decrease its profit at t′ by the weight
increase (see (1) below). This ensures that the algorithm’s profits sum up to w0(ALG).

• We amortize the optimal profit of w0(OPT) using function minwt and an “adversary stash”
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At, briefly introduced below. Essentially, the adversary gets the profit from packets in At
in a future step.

• We use a potential function that quantifies a certain advantage of the algorithm over
the adversary in future steps. It is based on packets in a so-called “backup plan” Bt,
which is a feasible set of pending packets used in the analysis. We maintain the invariant
that Bt ∩ P t = P t \At and that Bt is feasible. Intuitively, packets in P t \At present an
advantage for the algorithm, since they are pending for the algorithm and relatively heavy
as they belong to the optimal plan, but the adversary won’t get any profit for them in
future steps as they do not appear in At. Furthermore, packets in Bt \ P t are available as
potential substitute packets ρ in leap steps and thus, also present an advantage for the
algorithm. Considering the first case above, where we charge wh/φ from step t to step
t′ > t, we define the potential function as Ψt := 1

φw
t(Bt).

Adversary stash and amortization of w0(OPT). We need to keep track of the adversary
future profit associated with already released packets. However, as suggested in the second
example above, we may need to partially charge the adversary future profit to the current step,
thus effectively decreasing its profit in a future step.

Another observation is that any released packet q in slot τ ≥ t of OPT with wq < minwt(P t, τ)
doesn’t need to be explicitly remembered. This is because of the slot-monotonicity property, i.e.,
that minwt(P t, τ) for the fixed τ does not decrease, and because in step τ , the adversary may
release and transmit a packet with weight just below minwt(P τ , τ) and deadline τ , which does
not change the algorithm’s behavior. As packets p of weight at least minwt(P t, dp) are in the
optimal plan P t, we only keep track of the adversary future packets that are in P t.

In particular, we use an adversary stash At, which is a subset of packets in P t together with
their assignment to slots t, t+ 1, t+ 2, . . . (i.e., At is not only a set of pending packets but also
their schedule). We maintain the invariant that At ⊆ P t and that no packet in At is assigned
to a slot after its current deadline. When a packet q arrives in step t, if it is added to P t and
if it appears in a future step t′ > t in OPT, we add q to At and assign it to slot t′. Packet q
may later be removed from At or even replaced by a lighter packet; the latter modification is
used under certain conditions in a leap step for packets hi. Removal of q from At happens, for
example, when the current time t reaches t′, or when q is transmitted by the algorithm (as in
the second example above), or when wtq gets below minwt(P t, t′), i.e., when q is no longer in the
optimal plan. There are also other cases in which we modify At, however, their description is
beyond the scope of this informal overview.

We now briefly explain the amortization of the adversary profit of w0(OPT). In the analysis
of step t, we consider two cases: If slot t of At contains a packet j, the adversary gets a credit
of wtj . Otherwise, slot t is empty in At and the adversary credit is minwt(P t, t). Furthermore,
whenever we remove a packet q in slot τ of At, we give the adversary a credit of wtq−minwt(P t, τ)
as a compensation for this change. Replacing a packet in At by another, lighter packet is also
appropriately compensated by the credit equal to the weight difference. Let advcreditt be the
total credit the adversary receives in step t, including all the compensations for adjustments
in At. Using the slot-monotonicity property, we can show that ∑

t advcreditt ≥ w0(OPT), as
required.

The analysis continues by proving that the potential Ψt does not decrease when new packets
arrive, while we can maintain the feasibility of backup plan Bt and other invariants — this part
is relatively straightforward. The main part of the analysis is to analyze packet transmissions.
We need to preserve the invariants, while also showing the following inequality:

φ · wt(ALG[t])− φ · (∆tw) + ∆tΨ ≥ advcreditt , (1)
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where ALG[t] is the packet transmitted by PlanM in step t, ∆tw is the total increase of packet
weights in step t, and ∆tΨ is the change of the potential in step t. Summing up this inequality
over all steps and using ∑

t advcreditt ≥ w0(OPT), the proof of φ-competitiveness follows.

Admittedly, the resulting algorithm is slightly complicated (one would hope for just a couple
of lines of pseudocode), and even worse, the full analysis in [23] with all the details and careful
explanations takes about 40 pages. Thus, it would be interesting to see a simpler optimal
algorithm or at least an algorithm admitting a simpler analysis. As mentioned in Section 4 and
elaborated in Appendix C of [23], our attempts at simplifying PlanM failed.

6 Open Problems in Packet Scheduling

We have summarized ideas behind the optimal deterministic algorithm for PacketSchD. However,
this is definitely not the end of the story of packet scheduling algorithms. Here, we list several
open problems for future work, together with more related work. A more comprehensive list
of open problems in packet scheduling and related models can be found in the author’s PhD
thesis [22] as well as in the excellent survey by Goldwasser [14] (also in SIGACT News), which
is still mostly up-to-date, even though it’s from 2010!

Memoryless algorithms. Apart from being a bit more complicated than one would wish,
PlanM uses memory to maintain adjustments of packet properties (packets stored in the buffer
do not count as a usage of memory). It is thus natural to ask if we can obtain the ratio of φ
using a memoryless algorithm. Such algorithms are likely to be simpler, more practical, and
faster, due to requiring less resources. A nice feature is that such algorithms make the same
decision given the same buffer contents, i.e., the same set of pending packets; this could be
exploited to improve the lower bound of φ for them. The 2-competitive Greedy is memoryless,
and the only better such deterministic algorithm is the 1.893-competitive algorithm by Englert
and Westermann [13].

Open Problem 1. Design a φ-competitive memoryless deterministic algorithm for PacketSchD,
or improve the lower bound for memoryless algorithms.

A promising approach for improving the lower bound is to try to adapt the lower bound of
1.633 by Bieńkowski et al. [6] for Item Collection, a more general model where the algorithm
is only aware of the ordering of packets by deadlines, not of actual values of the deadlines (before
they expire).

Randomized algorithms. There is quite a substantial gap in our understanding of the
competitive ratio of randomized algorithms. For both oblivious and adaptive adversaries, the
best upper bound is e/(e− 1) ≈ 1.582 [3, 8, 7, 21], and it was proven even for a more general
problem of online vertex-weighted bipartite matching [1, 11]. Chin and Fung [9] showed a lower
bound of 1.25 for the oblivious case, while Bieńkowski et al. [7] obtained a lower bound of 4/3
against the adaptive adversary (both of these lower bounds only use simple 2-bounded instances,
defined below). We believe that the recent progress in the deterministic case may inspire new
randomized algorithms and in particular, it seems plausible that a better ratio can be attained
in the oblivious case.

Open Problem 2. Improve the bounds on the competitive ratio of randomized algorithms.

Restricted variants of PacketSchD. Special cases considered in the literature are typically
defined by restricting the packet span, that is, an interval of time slots in which the packet can
be transmitted. In s-bounded instances, any packet span has at most s slots, for some s ≥ 2, i.e.,
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dp − rp + 1 ≤ s for any packet p, where rp is the release time of p. Note that the lower bound of
φ for deterministic algorithms holds for s-bounded instances for any s ≥ 2 [15, 2, 25, 9]. Already
Kesselman et al. [18] presented a φ-competitive algorithm for 2-bounded instances, which was
later extended to the 3-bounded case by Chin et al. [8] and to 4-bounded instances by Böhm et
al. [4]. These algorithms are based on selecting the earliest-deadline packet e with we ≥ wh/φ,
where h is the heaviest pending packet. However, we have some evidence that this algorithmic
approach cannot be extended to the general case.

In instances with agreeable deadlines, it holds that rp < rq implies dp ≤ dq for any packets
p, q; they contain 2-bounded instances, so the lower bound of φ holds for agreeable deadlines.
A matching φ-competitive algorithm for agreeable deadlines was given by Li et al. [19] (see
also [16]). The lower bound of φ does not apply to s-uniform instances, in which each packet has
span of length exactly s ≥ 2. For 2-uniform instances, the optimal competitive ratio is ≈ 1.377
as shown by Chrobak et al. [10].

Finally, on instances without span restrictions but where packet weights increase with respect
to deadlines, Bienkowski et al. [5] also proved an upper bound of φ (even for Item Collection
mentioned above). A more comprehensive overview of restricted variants, including results on
randomized algorithms, is given in [14, 22]. It appears that in the deterministic case, the main
gaps between lower and upper bounds are for s-uniform instances.

Open Problem 3. Design a better algorithm for s-uniform instances, ideally for any s, and
construct lower bounds on the competitiveness in the s-uniform case.

Additionally, one can consider instances in which the span of every packet is at least s ≥ 2;
note that the lower bound of φ does not apply in that case. To our best knowledge, such
instances have not been (explicitly) studied in the literature yet, only the lower bound of 1.25 for
randomized algorithms against the oblivious adversary carries over to instances with arbitrarily
large spans [9, 4].

Higher bandwidth. A straightforward generalization of PacketSchD is to let the algorithm
transmit m ≥ 1 packets in each step, instead of just one. This was already proposed by
Kesselman et al. [18], who show the 2-competitiveness of Greedy and a φ-competitive algorithm
for 2-bounded instances, both for any m ≥ 1. Chin et al. [8] designed an algorithm with ratio
that tends to e/(e− 1) ≈ 1.582 and noted that the randomized lower bound of 1.25 holds for
any m. As results for m = 1 translate to any m, our φ-competitive algorithm actually improves
the state-of-the-art ratio for any m < 13.

Surprisingly, not only the ratio for m→∞ matches that of the currently best randomized
algorithms, but also the algorithms and their analyses share some similarities. Hence, a new
technique for higher bandwidth may translate into a better randomized algorithm, and vice
versa.

Open Problem 4. For the case of higher bandwidth m > 1, design better (deterministic or
randomized) algorithms, and construct new lower bounds.

FIFO model. Kesselman et al. [18] also introduced the FIFO model, in which packets do not
have deadlines, but they are stored in a buffer of limited capacity and need to be transmitted
in the same order as they arrive. For deterministic algorithms allowed to preempt (evict) a
packet from the buffer, a simple greedy algorithm is 2-competitive [18], and there exists a better
algorithm with the ratio of

√
3 [12], while the lower bound is only 1.419 [17]. We refer to [14]

for more results and open problems in this model.
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[16]  Lukasz Jeż, Fei Li, Jay Sethuraman, and Clifford Stein. Online scheduling of packets with
agreeable deadlines. ACM Trans. Algorithms, 9(1):5:1–5:11, 2012.

[17] A. Kesselman, Y. Mansour, and R. van Stee. Improved competitive guarantees for QoS
buffering. Algorithmica, 43(1-2):63–80, 2005.

[18] Alexander Kesselman, Zvi Lotker, Yishay Mansour, Boaz Patt-Shamir, Baruch Schieber,
and Maxim Sviridenko. Buffer overflow management in QoS switches. SIAM Journal on
Computing, 33(3):563–583, 2004.

[19] Fei Li, Jay Sethuraman, and Clifford Stein. An optimal online algorithm for packet
scheduling with agreeable deadlines. In Proc. of the 16th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ’05), pages 801–802, 2005.

[20] Fei Li, Jay Sethuraman, and Clifford Stein. Better online buffer management. In Proc.
of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’07), pages
199–208, 2007.
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