
DOCTORAL THESIS

Pavel Veselý

Online Algorithms
for Packet Scheduling

Computer Science Institute of Charles University

Supervisor of the doctoral thesis: prof. RNDr. Jǐŕı Sgall, DrSc.
Study programme: Computer Science

Study branch: Discrete Models and Algorithms

Prague 2018

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

ii

Title: Online Algorithms for Packet Scheduling

Author: Pavel Veselý

Institute: Computer Science Institute of Charles University

Supervisor: prof. RNDr. Jǐŕı Sgall, DrSc., Computer Science Institute of Charles
University

Abstract: We study online scheduling policies for buffer management models, in
which packets are arriving over time to a buffer of a network switch to be sent
through its single output port. However, the bandwidth of the port is limited
and some packets need to be dropped, based on their weights. The goal of the
scheduler is to maximize the weighted throughput, that is, the total weight of
packets transmitted. Due to the natural lack of information about future, an
optimal performance cannot be achieved, we thus pursue competitive analysis
and its refinements to analyze online algorithms on worst-case inputs.

Specifically, in the first part of the thesis, we focus on a simple online scheduling
model with unit-size packets and deadlines, called Bounded-Delay Packet Schedul-
ing. We design an optimal ϕ-competitive deterministic algorithm for the problem,
where ϕ ≈ 1.618 is the golden ratio. It is based on a detailed understanding of an
optimal schedule of pending packets, called the plan, which may be of indepen-
dent interest. We also propose a semi-online setting with lookahead that allows
the algorithm to see a little bit of future, namely, packets arriving in the next
few steps. We provide an algorithm with lookahead for instances in which each
packet can be scheduled in at most two consecutive slots and prove lower bounds
for both deterministic and randomized algorithms with lookahead.

In the second part, we consider a model with packets of various sizes and no
deadlines, called Packet Scheduling under Adversarial Jamming. The hardness of
scheduling decisions comes from unreliability of the channel through which pack-
ets are transmitted. This is modeled by an adversary that at any time may
interrupt the current transmission by a jamming error. The corrupted packet
is lost completely but may be retransmitted immediately or at any time later.
The packets are weighted according to their size, thus the goal is to maximize
the total size of successfully transmitted packets. We focus on online algorithms
with the resource augmentation of speedup which allows the algorithm to run
packets faster than the offline solution it is compared against. In particular, we
propose an algorithm for which speedup of 4 suffices to be 1-competitive, i.e., to
achieve an essentially optimal throughput. We complement it by a lower bound
of ϕ + 1 ≈ 2.618 on the speedup of 1-competitive deterministic algorithms.

Keywords: online algorithm, competitive analysis, online scheduling, buffer man-
agement, resource augmentation

iii

iv

Acknowledgements

First of all, I would like to thank my advisor Jǐŕı Sgall for his guidance and support
during my master and doctoral studies, for showing me how science works, and for his
numerous improvements of my write-ups. Thanks to him, I really enjoyed the last more
than five years at MFF and I had learned a lot. I am especially grateful to him for
involving me in every research project he was working on.

I had the honor to work several times with Marek Chrobak, to whom I particularly
thank for hosting me for two weeks in Riverside in May 2016. There, the work on the
ϕ-competitive algorithm for Bounded-Delay Packet Scheduling started and his eagerness
to find it inspired me.

All results in this thesis are joint work with Lukasz Jeż. He introduced the model
with adversarial jamming to us and visited us several times. I also thank him for hosting
me in Wroclaw and for his many comments and questions regarding preliminary versions
of the proofs, which had lead to finding a lot of mistakes and gaps.

I am glad that I spent my PhD studies together with Martin Böhm with whom we
collaborated a lot. In particular, I enjoyed working with him on the proof of PSPACE-
hardness of computing the online chromatic number. He did a lot of great work on
preparing good practicals, namely for Optimization methods and for Introduction to
approximation and randomized algorithms. I was lucky to be a teaching assistant for
these lecture after him.

Furthermore, I enjoyed working with Marcin Bieńkowski, Rob van Stee, Andreas E.
Feldmann, and our “FPT group” of PhD students from IUUK and KAM departments.

Lastly, I wish to thank my parents, grandparents, and the whole family for inspiring
me and supporting me. Most of all, I thank my beloved wife Ĺıda for her lasting support
in my studies and any activity I do and for inspiring me. Our little daughter Anežka
makes me feel happy every day, even when everything else goes wrong.

v

vi

Contents

1 Introduction to Online Computation 3
1.1 Competitive Analysis . 4
1.2 Buffer Management . 5
1.3 Refinements of Competitive Analysis . 7

1.3.1 Resource Augmentation . 7
1.3.2 Semi-online Algorithms . 8

1.4 Contributions of the Thesis . 8
1.4.1 Bounded-Delay Packet Scheduling 9
1.4.2 Packet Scheduling under Adversarial Jamming 10

2 Bounded-Delay Packet Scheduling 13
2.1 Problem Definition and Preliminaries . 13
2.2 Previous Work . 17

2.2.1 Deterministic Algorithms . 17
2.2.2 Randomized Algorithms . 20

2.3 Contributions . 20
2.3.1 Algorithms for General Instances 20
2.3.2 Algorithms with Lookahead . 21

2.4 Closely Related Models . 21
2.5 Plans . 23

2.5.1 Computing the Plan . 25
2.5.2 Structure of the Plan . 26
2.5.3 Plan Updates . 29
2.5.4 Plan-Based Algorithms . 33

2.6 ϕ-Competitive Algorithm . 36
2.6.1 Algorithm Description . 36
2.6.2 Competitive Analysis . 40
2.6.3 Arrival of a Packet . 45
2.6.4 Scheduling a Packet . 46

2.7 Algorithms with Lookahead . 60
2.7.1 An Algorithm for 2-Bounded Instances with 1-Lookahead 60
2.7.2 A Lower Bound for 2-bounded Instances with Lookahead 71
2.7.3 Lower Bounds for Randomized Algorithms with Lookahead . . . 74

2.8 Conclusions and Open Problems . 76

3 Packet Scheduling under Adversarial Jamming 79
3.1 Problem Definition and Preliminaries . 79
3.2 Previous Work and Related Models . 81
3.3 Contributions . 83
3.4 Algorithm PrudentGreedy (PG) . 85
3.5 Examples for PrudentGreedy . 87
3.6 Local Analysis and Results . 88

3.6.1 Critical Times and Master Theorem 89
3.6.2 Local Analysis of PrudentGreedy (PG) 91
3.6.3 Algorithm PG-DIV and its Analysis 96

3.7 PrudentGreedy with Speed 4 . 99
3.7.1 Blocks, Critical Times, 1-to-1 Charges and the Additive Constant 100
3.7.2 Processing Blocks . 101

1

3.8 Lower Bounds . 106
3.8.1 Lower Bound with Two Packet Sizes 106
3.8.2 Lower Bound for General Packet Sizes 108

3.9 Conclusions and Open Problems . 113

Bibliography 115

List of Figures 121

2

1. Introduction to Online
Computation
Suppose that you run a company with a launch system capable of carrying a payload,
typically a satellite, into the Earth orbit once per each month. Private companies
and governments request issuing satellites (or other types of payload) and each request
comes with a revenue for your company which you obtain after launching the satellite
and which may differ for different requests. However, each request also has a certain
deadline after which launching the satellite is not relevant or meaningful and thus you
obtain the revenue (or even the operation costs!) for a request only if you meet the
deadline. For simplicity, let us assume that the launch system is very reliable and we
thus do not expect any crash, and that we ignore the costs like salaries of the employees
in a month in which the launch system is idle.

You face the following dilemma. There is an urgent request u for issuing a satellite
which needs to be launched now or never and has revenue of $100 million, and a request
h with higher revenue of $241.4 million which can be served also the next month. While
you can serve both requests in two months, you have no information about requests
that will arrive in future and in particular, if you decide to launch u, it may happen
that the next month an urgent request h′ arrives, also with revenue $241.4 million, and
then one of the requests h and h′ will expire unserved and your company loses a lot of
income. On the other hand, if you forfeit the urgent request u and deal with h, then
if no request arrives during the next month, your launch system will be unused. The
decision may be even harder if you have a lot of requests with various deadlines and
revenues on the table.

The above situation is an example of a natural online optimization problem, where
an algorithm needs to make decisions under the lack of information about future. This
is in contrast with the usual algorithmic setting in which we have all the data, but we
need to carry out a nontrivial computation using limited resources, typically as fast as
possible or within a device with a limited memory. The online algorithm, on the other
hand, has usually no time or memory limitations for its computation (in our example,
you can spend a day deciding which satellite to launch), but often it decides very fast
using a simple and efficient rule.

The decisions in the basic online setting are irrevocable, meaning that the algorithm
cannot change its previous decisions. This is indeed natural, as otherwise we can view
an algorithm which may change any of its previous decisions as an offline algorithm
having the whole input in advance. This restriction and the lack of information about
future typically make an optimal behavior on a particular instance impossible and thus
the algorithm tries to produce a solution which is somehow close to an optimal solution.

An online model can be described in a fairly abstract and general way as follows:
The input is a sequence of events of several types, each has its specified time t. At
the beginning, the algorithm has no information about the input, it only knows the
problem-specific setting and stays in the initial configuration. Then time flows and at
time t, the algorithm knows all events with time t′ ≤ t, but no future event. Moreover,
some of the events ask the algorithm to make decisions, which typically cannot be
revoked or changed in future. The decisions somehow influence the objective function
of the final solution, known to the algorithm, and the algorithm optimizes the value of
the objective function. In the following, we assume for simplicity that the goal is to
maximize a value, but minimizing a cost is very similar.

In our example, the problem specific scenario, known at the beginning, is that every

3

month a launch system can serve one request and each request has a revenue and a
deadline. Naturally, no request can be served more than once or after its deadline. The
events are arrivals of requests, which reveal all information about the new request, and
each month it is necessary to decide which request to serve if any (this can be thought
of as “decision events”). The goal of the algorithm is to maximize the sum of revenues
of the served requests.

1.1 Competitive Analysis

We want to design as good algorithm as possible and thus we need to compare algo-
rithms. There are several ways how to do it. The one studied in this work looks at the
worst-case instance and compares the objective value of the algorithm’s solution and
that of an offline optimal algorithm, which knows the whole input in advance (note that
an offline optimal solution may be NP-hard to compute, or even harder). Namely, the
competitive ratio of an online algorithm ALG is the supremum of OPT(I)/ALG(I) over
all possible instances I, where OPT(I) is the value of an offline optimal solution of I
and ALG(I) is the (expected) value of the online algorithm when executed on input I.
As we assume maximization in the objective function, the competitive ratio is always
at least one.1 We say that an algorithm is R-competitive if OPT(I) ≤ R · ALG(I), i.e.,
the optimum is at most R times better.

The idea of competitive analysis is usually attributed to Sleator and Tarjan [ST85],
who applied it to simple list update and paging rules, although not using the term
competitive ratio (the name “competitive analysis” itself was coined by Karlin et
al. [KMRS88]). Worst-case analyses of online algorithms, serving only as simple approx-
imation heuristics, appeared in the literature even before that; in particular, Graham’s
list scheduling algorithm for makespan minimization [Gra66] is considered to be the
first work in online optimization.

The definitions of the competitive ratio and competitiveness are sometimes relaxed
to avoid certain small pathological examples, on which any algorithm has a high ratio.
Namely, the asymptotic competitive ratio of an algorithm ALG is

lim sup
n→∞

sup
I

{OPT(I)
ALG(I)

⏐⏐⏐⏐OPT(I) ≥ n

}
.

In words, we compare the algorithm’s solution and the optimum solution on the worst-
case instance which is required to be large in the sense that the optimum value must be
high. Similarly, an algorithm is asymptotically R-competitive if OPT(I) ≤ R ·ALG(I) +
o(OPT(I)); typically the additive term is just a constant. To stress that there is no
additive term, the competitive ratio and competitiveness are called absolute.

If we want to analyze a deterministic online algorithm or find a lower bound on the
competitive ratio of any deterministic algorithm, we may imagine a two-player game
between the algorithm, which tries to maximize its value, and an adversary, which
decides on further input, based on the previous decisions of the algorithm. The objective
of the adversary is to maximize the ratio between the value of an optimal solution and
the value of the algorithm’s solution, that is, OPT(I)/ALG(I). This adversarial behavior
models the worst-case instance, or more precisely, an optimal strategy for the adversary
yields an input for which the ratio OPT(I)/ALG(I) equals the competitive ratio (or is
arbitrarily close to it).

1We remark that some authors consider the reciprocal of our definition of the competitive ratio, i.e.,
the “alg-to-opt” ratio ALG(I)/OPT(I), which is in turn always at most 1 for maximization problems.
For minimization problems, the “alg-to-opt” ratio is used most frequently as it is at least 1.

4

For randomized algorithms, there are two possible ways how to model the adversary,
distinguished by Ben-David et al. [BBK+94]. The weaker oblivious adversary needs to
fix the whole instance beforehand, based only on the algorithm’s description and not
on random bits that it will use, whereas the stronger adaptive adversary decides on fur-
ther input based on previous random actions of the algorithm. However, the adaptive
adversary also needs to make decisions over time, i.e., it cannot compute the optimal
solution offline after the algorithm’s computation is finished (thus it is sometimes called
the adaptive-online adversary). Clearly, the adaptive adversary is more powerful, but
still, there may be a randomized algorithm with competitiveness against the adaptive
adversary smaller than the best possible competitive ratio of a deterministic algorithm.
This is due to the requirement that the adaptive adversary needs to make decisions
without any knowledge of future random bits used by the algorithm. In the following,
when we talk about randomized algorithms, the competitive ratio is implicitly against
the oblivious adversary unless we explicitly state that the ratio is against the adaptive
adversary. Note also that both adversaries are the same against a deterministic algo-
rithm, as the adversary may simply simulate the algorithm in advance, which is not
possible if the algorithm’s behavior is randomized.

Competitive analysis suffers from a few drawbacks. In many real-world situations,
the adversarial worst-case input produces only strange instances which do not occur in
practice, or the particular application does not require a guarantee on the worst-case
behavior, but only that the algorithm works well in most situations. For the former,
extensions of the competitive analysis were devised; we discuss some in Section 1.3. For
the latter, stochastic models, where the input is generated from a certain distribution,
are studied and then average case analysis is applied, i.e., the expected behavior of
the algorithm is evaluated on the input distribution. However, from a theoretical
perspective, it may not be clear which distribution is realistic or natural and such
real-world distributions may be hard to analyze.

In contrast, competitive analysis provides guarantees in any situation and thus it is
suitable for applications which require high reliability. We refer the interested reader
who wants to learn more about competitive analysis to the book by Borodin and El-
Yaniv [BE98].

1.2 Buffer Management

A special type of problems, naturally online, are buffer management problems, where
the goal is to design a scheduling policy of a network switch transmitting packets
over one or more channels. The network switch can have one or more input ports
through which packets are arriving to be sent through one of output ports with a
limited bandwidth. Usually, time is discrete, consisting of time steps or slots, and in
each time step, a constant number of packets may be transmitted through each output
port. Because of the limited bandwidth, packets must be stored in one of buffers inside
the network switch and some of them need to be dropped.

There are various models of the network switch. Each input or output port may have
its buffer for storing pending packets, or there may be a central buffer for storing all
the packets. The buffer management models differ by the implementation of buffers, in
particular, whether the buffers have limited capacity and whether reordering of packets
inside a buffer is allowed. Also, the scheduling policy sometimes needs to deal with
transferring packets inside the switch using internal fabric of the switch. See Figure 1.1
for an illustration.

The general aim is to provide a differentiated service, which allows for packet priori-
ties. Typically, packets have weights, representing their importance, and possibly some

5

other properties, specific to the model. The goal of the scheduler inside the switch is
then to maximize the weighted throughput, i.e., the total weight of packets successfully
transmitted.

Input buffers Output buffers

Internal fabric

Buffer

Input port Output port

Figure 1.1: On the left a schematic illustration of a switch with multiple input/output
ports, each of which has a dedicated buffer, and on the right an illustration of a single
input/output switch.

We focus on the important case of one output port with a dedicated buffer. While
there might be more input ports, we assume that all of them store arriving packets in
the buffer of the output port and we can thus think of all input ports as being one port.
Similarly, if the switch has several independent output ports with separated buffers,
then we may apply the scheduling policy for a single output port to each of them (we
assume that the internal fabric of the switch does not cause any delays). Lastly, we
focus on the output port with bandwidth 1, i.e., one packet can be sent in each step.

There are two basic models of the switch with a single output port, in which non-
trivial decisions must be made by an algorithm. Both were proposed by Kesselman et
al. [KLM+04] as abstractions of buffering policies used in network switches supporting
Quality of Service (QoS). In particular, the motivation is to provide a differentiated
network service, in which some clients may get a better level of service, for example,
based on the price they pay for the service.

In the FIFO model, the buffer’s capacity is limited and moreover, packets cannot
be reordered inside the buffer. This means that packets need to be transmitted in
the first-in-first-out (FIFO) order, and some packets must be dropped because of the
limited capacity, depending on the weight. The packets have no deadlines, but the
delay in sending each packet after its arrival is at most the buffer size if it is ever sent.
We refer to Section 2.4 for a brief overview of the results for the FIFO model.

The second model assures bounded delay by packet deadlines, thus QoS is modeled
by packet weights and deadlines. On the other hand, the buffer may hold an unlimited
number of packets and packets can be reordered in the buffer. Equivalently, we can
view the model as an online scheduling problem on a single machine where each job
has unit processing time, integer release time and deadline and the goal is to maximize
the weighted throughput; that is, 1|online, rj , pj = 1|

∑
wj(1 − Uj) in the three field

scheduling notation. Observe that this problem is an abstraction of the introductory
example and we call it Bounded-Delay Packet Scheduling.2 We study it in depth in
Chapter 2; see Section 1.4.1 for a more detailed description of the problem and for a
short overview of previous results and our contributions.

For an extensive survey, studying various buffer management models, we refer to a
2The problem is sometimes called just Packet Scheduling, but as in this thesis we study two

models of scheduling packets, we made explicit that in this one, the hardness is partially due to
deadlines. In the literature, name bounded-delay buffer management in QoS switches is also used.

6

SIGACT News column by Goldwasser [Gol10].

1.3 Refinements of Competitive Analysis

In some cases, the adversary in the competitive analysis is so strong that no algorithm
can be constant competitive, which may lead to results saying that the best possible
(deterministic) algorithm is some greedy algorithm or another very simple or imprac-
tical algorithm. In such situations, there are a few possibilities which make sense:
• Restrict the input instances, i.e., weaken the adversary, so that the bad instances

are no longer possible (generating the input from a distribution can be seen as
an example).
• Reveal some information about the whole input at the beginning, such as the

optimal value of the objective function, or a little bit of future in each step.
Algorithms with some information about future are called semi-online.
• Give some advantage to the online algorithm and still compare it to the adversary

without any advantage; this is the idea of resource augmentation, which appears
already in the work of Sleator and Tarjan [ST85].

1.3.1 Resource Augmentation

In the seminal paper, Kalyanasundaram and Pruhs [KP00b] introduced resource aug-
mentation in online scheduling for a variant of real-time scheduling on a single machine
and for a flow-time minimization on a single machine. We describe the former problem
only: Each job has a release time, deadline, processing time, and a weight and the
objective is to maximize the weight of jobs completed by their deadlines. Preemption
is allowed in this model, i.e., the algorithm may pause processing a job and resume
it later. Constant competitive algorithms are possible with clairvoyance, which means
that the algorithm knows all properties of a job upon its arrival. However, in some
situations such as when an operating system schedules tasks on a processor, the pro-
cessing time of a job is known only when the job completes. This property is called
non-clairvoyance and there is no non-clairvoyant algorithm with a constant competitive
ratio, even randomized; see e.g. [KP00a].

Kalyanasundaram and Pruhs [KP00b] proved that a constant competitive ratio for
the non-clairvoyant real-time scheduling is possible with a constant speedup s which
means that the machine of the algorithm runs s times faster than the machine of the
adversary. In other words, an algorithm needs only time p/s to process a job of size p,
while the adversary still needs to run the job for p units of time. Such an algorithm is
often said to be speed-s, running at speed s, or having a speedup of s. Subsequently,
resource augmentation was applied in various scenarios.

For real-time scheduling with clairvoyance, i.e., processing times known upon ar-
rival, Phillips et al. [PSTW02] considered the underloaded case in which there ex-
ists a schedule that completes all the jobs. Observe that on a single machine, the
Earliest-Deadline First (EDF) algorithm is then an optimal online algorithm. Phillips
et al. [PSTW02] proved that EDF on m machines is 1-competitive with speedup 2− 1

m .
Intriguingly, finding a 1-competitive algorithm with the minimal speedup for m > 1 is
wide open: It is known that speedup at least 1.2 is necessary, it has been conjectured
that speedup e

e−1 ≈ 1.582 is sufficient, but the best upper bound proven is 2 − 2
m+1

from [LT99]. See the thesis of Schewior [Sch16] for more on this problem and for a
related resource augmentation of adding extra machines to the online scheduler.

In buffer management models, where time is usually slotted, speedup corresponds
to increasing the bandwidth for the algorithm, i.e., the algorithm sends m packets

7

in each step, while the adversary transmits only k < m packets; typically, k = 1.
Jeżabek [Jeż09] considered this resource augmentation in the bounded-delay model and
designed an algorithm with bandwidth m that is 1+1/(2m−1)-competitive against the
offline optimum with bandwidth 1. On the other hand, he proved that no 1-competitive
scheduling policy is possible even with an arbitrarily large bandwidth.

Another possible resource augmentation in the setting with a limited buffer is to
allow the algorithm to use a larger buffer than the adversary. For the FIFO model,
Kim [Kim05] studied how much resource augmentation is needed so that there is an
optimal (i.e., 1-competitive) online algorithm. He proved that even with a much larger
additional buffer this is not possible, but if we increase also the bandwidth to be s
times larger than the transmission rate of the adversary, then an additional buffer of size
B/(s−1) suffices for a greedy algorithm in the preemptive case. For the nonpreemptive
variant, the additional buffer size and the increase of the speed depend on α, the ratio
of the maximum to the minimum weight of a packet; precisely, both are equal to
2(⌊log α⌋+ 1) times the amount of the resource used by the adversary.

Resource augmentation also yields ways how to compare online algorithms on
worst-case instances, alternative to the (sometimes too pessimistic) competitive ra-
tio. Namely, we can ask how much resource augmentation, such as speed, is needed so
that the algorithm is 1-competitive. This may lead to designing better algorithms than
using the standard competitive analysis without the resource augmentation technique.
We shall see an example in Section 1.4.2.

1.3.2 Semi-online Algorithms

As mentioned above, another possibility how to deal with strange or counter-intuitive
results yielded by competitive analysis is to reveal a little bit of future to the algorithm,
which is then called semi-online.

In some cases, revealing only the sole optimum value allows for a 1-competitive (i.e.,
optimal) semi-online algorithm. An example is preemptive scheduling on uniformly
related machines, where machines have speeds. Jobs, characterized by their processing
time only, arrive online in a list such that each needs to be scheduled before the next
job arrives. Preemption allows the algorithm to pause processing a job and resume it
later, possibly on a different machine. The goal is to minimize the makespan, which is
the length of the schedule. The optimal semi-online algorithm, which gets the desired
makespan on input, was given by Ebenlendr and Sgall [ES09]. Using the semi-online
algorithm and a standard doubling technique, one can get a 4-competitive deterministic
online algorithm and an e ≈ 2.718-competitive randomized algorithm.

In buffer management, knowing the optimum value does not make much sense as one
can concatenate several copies of one instance such that the copies are independent (i.e.,
the next copy starts when all the buffers are empty). However, it may be advantageous
to know what happens in the near future, namely, all packets arriving during the
next few steps. This property is called lookahead. We consider it quite natural, as it
corresponds to the situation in which the network switch is able to observe packets that
are just arriving in the buffer, yet they cannot be scheduled right now. Lookahead has
appeared in the online algorithms literature for paging [Alb97], scheduling [MST98]
and bin packing [Gro95] since the 1990s.

1.4 Contributions of the Thesis

In this work, we focus on buffer management models with a single input port and a
single output port and in particular, on deterministic algorithms for the following two

8

simple, yet interesting models.

1.4.1 Bounded-Delay Packet Scheduling
In Chapter 2 we study the following model: Packets have unit size and arrive in a buffer
of unlimited capacity to be sent over a channel. Time is discrete, consisting of slots or
steps of unit length, such that in each step, at most one packet can be transmitted. The
number of packets arriving in the buffer is however very large and it is not possible to
send them all. Packets are dropped based on their priorities, implemented by weights
and deadlines. In particular, it is not possible to transmit a packet after its deadline
and the goal is to maximize the total weight of scheduled packets. We remark that this
model is an abstraction of our introductory example and it is also called bounded-delay
buffer management in QoS switches.

Note that if packets have just deadlines and no weight, then the problem can be
trivially and optimally solved by Algorithm EDF (Earliest Deadline First), which al-
ways schedules a pending packet with the smallest deadline. Similarly, if there are
no deadlines, just weights, basically any reasonable algorithm clearly achieves opti-
mal throughput. Thus having both weights and deadlines can be seen as (one of) the
simplest interesting setting with unit-size packets and a buffer of unlimited size.

In this work we focus on deterministic online algorithms for this model; see Sec-
tion 2.2 for a more extensive overview of results concerning both deterministic and
randomized algorithms on general or restricted instances. There is a well-known lower
bound of ϕ = 1

2(
√

5 + 1) ≈ 1.618 [Haj01, AMZ03, CF03] on the competitive ratio of
deterministic algorithms and it is a long-standing open problem to find a ϕ-competitive
algorithm, or to improve the lower bound. So far the best algorithm due to Englert
and Westermann [EW12] achieves ratio 2

√
2− 1 ≈ 1.828.

Because of the hardness of the general case, the focus of the research shifted to
special types of instances and for some of them, ϕ-competitive algorithms were found.
First, in s-bounded instances the difference between the deadline and the release time
of any packet p is at most s − 1, i.e., each packet can be scheduled in at most s
consecutive steps. The aforementioned lower bound of ϕ holds even in the 2-bounded
case. A matching ϕ-competitive policy was given already by Kesselman et al. [KLM+04]
for 2-bounded instances and later by Chin et al. [CCF+06] for 3-bounded instances.
Recently, in [BCJ+16] we designed a ϕ-competitive algorithm for 4-bounded instances.

Second, other interesting instances are those that satisfy the agreeable property,
i.e., that packets arrive in the non-decreasing order by deadlines. For such instances,
a ϕ-competitive algorithm was devised by Li, Sethuraman, and Stein [LSS05, JLSS12].
Finally, Bieńkowski et al. [BCD+13b] studied the case of increasing weights, in which a
packet with a larger deadline cannot have a smaller weight compared to another packet
(the lower bound of ϕ satisfies this property as well). They gave a ϕ-competitive
algorithm even for a more general model, in which the algorithm is aware only of the
order of packets by deadlines and not the precise values of deadlines.
Contributions. Our focus is on general inputs. First, we investigate the technique
of a plan, which is basically an optimal schedule of pending packets and which was
used in [LSS05, JLSS12, EW12] as well. In Section 2.5 we study the structure of the
plan in depth and we analyze its changes after the arrival of a new packet and after an
algorithm schedules a packet.

Such a detailed understanding of the plan allows us to prove our main result which
is a deterministic ϕ-competitive algorithm. We thus resolve its conjectured existence
after more than 15 years. The basic idea underlying our algorithm is relatively simple.
When some packet p from the plan is chosen to be scheduled at time t, it will be
replaced in the plan by some other packet ϱ. The algorithm chooses p to maximize

9

an appropriate linear combination of the weights of p and ϱ. For technical reasons,
it also uses memory to increase weights and decrease deadlines of certain packets,
which maintains a crucial monotonicity property. The competitive analysis relies on
three amortization techniques: First, to avoid unfairly benefiting the algorithm from
increased weights, we charge it a “penalty” equal to ϕ times the total weight increase.
Second, we use a potential function, which quantifies the advantage of the algorithm
over the adversary in future steps. Third, we modify the adversary schedule to maintain
a crucial invariant that allows us to control decreases of the potential function.

We also introduce a semi-online setting with the so-called lookahead, which allows
the algorithm to see a little bit of future, namely all packets (together with their
properties) arriving in the next few steps. More precisely, at time t an algorithm with
ℓ-lookahead is aware of all packets arriving in steps t+1, t+2, . . . , t+ℓ. Our work is the
first, to our knowledge, that considers lookahead in the context of buffer management.

We provide two results about Bounded-Delay Packet Scheduling with 1-lookahead,
restricted to 2-bounded instances. First, in Section 2.7.1, we present an online algorithm
for this problem with competitive ratio of 1

2(
√

13− 1) ≈ 1.303. Then, in Section 2.7.2,
we give a lower bound of 1

4(1 +
√

17) ≈ 1.281 on the competitive ratio of algorithms
with 1-lookahead which holds already for the 2-bounded case. Our argument is an
extension of the lower bound proof of ϕ in [Haj01, AMZ03, CF03]. In fact, our lower
bound result is more general: Using 2-bounded instances only, for any integer ℓ ≥ 0 we
prove a lower bound of 1

2(ℓ+1)(1+
√

5 + 8ℓ + 4ℓ2) for online algorithms with ℓ-lookahead.
It follows that there is no 1-competitive algorithm with any constant lookahead, even
for 2-bounded instances. In a subsequent work, Kobayashi [Kob18] claims to have an
optimal deterministic algorithm with 1-lookahead for 2-bounded instances, matching
our lower bound of 1

4(1 +
√

17) ≈ 1.281.
Finally, we argue that no randomized algorithm with an arbitrarily large lookahead

can be better than 1.25-competitive against the oblivious adversary, even on instances
with the agreeable property. The point is that packets have very large spans, which
makes the use of lookahead negligible. The construction is then just a straightforward
extension of the corresponding lower bound for 2-bounded instances without lookahead
by Chin and Fung [CF03]; see Section 2.7.3.

1.4.2 Packet Scheduling under Adversarial Jamming

In Chapter 3 we study a model in which packets of various sizes arrive over time to
a buffer of unlimited capacity to be sent over an unreliable channel. Unreliability
is modeled by the adversary which has an additional power of issuing instantaneous
jamming errors on the channel. The transmission taking place at the time of jamming
is corrupt and completely lost, and the online algorithm learns this fact immediately.
However, errors are unknown in advance to the online algorithm. The algorithm may
retransmit the packet, whose processing failed, immediately or at any time later, but the
retransmission must be complete, i.e., the algorithm cannot just resume the previous
transmission of the packet. Moreover, the algorithm cannot pause or stop transmitting
a packet; in the schedule jargon, preemption is not allowed. On the other hand, the
optimum schedule (a.k.a. the adversary schedule) cannot transmit anything when an
error occurs. The goal is to maximize the total size of packets successfully transmitted
(thus the weight of each packet equals its size).

Another motivation appearing in the literature is the following: Suppose you have a
machine and think of packets as computation tasks of different processing times, which
you want to execute and which are injected to the system over time. However, the
machine suffers from unexpected crashes or restarts, e.g., due to power outages, and
the computation run before the crash is completely lost. The question is then how

10

to schedule the computations to maximize the total length of successfully completed
computations.

There are simple and small examples that show a lower bound of ℓ on the absolute
competitive ratio of any deterministic algorithm, where ℓ is the size of the largest
packet (see Section 3.1). To avoid such pathological instances, we study the asymptotic
competitive ratio, where the additive constant may depend on packet sizes.

The model was introduced by Anta et al. [AGK+16], who resolved it for two packet
sizes: If γ > 1 denotes the ratio of the two sizes, then the optimum (asymptotic)
competitive ratio for deterministic algorithms is (γ + ⌊γ⌋)/⌊γ⌋, which is always in the
range [2, 3). Subsequently, Jurdziński et al. [JKL15] proved that the lower bound of
Anta et al. [AGK+16] is tight even in the case of multiple (though fixed) packet sizes
by providing a deterministic algorithm, whose competitive ratio is given by the formula
for the two packet sizes which maximize it. In particular, the algorithm achieves the
optimal ratio of 3 on general instances. Jurdziński et al. [JKL15] also show more
results for restricted inputs, mainly for divisible packet sizes, where each size divides
every larger size, and for more channels.

Albeit the problem is solved for deterministic algorithms on general instances, these
results have two drawbacks. First, the lower bound of 3 is relatively simple and it
requires only two packet sizes 1 and 2 − ε (for a tiny ε > 0). On the other hand,
the algorithm of Jurdziński et al. [JKL15] is not simple, since its description uses a
recursive procedure and the algorithm needs to know all the packet sizes in advance.
Moreover, the algorithm may be idle unnecessarily, i.e., not transmitting any packet
even when there are some pending packets in the buffer.

Algorithms with the resource augmentation of speedup were also studied. Similarly
to the real-time scheduling, an algorithm with speedup s transmits packets s times
faster than the adversary. Jurdziński et al. [JKL15] proved that speedup 2 is sufficient
in the case of divisible packet sizes, and optimality of their algorithm follows by the
results of Anta et al. [AGKZ15]. Recently, Kowalski et al. [KWZ17] obtained tight
bounds on speedup for 1-competitiveness when there are two packet sizes only.
Contributions. Our main contribution is a simpler and more universal deterministic
online algorithm. In contrast to previous algorithms, ours does not need to know packet
sizes in advance and is not unnecessarily idle, which makes it more suitable to be used
in practice. We devise a local analysis framework which on general instances shows
that the algorithm achieves the optimal competitive ratio of 3 and which can be easily
applied on restricted instances as we demonstrate in various special cases.

However, the main question of our work is what speedup is sufficient and necessary
for a deterministic algorithm to be 1-competitive. The local analysis mentioned above
proves that our algorithm needs to run at speed at most 6 to be 1-competitive on general
instances. With a more sophisticated non-local analysis we prove that speedup only 4 is
sufficient which is our main result and which is tight for our algorithm. We complement
our upper bound by showing that no deterministic algorithm is 1-competitive with
speedup s < ϕ + 1 ≈ 2.618; our lower bound construction requires many sizes (the
closer s is to ϕ+1, the more sizes are needed). This suggests that speedup sufficient for
1-competitiveness may be a better measure to compare online algorithms than the more
usual competitive ratio (recall that the optimal lower bound of 3 on the competitive
ratio needs just two sizes and that we can prove the 3-competitiveness of our algorithm
by a simple, though somewhat technical, local analysis).

Golden ratio. As one can see, the golden ratio ϕ = 1
2(
√

5 + 1) ≈ 1.618 shows up
naturally in the lower and upper bounds for both studied models. Its basic definition
says that ϕ is equal to the length of a line segment divided into two segments of lengths
1 and ϕ− 1 < 1 such that the ratio of the longer to the shorter segment is equal to the

11

ratio of the whole line segment to the longer segment. That is, we have 1
ϕ−1 = ϕ

1 and
by solving the quadratic equation we get ϕ = 1

2(
√

5 + 1).
The golden ratio has several interesting mathematical properties which we use in

our proofs. By definition, we have ϕ2 = ϕ + 1 and more generally ϕn = ϕn−1 + ϕn−2.
Another basic property is that the infinite sum

∑n
i=−∞ ϕi equals ϕn+2, which holds as

n∑
i=−∞

ϕi = ϕn+1

ϕ− 1 = ϕn+1

ϕ−1 = ϕn+2 .

Similarly, the infinite sum decreasing by factor ϕ−2 from ϕn, i.e., ϕn + ϕn−2 + ϕn−4 +
ϕn−6 + . . . , equals ϕn+1 (Figure 1.2 provides a proof by picture — the area of each
square is an even power of ϕ, while the area of each rectangle is an odd power of ϕ).

The golden ratio appears in many natural mathematical scenarios. For example, ϕ
is the limit of the ratio between two consecutive Fibonacci numbers. In geometry, the
regular pentagon’s ratio of a diagonal to a side is equal to ϕ as well. See Figure 1.2 for
interesting geometrical objects called Golden rectangle and Golden spiral.

Figure 1.2: The Golden rectangle and the Golden spiral inscribed in red. The ratio
of the sides of each rectangle is ϕ, and when we cut off a square from a rectangle, we
get the Golden rectangle again, with sizes decreased by the factor of ϕ−1. The Golden
spiral is the logarithmic spiral with the growth factor of ϕ, that is, the spiral gets
further from its center by the factor of ϕ.4

Due to its nice properties, the ratio appears in arts, for example, Salvador Daĺı has
laid out the composition of his painting The Sacrament of the Last Supper using the
golden ratio. It is also sometimes used in photography to locate the point at which the
human eye is considered to be drawn at first.

Outline of the chapters. In Chapter 2 we study Bounded-Delay Packet Scheduling
and then in Chapter 3 we turn our attention to Packet Scheduling under Adversarial
Jamming. Each of the two chapters is organized as follows: We start with a formal
definition of the problem, together with the terminology used and other preliminaries.
In the second section, we provide an overview of previous results and in the next
section, we summarize the contributions of this thesis. The main part of the chapter
consists of sections containing proofs of the results outlined above, i.e., algorithms and
their analyses, or constructions of lower bounds. The general order is that algorithms
come before lower bounds. Finally, we discuss possible future research directions in
conclusions. Both chapters can be read independently of each other.

4 Since this thesis is about online algorithms which produce only approximate solutions, the author
approximated the Golden spiral by arcs, which form a shape very close to the real Golden spiral.

12

2. Bounded-Delay Packet
Scheduling
In this chapter we study online algorithms for Bounded-Delay Packet Scheduling in
depth and in particular, we resolve the open question whether there is a ϕ-competitive
deterministic algorithm. The outline of the chapter is as follows:
• First, in Section 2.1 we define the problem formally and describe the terminology

used, special types of instances studied in the literature, and other preliminaries.
• We continue by a survey of the previous work in Section 2.2.
• In Section 2.3 we outline the results contained in this chapter.
• Section 2.4 briefly describes several related models.
• Section 2.5 studies a technique of the plans in depth.
• In Section 2.6 we use this technique to design an optimal ϕ-competitive deter-

ministic algorithm for general instances.
• In Section 2.7 we look at the semi-online setting with lookahead, both from the

algorithmic and lower bound perspectives.
• Finally, in Section 2.8 we summarize our results and list several interesting open

problems.
Section 2.5 about plans and Section 2.6 about our ϕ-competitive algorithm are

based on the following paper.

[VCJS18] Pavel Veselý, Marek Chrobak, Lukasz Jeż, and Jǐŕı Sgall. A ϕ-
competitive algorithm for scheduling packets with deadlines. 2018.
Submitted.

The results for the setting with lookahead in Section 2.7 are contained in the fol-
lowing paper (except for Section 2.7.3 with a lower bound for randomized algorithms):

[BCJ+16] Martin Böhm, Marek Chrobak, Lukasz Jeż, Fei Li, Jǐŕı Sgall, and
Pavel Veselý. Online packet scheduling with bounded delay and looka-
head. In Proc. of the 27th International Symposium on Algorithms and
Computation (ISAAC ’16), volume 64 of LIPIcs, pages 21:1–21:13.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

2.1 Problem Definition and Preliminaries

Problem statement. Formally, we define the Bounded-Delay Packet Scheduling prob-
lem as follows. The instance is a set of packets, with each packet p specified by a triple
(rp, dp, wp), where rp and dp ≥ rp are integers representing the release time and deadline
of p, and wp ≥ 0 is a real number representing the weight of p. Time is discrete, divided
into unit time slots, also called steps. A schedule assigns some subset S of packets to
time slots such that (i) any packet p in S is assigned to one slot in the interval [rp, dp],
and (ii) each slot is assigned at most one packet. The objective is to compute a schedule
that maximizes the total weight of packets in S (the scheduled packets), also called the
profit.
Other terminology. For a packet p, the interval [rp, dp] is called the span of the
packet; span also refers to the length of the interval plus 1, that is, the number of
slots in which p can be scheduled. A tight packet p has a span of 1, i.e., rp = dp. See
Figure 2.1 for an example.

13

1 2 3

e : 1

h : φ

f : 1.1

h′ : φ− ε

Figure 2.1: An example of an instance with four packets. Each packet is depicted by
its identifier and weight (after the colon) and an interval representing its span. In this
example, e, f and h′ are tight packets, while h has span [1, 3].

We say that a packet p is pending for an algorithm at time t, if rp ≤ t ≤ dp, and
the algorithm have not scheduled p before t. Naturally, the algorithm may send only a
pending packet. A (pending) packet p is expiring in step t if dp = t; thus t is the last
step in which p can be scheduled. Note that a tight packet is expiring already at its
release time.
Online algorithms. In the online variant of Bounded-Delay Packet Scheduling, which
is the focus of our work, in any step t only the packets released at times up to t are
revealed, including all of their properties. Thus an online algorithm needs to decide
which packet to schedule in step t (if any) without any knowledge of packets released
after t.

As is common in the area of online optimization, we measure the performance of an
online algorithm by its competitive ratio. An algorithm A is said to be R-competitive if,
for all instances, the total weight of the optimal schedule (computed offline) is at most
R times the weight of the schedule computed by A. See Chapter 1 for an introduction
to competitive analysis.
Remark. We note that the asymptotic competitive ratio, i.e., considering an additive
constant in the definition of competitiveness, does not bring any advantage to the
online algorithm, even if the additive constant depends on the maximum weight in the
instance. Indeed, any instance on which the algorithm achieves a bad absolute ratio
(i.e., without any additive constant) can be copied many times and concatenated so
that the copies do not interfere; namely, the adversary starts the next copy of the
instance when both its buffer and the algorithm’s buffer are empty. After sufficiently
many repetitions, the effect of the additive constant vanishes.

Scale-invariant and memoryless algorithms. A natural property of most online
algorithms is that they are scale-invariant, meaning that the decisions of the algorithm
are not affected by scaling weights of all packets in the instance by a factor α > 0. All
algorithms mentioned in this chapter are scale-invariant, however, some lower bounds
are only against scale-invariant algorithms.

There are two types of algorithms depending on the use of memory to remember
something about history. An algorithm is memoryless if it uses no memory to store
some information about its previous decisions or the sets of pending packets in previous
steps, thus its decision depends solely on the current set of pending packets. Moreover,
memoryless algorithms are usually assumed to be scale-invariant. Other algorithms are
memory-based and may store even the whole history (including all packets that were
released), but typically they just use a modest amount of memory.
Remark. Note that if any reasonable (online) algorithm is about to schedule a packet
p, then there is no other pending packet q, heavier than p and with dq ≤ dp (otherwise,
it is clearly better to schedule q). Any algorithm mentioned in this chapter has this

14

property.

Algorithms with lookahead. In Section 2.7, we study the Bounded-Delay Packet
Scheduling problem with ℓ-lookahead, mainly focusing on the case ℓ = 1. With ℓ-
lookahead, the problem definition changes so that at time t, an online algorithm can
also see the packets that will be released at times t + 1, t + 2, . . . , t + ℓ, in addition to
the pending packets. Naturally, only a pending packet can be scheduled at time t. This
can be thought of as a semi-online setting (see Section 1.3.2).

From a practical point of view, lookahead corresponds to the situation in which a
router can see the packets that are just arriving in the buffer and that will be available
for transmission in the next few time slots.
Special types of instances. An instance is s-bounded if each packet p has span of at
most s, i.e., dp ≤ rp +s−1. In other words, each packet must be scheduled within some
specified number, at most s, of consecutive slots starting at its release time. The s-
uniform variant further restricts the span of any packet to be exactly s, thus s-uniform
instances form a special subclass of s-bounded instances. (Note that for s = 1 the
problem becomes trivial.)

An instance has agreeable deadlines (or packets are similarly ordered) if for any two
packets p and q with rp < rq we have dp ≤ dq. In other words, packets are released in
order of non-decreasing deadlines. All 2-bounded instances and all s-uniform instances
(for any s) have agreeable deadlines. For brevity, we sometimes call them agreeable
instances. See Figure 2.2 for an illustration of inclusions of these types.

Finally, any instance of the previous type has the increasing weights property if
a packet with a larger deadline has a larger weight. We remark that in all the lower
bounds known so far, weights are actually increasing exponentially with respect to
their deadlines and the lower bound instances are 2-bounded unless the lower bound is
specifically for the s-uniform case.

2-uniform 3-uniform 4-uniform

2-bounded

Agreeable deadlines3-bounded

4-bounded

Figure 2.2: A Venn diagram of the main types of special instances and their inclusions.

Assumptions on the instance. We make two assumptions about our problem with-
out loss of generality.

(A1) We assume that there are some pending packets in each step. If not, we can
always release some “virtual” packets of weight 0 in each step.

When dealing with general instances, we assume that at each step t and for each
τ ≥ t (up to a certain large enough limit), there is a pending packet with deadline
τ . This can be achieved by releasing, at time t, a virtual 0-weight packet with
deadline τ , for each τ ≥ t.

15

(A2) We also assume that all packets have different weights. Any instance can be trans-
formed into an instance with distinct weights through infinitesimal perturbation
of the weights, without affecting the competitive ratio. The 0-weight packets from
the previous assumption thus, in fact, have an infinitesimal positive weight. The
purpose of this assumption is to facilitate consistent tie-breaking, in particular
uniqueness of plans (to be defined shortly).1

The plan and the canonical ordering. Consider an execution of an online algorithm
A. At any time t, A will have a set of pending packets. The plan is the maximum-
weight subset of pending packets that can be scheduled starting from the current step;
by assumption (A2) the plan is unique. In the literature, the plan (or more precisely,
a schedule of the plan) is also called optimal provisional schedule. We investigate
properties of plans in Section 2.5.

The set of pending packets has a natural ordering, called canonical ordering and
denoted ≺, which orders packets in non-decreasing order of deadlines, breaking ties
in favor of heavier packets. (By assumption (A2) the weights are distinct.) Formally,
for two pending packets x and y, define x ≺ y iff dx < dy or dx = dy and wx > wy.
The earliest-deadline packet in some subset X of pending packets is the first packet in
the canonical ordering of X; if set X is not specified, then it is the first packet in the
canonical ordering of all pending packets. Similarly, the latest-deadline packet in X is
the last packet in the canonical ordering of X.

An (optimal) schedule satisfies the earliest-deadline property if for any two packets
p, p′ scheduled in steps t and t′, respectively, such that rp′ ≤ t < t′ ≤ dp (that is, p and
p′ can be swapped in the schedule without violating their release times and deadlines),
p ≺ p′ holds. This can be rephrased in the following useful way: at any step, the
schedule transmits the earliest-deadline packet among all of its pending packets that it
transmits in the future. Such a schedule is called canonical.
Offline optimal schedule. We remark that in the offline setting, where all packets are
known, it is easy to find an optimal schedule. Indeed, we can apply any algorithm for
the maximum-weight bipartite matching, since we can model the problem as a bipartite
graph in which one partition consists of all possible slots and the other partition of all
packets, and in which there is an edge of weight wp for each packet p and each slot
t ∈ [rp, dp].

More specifically, we first compute the set of packets in the optimum schedule by
adding them one by one in the order by decreasing weight, each time checking whether
the new packet can be feasibly scheduled with other added packets. Observe that by
Hall’s condition for bipartite perfect matching, we just need to check whether for any
time interval [a, b] the number of accepted packets with the whole span inside [a, b] is
at most b− a + 1.

Having a set of packets that can be feasibly scheduled, we turn it into the canonical
schedule by assigning to each slot t the earliest-deadline pending packet among the
accepted packets. Using an interval tree and a preprocessing step to get rid of “un-
derloaded” time intervals in which a greedy algorithm schedules all packets with span
intersecting with the interval, this yields an algorithm running in O(n log n).
Notation. In this chapter we use the following notation:
• lower-case letters like p or j denote packets,
• upper-case letter such as P or Q denote plans,

1 Alternatively, instead of perturbing weights, one can extend the canonical ordering to a linear
ordering of the set of all packets. Then the plan P is the maximum-weight feasible subset of pending
packets with the property that for any p ∈ P there is no q /∈ P with wq = wp and q ≺ p such that
P \ {p} ∪ {q} is feasible.

16

• t is the current time (step), and τ ≥ t is a slot in the plan,
• ALG is the schedule of a particular online algorithm that we are considering,
• OPT is an optimal schedule, sometimes required to be canonical,
• ALG[t] is the packet scheduled in step t in ALG and similarly, OPT[t] is the packet

at t in OPT,
• to avoid double indexing, we sometimes use w(p) to denote wp and d(p) for dp,
• for a set of (pending) packets X, let X≤τ = {j ∈ X : dj ≤ τ} be the subset of X

consisting of packets with deadline at most τ .
When considering some step t of a particular online algorithm, we use the following
notation:
• h is the heaviest pending packet,
• j = OPT[t] is the packet scheduled in step t in OPT.
We remark that we do not use any specific notation for the set of packets pending

for a particular online algorithm in the current step; pending packets are thus present
only implicitly.

2.2 Previous Work

In this section we describe known results for Bounded-Delay Packet Scheduling, start-
ing from deterministic policies for general and restricted instances, and ending with
randomized algorithms. See Table 2.1 for a summary of the results.

2.2.1 Deterministic Algorithms

General instances. The model was introduced by Kesselman et al. [KLM+04] at
STOC 2001 as a theoretical abstraction that captures the constraints and objectives of
packet scheduling in networks that need to provide Quality of Service (QoS) guarantees.

A simple online algorithm Greedy that always schedules h was shown to be 2-
competitive already in 2001 [KLM+04, Haj01, CY03]. The proof by a charging argu-
ment is simple as well: We charge a packet j = OPT[t] to the slot where the algorithm
schedules j, if it is before t, and otherwise to the current slot. Observe that in the
latter case, j is pending for the algorithm and thus wh ≥ wj . Since any slot receives at
most two charges, each of weight at most wh, 2-competitiveness follows.

Also already in 2001, independently Hájek [Haj01] and Andelman et al. [AMZ03]
showed a lower bound of ϕ = 1

2(1 +
√

5) ≈ 1.618, so far the best one and widely
believed to be the optimal ratio; the same lower bound was later proven by Chin and
Fung [CF03] for restricted algorithms for online preemptive scheduling, but the proof
carries over to our model. The lower bound is based on the basic dilemma in this model:
Shall we take a heavy packet with a further deadline or an urgent but lighter packet?
The construction actually uses packets with span at most 2 only and the dilemma is
whether to send the heaviest expiring packet x or h with wh > wx, which has the
deadline in the next step. If the algorithm chooses h, then the instance immediately
ends, while if the algorithm takes x, then a new packet h with larger weight is issued
in the next step and the dilemma repeats. The ratio of wh to wx starts from ϕ and
gradually becomes ϕ2; precisely, the weight of the packet with deadline t is ϕt + δ · ϕ2t

for a small δ > 0. For more details see Section 2.7.2 where we generalize this lower
bound to the semi-online setting with lookahead.

The barrier of 2 was first broken by Chrobak et al. [CJST07] who presented a 64
33 ≈

1.939-competitive algorithm GenFlag. This algorithm balances between scheduling h
and e, which is the earliest-deadline packet with weight at least 7

11wh. The algorithm

17

uses one bit of memory to ensure that in two consecutive steps it does not schedule a
packet e of weight close to the threshold of 7

11wh.
At SODA 2007, the upper bound was independently improved by Li, Sethura-

man, and Stein [LSS07] to 3/ϕ ≈ 1.854 and by Englert and Westermann [EW12] to
2
√

2 − 1 ≈ 1.828, which is the best currently known ratio. The only better than 2-
competitive memoryless algorithm is due to Englert and Westermann [EW12]; its ratio
is approximately 1.893. All these three algorithms are based on plans (a.k.a. optimal
provisional schedules), which we describe in detail in Section 2.5, together with these
algorithms. While for the algorithm DP of Li et al. [LSS07] there is an example forcing
a ratio of 1.764, no instance forcing a ratio over ϕ is known for the algorithms of Englert
and Westermann.

In a recent paper, Al-Bawani, Englert, and Westermann [ABEW18] study deter-
ministic comparison-based algorithms, which do not look at actual weights, but only
at the relative order of packets by their weights. They show that Algorithm Greedy is
the best such algorithm by providing a lower bound of 2. (In contrast, for the closely
related FIFO model, defined in Section 2.4, they give a lower bound of 1+1/

√
2 ≈ 1.707

and a matching comparison-based algorithm for sequences with increasing weights.)
However, the general lower bound still remains ϕ ≈ 1.618 and therefore, in an

attempt to bridge the gap, special types of instances were studied.
s-Bounded instances. As mentioned above, the lower bound of ϕ holds even in
the 2-bounded case. A matching ϕ-competitive algorithm was given by Kesselman et
al. [KLM+04] for 2-bounded instances and by Chin et al. [CCF+06] for 3-bounded
instances. Both results are based on Algorithm EDFα (Earliest Deadline First), with
α = ϕ, which always schedules the earliest-deadline packet f whose weight is at least
wh/α (ties are broken in favor of heavier packets).

EDFϕ is not ϕ-competitive for 4-bounded instances by the following example: There
are four packets j, k, f, h released in step 1, with deadlines 1, 2, 3, 4 and weights 1−ε, 1−
ε, 1, ϕ, respectively, for some small ε > 0. The optimum schedules all packets, while
EDFϕ transmits only f and h in steps 1 and 2, thus the ratio is (3 + ϕ− 2ε)/(1 + ϕ) ≈
1.764. However, if we choose α =

√
3, then EDFα is

√
3 ≈ 1.732-competitive in the

4-bounded case [CCF+06]. For general s-bounded instances, the competitive ratio of
EDFα is at most 2− 2

s + o(1
s) [CCF+06] and converges to 2 as s tends to infinity.

In [BCJ+16] we modified EDFϕ to a ϕ-competitive algorithm ToggleH for 4-bounded
instances. The algorithm behaves like EDFϕ, except that if the instance locally looks
similar to the example above, then ToggleH chooses the earliest-deadline packet whose
weight is at least wh/ϕ2 (in the example, ToggleH sends k instead of h in step 2). The
algorithm maintains one mark that can be assigned to a pending packet, i.e., it uses
memory. However, this approach does not seem promising if packets have arbitrary
spans.
Agreeable deadlines (a.k.a. similarly ordered packets). If the instance satisfies
the agreeable deadlines property, i.e., that rp > rq implies dp ≥ dq, then there is a ϕ-
competitive policy by Li, Sethuraman, and Stein [LSS05, JLSS12]. In each step, their
algorithm ModifiedGreedy (MG) computes the plan and in particular, it identifies
the earliest-deadline packet e in the plan and the heaviest packet h. A simplification
of MG by Jeż [Jeż10] schedules e if we ≥ wh/ϕ; otherwise, it transmits h. While most
analyses of deterministic algorithms mentioned above are based on charging arguments
or potential functions, in the analysis of ModifiedGreedy Li et al. [LSS05] used a
neat trick. They maintain the invariant that the buffer of the adversary has the same
content as that of the algorithm, which is done by sometimes allowing the adversary
to transmit more packets at once or one packet twice. This yields a surprisingly simple
analysis (the paper has just two pages!).

18

Instances

Algs. Deterministic Randomized
Upper bounds Lower bounds Upper bounds Lower bounds

General

2
√

2− 1 ≈ 1.828
[EW12]
≈ 1.893‡ [EW12]
ϕ ≈ 1.618 [Sec. 2.6]

ϕ∗

e
e−1 ≈ 1.582‡¶

[CCF+06, BCJ11]
[Jeż13]

5
4

∗

4
3

∗¶

Agreeable
deadlines

ϕ‡ [LSS05],
[JLSS12]

ϕ∗ 4
3

‡ [JLSS12]
5
4

∗

4
3

∗¶

Increasing
weights

ϕ [BCD+13b] ϕ∗ e
e−1

‡¶
5
4

∗

4
3

∗¶

2-bounded ϕ‡ [KLM+04]
ϕ [Haj01],
[AMZ03, CF03]

5
4

‡ [CCF+06]
4
3

‡¶ [BCJ11]

5
4 [CF03]
4
3

¶ [BCJ11]

3-bounded ϕ‡ [CCF+06] ϕ∗ 27
19 ≈ 1.421‡¶ [Jeż13]

5
4

∗

4
3

∗¶

4-bounded ϕ [BCJ+16] ϕ∗ 256
175 ≈ 1.463‡¶ [Jeż13]

5
4

∗

4
3

∗¶

s-bounded 2− 2
s + o

(
1
s

)‡

[CCF+06]
ϕ∗ 1/

(
1−

(
1− 1

s

)s)‡¶

[Jeż13]

5
4

∗

4
3

∗¶

2-uniform
≈ 1.377 [CJST07]
√

2 ≈ 1.414‡

[AMZ03]

≈ 1.377 [CJST07]
√

2 ≈ 1.414‡

[CCF+06]

5
4

∗‡

4
3

∗‡¶

4−
√

8 ≈ 1.172
[CCF+06]
6
5

¶ [BCJ11]
4
3

‡¶ [BCJ11]

s-uniform ϕ♮‡ 4
3

♮‡
5
4 for s→∞
[CCF+06]

∗ follows from the corresponding result for 2-bounded instances.
♮ follows from the corresponding result for instances with agreeable deadlines.
‡ applies to memoryless scale-invariant algorithms.
¶ against the adaptive adversary.

Table 2.1: A summary of results for Bounded-Delay Packet Scheduling on various types
of instances.

19

s-Uniform instances. A special subclass of instances with agreeable deadlines and
also of s-bounded instances is formed by s-uniform instances in which the span of any
packet has length of s. Notice that the lower bound of ϕ does not apply, as it uses
packets of spans both 1 and 2. For the 2-uniform case, Chrobak et al. [CJST07] show a
lower bound of ≈ 1.377, which is the largest root of x3 + x2− 4x + 1 = 0, together with
a matching memory-based algorithm. Regarding memoryless algorithms, Andelman et
al. [AMZ03] gave a

√
2 ≈ 1.414-competitive algorithm for 2-uniform instances and the

matching lower bound was proven by Chin et al. [CCF+06].
Not much was done for the s-uniform case for s > 2 and so far the best ϕ-competitive

algorithm follows from the result on agreeable instances [LSS05, JLSS12]. Note also
that the lower bounds for the 2-uniform case do not imply lower bounds for larger s
and, up to our best knowledge, there are no deterministic lower bounds for s > 2.

2.2.2 Randomized Algorithms

Already Chin and Fung [CF03] showed the lower bound of 1.25 on the performance of
any randomized algorithm against the oblivious adversary; the construction is again
just 2-bounded. We describe an extension of this lower bound for the semi-online
setting with lookahead in Section 2.7.3. The first randomized algorithms appeared
a few years later in the work of Chin et al. [CCF+06]. In particular, they provide
an optimal 1.25-competitive algorithm for the 2-bounded case and Algorithm RMix
achieving ratio e

e−1 ≈ 1.582 in the general case; both against the oblivious adversary.
Later, the analysis of RMix was refined to work in the adaptive adversary model by
Bieńkowski, Chrobak, and Jeż [BCJ11]. (See Section 1.1 for a description of both the
oblivious and the adaptive adversary model.) Bieńkowski et al. [BCJ11] complemented
their improved analysis by a lower bound of 4

3 ≈ 1.333 against the adaptive adversary,
which holds already on 2-bounded instances.

The upper bound of e
e−1 was improved in some special cases. For agreeable in-

stances, the work of Jeż et al. [JLSS12] also contains a 4
3 -competitive algorithm against

the oblivious adversary.
RMix was modified by Jeż [Jeż13] to a more universal, though also more compli-

cated variant, called ReMix. Jeż showed that on s-bounded instances it achieves ratio
(1−(1− 1

s)s) against the adaptive adversary; the ratio tends to e
e−1 as s goes to infinity.

For 2-bounded instances, the ratio equals 4
3 , matching the aforementioned lower bound.

Finally, randomized algorithms were studied in the s-uniform case and in particular,
Chin et al. [CCF+06] proved a lower bound against the oblivious adversary which
approaches 1.25 as s tends to infinity and equals 4−2

√
2 ≈ 1.172 for 2-uniform instances.

Precisely, the lower bound is equal to 1 + s− 1
2s− 1 + 2

√
s2 − s

. Against the adaptive

adversary, Bieńkowski et al. [BCJ11] showed a lower bound of 1.2 and an improved
lower bound of 4

3 for memoryless scale-invariant algorithms, both for the 2-uniform
case.

2.3 Contributions

2.3.1 Algorithms for General Instances

Our main contribution is a ϕ-competitive deterministic algorithm for general instances,
which is optimal by the lower bound in [Haj01, AMZ03, CF03]. We thus resolve its
conjectured existence after more than 15 years. The algorithm uses memory to maintain
a crucial monotonicity property, namely, under certain conditions, it increases weights
of some pending packets and sometimes also decreases their deadlines. We describe it

20

in Section 2.6, where we also give its analysis by a combination of a potential function
and modifying the adversary schedule.

The algorithm is based on plans and on their detailed understanding provided in
Section 2.5, which may be of independent interest. In particular, we analyze the struc-
ture of the plan and how it changes after arrival of a new packet and after an algorithm
schedules a packet.

2.3.2 Algorithms with Lookahead

In Section 2.7, we investigate semi-online algorithms which at time t are aware of all
packets arriving by time t + 1. This property is known as 1-lookahead. To our best
knowledge, lookahead was not considered in the context of packet scheduling before, but
it appeared in the online algorithms literature for paging [Alb97], scheduling [MST98],
and bin packing [Gro95] since the 1990s.

We provide two results about Bounded-Delay Packet Scheduling with 1-lookahead,
restricted to 2-bounded instances and deterministic algorithms. First, in Section 2.7.1,
we present an online algorithm for this problem with competitive ratio of 1

2(
√

13 −
1) ≈ 1.303. Then, in Section 2.7.2, we give a lower bound of 1

4(1 +
√

17) ≈ 1.281
on the competitive ratio of algorithms with 1-lookahead which holds already for the
2-bounded case. Our argument is an extension of the lower bound proof of ϕ in [Haj01,
AMZ03, CF03]. In fact, our lower bound result is more general: Using only 2-bounded
instances, for any integer ℓ ≥ 0 we prove a lower bound of 1

2(ℓ+1)(1 +
√

5 + 8ℓ + 4ℓ2)
for online algorithms with ℓ-lookahead, that is, algorithms that at time t can see all
packets arriving by time t + ℓ. It follows that there is no 1-competitive algorithm
with any constant lookahead, even on 2-bounded instances. In a subsequent work,
Kobayashi [Kob18] claims to have an optimal deterministic algorithm with 1-lookahead
for 2-bounded instances, matching our lower bound of 1

4(1 +
√

17) ≈ 1.281.
Finally, in Section 2.7.3 we also show that the lower bound of 1.25 for random-

ized algorithms against the oblivious adversary can be extended to the setting with
ℓ-lookahead for any ℓ. The main idea is to have packet spans so large that the use of
lookahead is negligible. The result holds already on instances with agreeable deadlines.

2.4 Closely Related Models

FIFO model. The other well-studied model with a single buffer and a single output
port is the FIFO model, in which the buffer has a limited capacity and packets cannot
be reordered inside the buffer, i.e., the buffer is implemented as a queue. This means
that packets need to be transmitted in the first-in-first-out (FIFO) order and some
packets must be dropped because of the limited capacity, depending on the weight.
The packets have no deadlines, but the delay in sending each packet after its arrival is
at most the buffer size if it is ever sent. There are two variants: In the nonpreemptive
variant, a packet can be dropped only upon its arrival, i.e., once it is added to the
buffer, it must be transmitted. The preemptive variant, on the other hand, allows the
algorithm to also drop packets in the buffer upon arrival of a new packet. Observe that
in the offline setting, both variants are the same as the algorithm may simply accept
only packets that are eventually transmitted and hence, algorithms for the preemptive
case can only be better.

In the nonpreemptive case, the optimal competitive ratio, even for randomized al-
gorithms, equals Θ(log α), where α is the ratio of the largest to the smallest packet
weight [AMZ03, AM03, Zhu04]. The preemptive case still remains unsolved with

21

the currently best upper bound of
√

3 ≈ 1.732 [EW09] and the lower bound of ≈
1.419 [KMvS05] (both for deterministic algorithms and any buffer size).

It is interesting to note that the FIFO model with buffer size s is related to the
s-uniform case of Bounded-Delay Packet Scheduling and in particular, any upper bound
for the FIFO model carries over to s-uniform instances. Indeed, on s-uniform input
we simulate an algorithm for the (preemptive variant of the) FIFO model with buffer
capacity s, in each step sending the same packet, and no deadline will be violated, since
any packet stays at most s steps in the buffer.
Collecting items from a dynamic queue. Bieńkowski et al. [BCD+13a] introduced
a generalization of the bounded-delay model in which the deadline of a packet is revealed
to the online algorithm only when the packet already expired, but the algorithm knows
the ordering of packets by their deadlines. Thus there is a queue of packets and in each
step, several packets from the beginning of the queue may be removed by the adversary.
Arriving packets are added to their particular locations in the queue (according to the
unknown deadlines) and the algorithm then chooses one of the packets from the queue
to be scheduled. This problem can be viewed as a partially non-clairvoyant variant of
Bounded-Delay Packet Scheduling and it is called Item Collection. In the special FIFO
case, the packets are added to the end of the queue only, which corresponds to agreeable
deadlines.

Note that Algorithm Greedy, scheduling always the heaviest packet in the queue,
is still 2-competitive, using the same charging argument. Also, the lower bound of
ϕ carries over to this model. Using just six packets, Bieńkowski et al. [BCD+13a]
show an improved lower bound of approximately 1.633 that holds even if all packets
are released together and thus only the deadlines remain unknown. Moreover, no
deterministic memoryless algorithm can beat the performance of Greedy, in contrast
with the 1.893-competitive memoryless algorithm for known deadlines.

On the positive side, they provide a roughly 1.897-competitive policy Prudent-
Mark and a 1.737-competitive algorithm for the FIFO case. Of course, most algorithms
for the model with known deadlines do not work, with an exception of the randomized
algorithm RMix. Bieńkowski et al. [BCD+13a] claim that RMix [CCF+06, BCJ11]
applies to this model with the same analysis giving ratio e

e−1 ≈ 1.582 and show a match-
ing lower bound for memoryless algorithms against the adaptive adversary. Also, the
randomized algorithm of Jeż [Jeż13] for s-bounded instances still works for collecting
items from a dynamic queue.

In [BCD+13b] Bieńkowski et al. consider instances with increasing weights, i.e.,
a packet further in the queue can only be larger. All lower bounds so far have this
property. They design an optimal ϕ-competitive deterministic algorithm for this special
case, which matches the well-known lower bound.
Higher bandwidth. Already the work of Kesselman et al. [KLM+04] considers a gen-
eralization of Bounded-Delay Packet Scheduling in which the bandwidth of the output
port is m, thus m packets can be transmitted in each step. In the online scheduling jar-
gon, there are m identical machines instead of one. In particular, the 2-competitiveness
of Greedy and the ϕ-competitiveness of EDFϕ on 2-bounded instances in [KLM+04] are
proven for any m. The paper also contains a lower bound of 4 − 2

√
2 ≈ 1.172 for the

2-bounded case and a lower bound of 10
9 for the 2-uniform case, both for any m.

Later, Chin et al. [CCF+06] gave an algorithm with ratio (1 − (m
m+1)m)−1, which

tends to e
e−1 ≈ 1.582 for m → ∞. Note that the lower bound of 1.25 for randomized

algorithms against the oblivious adversary and their lower bounds for the s-uniform
case hold for any m.
Resource augmentation: Increasing the bandwidth. Jeżabek [Jeż09] considered
increasing the bandwidth (or speed) of the algorithm, i.e., the number of packets sent in

22

each step, while still comparing it to an offline optimum with bandwidth 1 (unlike in the
previous model). He designed an algorithm with bandwidth m that is 1 + 1/(2m − 1)-
competitive and proved that no 1-competitive scheduling policy is possible even with
arbitrarily large bandwidth.

For the case of agreeable deadlines, Jeż et al. [JLSS12] designed a 1-competitive
algorithm with bandwidth 2. As far as we are aware, there is no other work which
considers resource augmentation for Bounded-Delay Packet Scheduling.
Limited buffer size. If we restrict buffer capacity to some limit B, then, somewhat
surprisingly, no deterministic plan-based (or best-effort) algorithm can achieve a better
ratio than 2 − 1

B [Li09], where plan-based means that the algorithm always chooses
a packet to transmit from the plan. In contrast, if the buffer has infinite capacity,
any algorithm can be replaced by a plan-based algorithm with the same or better
performance on any instance. Shortly afterwards, Fung [Fun10] devised a 2-competitive
deterministic algorithm, based on a careful adjustment of the plan.

Note also that some algorithms carry over from the unlimited buffer setting, for
example, the ϕ-competitive strategy for agreeable deadlines [JLSS12] still works with
a limited buffer.
Weights decreasing over time. We propose another possible direction in which the
bounded-delay model can be generalized. Here, the weight of a packet decreases over
time, or more precisely, the weight of a packet p is a non-increasing function wp of the
delay, i.e., the weight of p at time t ≥ rp is wp(t−rp). In general, the weight function can
be different for different packets. Notice that the deadline case corresponds to functions
that are equal to wp up to dp − rp and then drop to 0, thus no explicit deadlines are
needed in this more general model. In the non-clairvoyant setting, only the current
weights of the pending packets are known to the online algorithm and not the whole
functions. Up to our best knowledge, this model is not yet considered in the literature.

Observe that Algorithm Greedy, which schedules the currently heaviest packet, is
2-competitive even in the non-clairvoyant setting, still by the charging argument given
above. On the other hand, it is easy to get a lower bound of 2 for deterministic
algorithms without clairvoyance: In step 1 the adversary issues two packets a and b,
both with weight 1 in step 1, and w.l.o.g. the algorithm transmits a. Then the weight
of b drops to 0, while the weight of a stays 1, so the gain of 2 is possible, but the
algorithm’s gain is only 1.

The question is whether it is possible to design a better than 2-competitive algorithm
with the help of randomization and/or clairvoyance.

We remark that this generalization is in the spirit of recent work in online algo-
rithms. For example, Azar et al. [AGGP17] recently generalized the k-server problem
by allowing the algorithm to delay serving a request, but for a certain cost, which is
determined by a delay penalty function of the request. Also, for the FIFO model, Fiat
et al. [FMN08] considered latency sensitive packets that loose one unit of weight in
every step they spend in the buffer; their results were later extended by Feldman and
Naor [FN17].

2.5 Plans

In this section we thoroughly study the plan, which we view as an important tool for
designing competitive algorithms. Indeed, in the next section we utilize the detailed
understanding of the plan in the description and analysis of an optimal deterministic
algorithm for general instances.
Definition 2.1. A subset X of packets pending for an online algorithm at time t is
feasible if all packets in X can be scheduled in slots t, t+1, . . . , respecting their deadlines.

23

The plan is the maximum-weight feasible subset of pending packets.

We denote plans by upper-case letters, typically P or Q. Note that there might be
more than one plan if there are two packets with the same weight. However, under
assumption (A2), which ensures different weights, we shall prove that the plan is unique.
An important remark is that the plan is not a schedule, i.e., the precise slots for packets
are not fixed.

Definition 2.2. A realization of plan P is a schedule of packets in P using slots
starting from t only.

By the definition of the plan, at least one realization exists, but there are usually
more. For a realization R of the plan, we say that packets p and q in the plan are
swappable if their positions in R can be swapped without violating their deadlines. We
define the following three realizations; see Figure 2.3 for an example.

• In the canonical realization, packets are scheduled in the canonical order, i.e., in
the order by deadlines, breaking ties in favor of heavier packets.

• The front-adjusted realization ensures that if packets p and q in the plan are
swappable and p is before q, then wp > wq. Note that if j is in slot τ , then all
packets in slots τ + 1, . . . , dj are lighter than j.

• The rear-adjusted realization is opposite to the front-adjusted one. That is, for
any two swappable packets p and q in the plan such that p is before q, wp < wq

holds. Thus if j is in slot τ , then all packets in slots τ +1, . . . , dj are heavier than
j.

For brevity, the canonical plan refers to the canonical realization of the plan and
similarly for the front-adjusted plan and the rear-adjusted plan. The canonical plan is
sometimes called the optimal provisional schedule in the literature. We remark that all
these three realizations are unique. This is easy to see for the canonical plan and we
give an argument for the rear-adjusted plan in Section 2.5.1 and for the front-adjusted
plan in Section 2.5.2.

1 2 3 4 5 6 7

z : 0.1
p : 2.6
q : 2.5

k : 0.6
b : 0.5
a : 1.6
f : 1.0

ℓ : 0.4

Canonical plan:

Front-adjusted plan:

Rear-adjusted plan:

f

f

f

a

a

a

b

b

b

k

k

k

q

q

q

p

p

p

z

z

z

Figure 2.3: An example of the three realizations of the plan. Packet ℓ is not in the
plan, even though it is heavier than z.

One of the most important notions regarding the plan is the following.

24

Definition 2.3. Let X be a set of packets pending at time t. For each τ ≥ t, we define
pslack(X, τ) (the packet slack) to be τ − t + 1 − |X≤τ |, where X≤τ is the number of
packets in X with deadline at most τ .

Observe that τ − t + 1 is the number of slots up to τ at time t, thus there are at
most τ − t + 1 packets with deadline at most τ in any feasible subset X of pending
packets, in particular, in plan P . It follows that if X is feasible, then pslack(X, τ) ≥ 0
for any τ ≥ t.

Vice versa, if pslack(X, τ) ≥ 0 for any τ ≥ t, then X is feasible. Indeed, we assign
packets to slots t, t + 1, . . . in the canonical ordering and pslack(X, τ) ≥ 0 for any τ ≥ t
ensures that no packet is assigned to a slot after its deadline. This gives us the following
observation.

Lemma 2.4. A subset X of packets pending at time t is feasible if and only if for any
τ ≥ t it holds that pslack(X, τ) ≥ 0 .

We remark that if nothing arrives in future, then the best thing to do is to schedule
all packets in the plan. However, new packets typically arrive, perhaps with larger
weights, and then it is not clear which packet is the best one to be sent.

2.5.1 Computing the Plan

We first observe that feasible subsets of pending packets form a matroid.

Lemma 2.5. The collection of feasible subsets of packets pending at time t forms a
matroid.

Proof. Clearly, the empty set is feasible and a subset of a feasible set is feasible. For
the exchange property, let X and Y be feasible subsets with |X| > |Y |. We show
that there is a packet p ∈ X \ Y such that Y ∪ {p} is feasible. Let p be the latest-
deadline packet in X \ Y and let Z := Y ∪ {p}. We claim that pslack(Z, τ) ≥ 0 for
any τ ≥ t, which implies that Z is feasible by Lemma 2.4. Note that for τ < dp, we
have pslack(Z, τ) = pslack(Y, τ) ≥ 0, where the inequality is by the feasibility of Y and
Lemma 2.4.

Next, consider τ ≥ dp, for which pslack(Z, τ) = pslack(Y, τ) − 1 holds. We show
that pslack(Y, τ) > 0, which implies pslack(Z, τ) ≥ 0. Since p is the latest-deadline
packet in X \Y , we have that any packet in X with deadline after dp is in Y . Together
with |X| > |Y |, this implies that |X≤dp | > |Y≤dp |. As pslack(X, τ) ≥ 0, it follows that
pslack(Y, τ) > 0. Hence, the exchange property holds.

The lemma implies that the maximum-weight feasible subset P of pending packets,
i.e., the plan, can be found by the greedy algorithm which we now describe. The
algorithm also serves as a tool in our proofs below.

Initially, let P be an empty set. Given a set of pending packets at time t, we first
order them by weights and process them in this order, starting from the heaviest. Let
j be the currently considered packet (i.e., all heavier packets were already added to P ,
or rejected). We add j to P if and only if pslack(P ∪ {j}, τ) ≥ 0 for any τ ≥ dj . After
all packets are processed, P is the plan. Since by assumption (A2) no two packets have
the same weight, the ordering by weights is linear and thus the plan is unique.

The procedure above, although quite efficient, need not be run every time the
algorithm wants to look at the plan. Indeed, the algorithm may start with an empty
plan at the beginning and update it every time a packet arrives or is scheduled. We
describe these updates in detail in Section 2.5.3. Note that the matroid property implies
that at most one other packet in the plan changes.

25

Notice that we can easily modify the procedure to yield a rear-adjusted plan by
adding the considered packet always to the rightmost free slot before its deadline if
there is such a slot. (Observe that pslack(P, τ) = 0 implies that all slots till τ are
occupied.) It follows that the rear-adjusted plan is unique and that the procedure
can be implemented in O(n log n) using (a lazy implementation of) an interval tree for
keeping the number of free slots.

We can easily get the canonical plan by sorting the accepted packets according
to the canonical order. The front-adjusted plan can be obtained by starting with any
realization and performing appropriate swaps of swappable packets, but there is a more
direct way which we outline when we analyze the structure of the plan.

2.5.2 Structure of the Plan

In order to be able to use the plan for designing a good algorithm, we need to understand
its properties and structure. Consider plan P at time t. For simplicity we assume that
P is “fully packed”, i.e., a realization of P has a packet in each slot, which is without loss
of generality by assumption (A1) (we add sufficiently many virtual 0-weight packets).

Since the plan is fully packed, pslack(P, τ) equals the number of packets with dead-
line more than τ that need to be scheduled in slots up to τ in any realization. Slots τ
with pslack(P, τ) = 0 play a special role as no packet with deadline more than τ can be
in a slot up to τ in any realization of the plan, and these “tight” slots divide the plan
into segments.

Definition 2.6. A slot τ ≥ t is called tight w.r.t. plan P (at time t) if it holds that
pslack(P, τ) = 0. For convenience, t− 1 is a tight slot as well.

Let τ0 = t− 1 < τ1 < τ2 < · · · be tight slots. For any integer i ≥ 1, the interval of
slots [τi−1 + 1, τi] is called a segment.

We denote segments of P by S1, S2, . . . , ordered naturally by time. Thus S1 is the
first segment, while segments S2, S3, . . . are called later segments.

τ

pslack(τ)

0
1
2
3

1 73 15 204

Figure 2.4: An example of a graph of pslack(P, τ). The tight slots 3, 4, 7, 15, and 20
are depicted by a vertical dashed line. Note that pslack increases by at most one in
each slot and that pslack(P, τ) for τ ≤ 7 follows the set of packets from Figure 2.3.

In Figure 2.3, the tight slots are 3, 4, and 7, thus segments are [1, 3], [4, 4], and
[5, 7]. Notice that the tight slots and segments do not depend on a particular choice of
a realization of the plan. We remark that the first segment S1 behaves differently than
other segments when a packet is scheduled; we describe this in Section 2.5.3.

We already observed that if τ is a tight slot, no packet with deadline more than
τ can be in a slot up to τ in any realization of the plan. This leads to the following
observation.

Lemma 2.7. For each segment Si of plan P , the packets scheduled in slots in Si are
the same for any realization of P and these are precisely the packets in P with deadlines
in Si.

Proof. The proof is an easy induction argument. The lemma is trivial for the first
segment. For a later segment Si = (τi−1, τi], by induction the set of packets scheduled

26

in segments prior to Si is determined uniquely and contains all packets with deadlines
up to τi−1. As no packet with deadline more than τi can be in a slot up to the tight
slot τi, the lemma holds for Si as well.

Abusing notation, for a segment Si of plan P , Si also represents the set of packets
in P with deadlines in the interval Si. The previous lemma thus shows that any
realization schedules exactly packets from Si in each segment Si. Inside the segment,
however, there is some flexibility. In particular, we may schedule any packet from Si

in the first slot of Si as the next observation shows.

Lemma 2.8. For each segment Si = (τi−1, τi] of plan P , for each packet j ∈ P with
dj ∈ Si, and for each slot τ ∈ (τi−1, dj], there is a realization of P which has j in slot
τ .

Proof. Consider adding j to slot τ and scheduling other packets in Si in the remaining
slots according to the canonical ordering. We show that this yields a valid schedule of
the segment, which in turn proves the lemma. Suppose for a contradiction that there is
a packet k ∈ Si scheduled in slot τk > dk. Note that dk < τi as τk ≤ τi, since all packets
in Si fit into slots in Si. Let k1, k2, . . . , kℓ = k be packets in Si that are not after k in the
canonical ordering. It follows that their number ℓ is at least τk − τi−1 − 1 ≥ dk − τi−1,
(the −1 in the first bound is due to moving j to τ if τ < τk and k ≺ j). Counting also
packets in previous segments, there are (at least) dk − t + 1 packets in the plan with
deadline at most dk. This implies that pslack(P, dk) ≤ 0, thus dk < τi is a tight slot in
segment Si, which is a contradiction, since τi is the only tight slot in Si.

Remark: Another characterization of a tight slot is that τ is tight if and only if a
packet with deadline τ is in slot τ in the canonical plan.
Computing a realization by segments. We briefly describe a direct procedure for
computing the front-adjusted realization of the plan (computing the rear-adjusted plan
or the canonical plan can also be done similarly). Given a set of packets in plan P and
the values of pslack, we first partition the packets in P to segments according to their
deadlines. The segments of plan P are called level-0 segments and we further divide
them into “next-level” segments by “next-level” tight slots.

As segments do not interfere by Lemma 2.7, we do the following for each segment
Si = (τi−1, τi] separately: For any τ ∈ Si, let σ(τ) be a variable for storing a slack,
initially set to pslack(P, τ). Choose the heaviest packet j in Si and schedule it in the first
slot of Si, which is possible by Lemma 2.8. Next, decrease σ(τ) for all τ ∈ (τi−1, dj).
Now, a level-1 tight slot is a slot τ in Si that satisfies σ(τ) = 0 (this includes the
last slot τi in Si, for which σ(τi) = pslack(P, τi) = 0). These new tight slots divide
Si without the first slot into level-1 segments with determined packets (similarly to
Lemma 2.7). We recurse on each of them and continue in the same way.

We claim that the above procedure computes the front-adjusted plan. Consider
packets p and q in the plan such that wp < wq, p is assigned to slot τp and q to slot τq

with τp < τq. We show that dp < τq, meaning that these packets are not swappable.
This clearly holds if p and q are in different segments of the plan. Otherwise, let Si be
their segment of P . Consider the segment S′ with the highest level that contains both
p and q (possibly, S′ = Si). Recall that the procedure chooses the heaviest packet h′ in
S′ and puts it in the first slot of S′, which shatters S′ into several new segments. Note
that h′ ̸= p as wp < wq and h′ ̸= q as τp < τq. Thus p and q get into different segments
on the next level and then τp < τq implies dp < τq, since each packet in a new segment
has its deadline in the new segment. This shows the claim. Finally, it follows that the
front-adjusted plan is unique.

27

Previous and next tight slots and minimum weights. We use the following two
notions.

Definition 2.9. For a slot τ ≥ t of plan P at time t, let nextts(P, τ) (the next tight
slot) be the earliest tight slot τ ′ in P with τ ′ ≥ τ ; as we assume that the plan is fully
packed, it exists for any τ ≥ t.

Similarly, let prevts(P, τ) (the previous tight slot) be the latest tight slot τ ′ in P
with τ ′ < τ ; as t− 1 is assumed to be a tight slot, it is defined for any τ ≥ t.

The crucial notion is the minimum weight in the plan that can be in a slot up to
τ in a realization of the plan. Since we may put the lightest packet in a segment Si to
the first slot of Si by Lemma 2.8, we look at the weights of packets up to the next tight
slot.

Definition 2.10. For a slot τ ≥ t of plan P at time t, let minwt(P, τ) be the minimum
weight of a packet ℓ in plan P with dℓ ≤ nextts(P, τ).

We observe that minwt upper bounds the weight of a packet not in the plan.

Lemma 2.11. For any packet a ̸∈ P it holds that wa < minwt(P, da).

Proof. Let ℓ be the minimum-weight packet in P with deadline till nextts(P, da). By
Lemma 2.8, there is a realization of plan P which has ℓ in the first slot τ of the segment
containing dℓ. Note that τ ≤ da as dℓ ≤ nextts(P, da). The optimality of the plan and
assumption (A2) then imply wa < wℓ.

The lemma also yields the following alternative (dual) definition: minwt(P, τ) is the
supremum value of λ such that adding a packet v with dv = τ and wv = λ does not
change the plan.

Next, for a fixed plan P , we observe that minwt(P, τ) is monotone in τ and all slots
in a segment have the same value of minwt(P, τ).

Lemma 2.12. For plan P at time t it holds that minwt(P, τ) is monotone non-
increasing in τ , i.e.,

minwt(P, t) ≥ minwt(P, t + 1) ≥ minwt(P, t + 2) ≥ . . .

Moreover, for any segment Si, the value of minwt(P, τ) is the same for any τ ∈ Si.

Proof. The set of packets considered in the definition of minwt(P, τ) gets only larger if
we increase τ , proving the monotonicity property. The “moreover” part easily holds by
definition as well.

t τ

minwt(τ)

Figure 2.5: An example of a graph of minwt(P, τ). The tight slots are depicted by a
vertical dashed line.

In the next section, we prove an important monotonicity property of minwt(P, τ),
in particular, that for a fixed τ , the value of minwt(P, τ) does not decrease when a
new packet arrives, or when a packet from the first segment of the plan is scheduled.
However, if an algorithm schedules a packet from a later segment, then the value of
minwt decreases for some slots.

28

2.5.3 Plan Updates

In this section, we analyze how the plan evolves over time and in particular, how it
changes after arrival of a new packet and after an algorithm schedules a packet. First,
we define a useful notion that is relevant to plan updates, especially after a packet is
scheduled.
Substitute packets. We now take into consideration packets that are not in the plan
but will be added if some packet is scheduled. Note that when an algorithm schedules
a packet p in a later segment of the plan (i.e., p /∈ S1), then intuitively the segment has
one free slot. The free slot cannot be filled by a packet with a deadline in a previous
segment, thus a new packet ϱ with dϱ > prevts(P, dp) gets into the plan; we call ϱ the
substitute packet for p.

Furthermore, scheduling p from a later segment intuitively means that we move it
into the first segment S1 (actually, to the first slot of P). This implies that there are
too many packets in S1 and thus the lightest packet ω in S1 is kicked out of the plan.

This intuition serves as a motivation for the following definition.

Definition 2.13. Let P be the plan at time t. For each j ∈ P we define the substitute
packet of j, denoted sub(P, j), as follows. If j ∈ S1, then sub(P, j) = ω, where ω is the
lightest packet in S1. If j /∈ S1, then sub(P, j) is the heaviest pending packet ϱ /∈ P that
satisfies dϱ > prevts(P, dj) (it exists by assumption (A1)).

Note that, by definition, all packets in a segment of P have the same substitute
packet. Observe that for any j ∈ P we have wj ≥ w(sub(P, j)). Indeed, if j ∈ S1, then
sub(P, j) = ω and clearly wj ≥ wω, and otherwise, we have d(sub(P, j)) > prevts(P, dj),
thus set P − {j} ∪ {sub(P, j)} is feasible and the optimality of P implies that wj ≥
w(sub(P, j)). (A nearly the same notion of suppressed packets was used by Englert
and Westermann [EW12], however, for j ∈ S1 they define the suppressed packet as a
dummy 0-weight packet.)
Plan updates after a packet arrival. As we have demonstrated above, the most
important characteristics of the plan are the tight slots and segments. In order to
analyze their changes, we look at how the values of pslack change and, as they are used
to define tight slots, we also get how the tight slots are updated. We start by describing
the plan update after a packet arrival formally. See Figure 2.6 for an illustration.

Lemma 2.14. (The Plan-Update Lemma for Arrival.) Suppose that a new packet k is
released at time t. Denote by P the plan just before k arrives and by Q the plan after
k is released. Let γ = nextts(P, dk). Define f to be the minimum-weight packet in P
with df ≤ γ, i.e., such that wf = minwt(P, γ). Let δ = prevts(P, df).

If wk < wf , then Q = P , i.e., k is not added to the plan.
If wk > wf , then Q = P ∪ {k} − {f}, i.e., k is added to the plan replacing f . In

this case the following holds:

(a) pslack(P, τ) does not change for slots τ < min(df , dk) or τ ≥ max(df , dk). For
other slots, there are two cases:

(a1) If dk > df , then pslack(Q, τ) = pslack(P, τ) + 1 for τ ∈ [df , dk). It follows
that all segments of P in the interval (δ, γ] get merged into one segment (δ, γ]
of Q.

(a2) If dk < df , then pslack(Q, τ) = pslack(P, τ) − 1 for τ ∈ [dk, df) and thus
there might be new tight slots in [dk, df). In this case, both df and dk must
be in the segment (δ, γ] of P .

(b) For any slot τ , minwt(Q, τ) ≥ minwt(P, τ).

29

We remark that f always exists by assumption (A1) and by assumption (A2) wk ̸=
wf holds.

P

df dk

Q

df dk

.f

k.

P

dfdk

Q

.f

dfdk

.k

δ

δ

δ

δ

γ

γ γ

γ

Figure 2.6: An illustration of changes of tight slots and segments in case (a1) of
Lemma 2.14 on the left and in case (a2) on the right. Each plan is represented by
a rectangle divided into segments by tight slots, which are depicted by vertical line
segments.

Proof. We start by proving how the set of packets in the plan changes. Consider the
greedy procedure for computing the plan as described in Section 2.5.1, run in parallel
for P and Q, i.e., for the set of pending packets without k and for pending packets
including k. Note that the order in which packets are considered in both runs is the
same, except for packet k which is available only when computing Q.

If wk < wf , then both runs have the same set of accepted packets after f is added.
Moreover, as f is the minimum-weight packet in P with df ≤ γ = nextts(P, dk), all
packets in P with deadline at most γ are already accepted to both P and Q and
thus pslack(Q≥f , γ) = pslack(P≥f , γ) = 0, where Q≥f and P≥f are the sets of packets
accepted to Q and P , respectively, after adding f . However, as dk ≤ γ and as k is
considered after f , packet k is not added to Q, which implies that both runs produce
the same plan P = Q.

Otherwise, wk > wf . First, assume that wk = wf + ε for a tiny ε > 0, so that k is
just before f in the decreasing order by weights. In the run for computing P (i.e., for
pending packets without k), before the procedure adds f it holds that pslack(P>f , τ) > 0
for any τ ≥ df , where P>f is the set of packets accepted before f . Moreover, f is the
minimum-weight packet in P with df ≤ γ = nextts(P, dk) and thus if dk < df , we
have pslack(P, τ) > 0 for τ ∈ [dk, df). It follows that pslack(P>f , τ) > 0 for any
τ ≥ min(df , dk) and that pslack(P>f , γ) = 1. In the run with k, packet k is considered
just before f . Note that Q>k = P>f , thus by the inequalities above, k is added to Q.
Then pslack(Q>f , γ) = 0 and the procedure rejects f . After rejecting f , both runs are
again the same, as no packet with deadline at most γ is accepted and the values of
pslack after γ are the same. Hence Q = P ∪ {k} − {f} for wk = wf + ε.

For arbitrary wk > wf , observe that if we increase the weight of k from wf + ε,
then the plan does not change as k is already in it. Therefore Q = P ∪ {k} − {f} if
wk > wf .

Next, we analyze the changes in the case wk > wf .
(a) Suppose that dk ≥ df . Replacing f by k in the plan does not change any value
of pslack(P, τ) for slots τ < df or τ ≥ dk. All values of pslack(P, τ) for τ = df , df +
1, ..., dk − 1 increase by 1 as |P≤τ | decreases by one for such τ . So δ and γ remain tight
slots and there are no tight slots in the interval [df , dk) in Q. This shows (a1).

The argument for (a2) is similar. Suppose that dk < df . The value of pslack(P, τ) for
τ < dk or τ ≥ df stays the same. All values of pslack(P, τ) for τ = dk, dk + 1, ..., df − 1
are positive and decrease by 1 (possibly producing new tight slots). Thus δ and γ
remain tight slots.
(b) For τ ≤ δ, the set of packets with deadline at most δ does not change and tight slots
up to δ remain the same. Hence, minwt(Q, τ) = minwt(P, τ) for such τ . For τ ∈ (δ, γ] it

30

holds that minwt(P, τ) = wf and, as k replaces f and γ remains tight slot, we actually
have minwt(Q, τ) > minwt(P, τ).

Finally, consider τ > γ. Since tight slots after γ are unchanged, the set of packets
considered in the definition of minwt(τ) changes only by replacing f by k, which implies
minwt(Q, τ) ≥ minwt(P, τ). This concludes the proof.

We remark that for any packet j /∈ {f, k} it holds that w(sub(Q, j)) ≥ w(sub(P, j)).
Moreover, in the case wk > wf , we have w(sub(Q, k)) ≥ wf .
Plan updates after scheduling a packet. Next, we analyze how the plan evolves
when a packet is scheduled and the time is increased, but before new packets in the
next step arrive. There are two cases, depending on whether the algorithm schedules
a packet from the first segment S1 of P or from a later segment. For clarity, we state
a lemma for each case. (As our focus is on algorithms that always transmit a packet
which is in the plan, we do not provide a lemma for scheduling a packet not in the
plan.) In both cases, p is the scheduled packet, P is the current plan at time t (after
all arrivals at time t) and by Q we denote the plan just after p is scheduled, the time
is incremented, but before new packets at time t + 1 arrive. We start with the case of
the first segment, which is quite straightforward. See Figure 2.7 for an illustration.

Lemma 2.15. (The Plan-Update Lemma for Scheduling p ∈ S1.) Suppose that at time
t an algorithm schedules a packet p ∈ S1 and let β = nextts(P, dp). Then:

(a) Q = P \ {p}.

(b) pslack(Q, τ) = pslack(P, τ) for τ ≥ dp and pslack(Q, τ) = pslack(P, τ) − 1 for
τ < dp. In particular, β is a tight slot in Q and there might be new tight slots in
[t + 1, dp) in Q.

(c) For any slot τ , minwt(Q, τ) ≥ minwt(P, τ).

P

dp

. . .p

Q

dp

. . .

β

β

Figure 2.7: An illustration of changes of tight slots and segments in Lemma 2.15.

Proof. (a) This follows from the fact that by Lemma 2.8 there is a realization of P
which has p in slot t.
(b) For τ ≥ dp the value of pslack(P, τ) increases by one as the algorithm scheduled p,
but decreases by one as the time is increased, thus it does not change. It follows that
slot β ≥ dp remains to be tight (including the case β = t). For τ < dp, pslack(Q, τ) =
pslack(P, τ)− 1 as the time is incremented, so there might be new tight slots before dp.
(c) We have that the value of nextts(P, τ) may only decrease by (a). Since also no
packet is added to the plan, in the definition of minwt(Q, τ) we consider a subset of
packets used to define minwt(P, τ), which shows (b).

We remark that when a packet p ∈ S1 is scheduled, w(sub(Q, j)) ≥ w(sub(P, j))
need not hold for all packets j ∈ Q. Indeed, for j ∈ S1 such that j ̸= p, the substitute
packet was ω, but if j is no longer in the first segment, then w(sub(Q, j)) < wω.
However, w(sub(Q, j)) = w(sub(P, j)) for j in a later segment.

31

For the case p ∈ P , but p ̸∈ S1, recall that the substitute packet sub(P, p) for p is
the heaviest pending packet ϱ ̸∈ P satisfying dϱ > prevts(P, dp). We prove that ϱ really
appears in the plan when P is scheduled. See Figure 2.8 for an illustration.

Lemma 2.16. (The Plan-Update Lemma for Scheduling p ̸∈ S1.) Suppose that at time t
an algorithm schedules a packet p which is in a later segment of P . Let ϱ = sub(P, p) and
let ω be the lightest packet in the first segment S1 of P . Moreover, let β = nextts(P, t)
be the first tight slot, let δ = prevts(P, dp) and γ = nextts(P, dϱ). Then:

(a) Q = P \ {p, ω}∪{ϱ}. That is, ϱ is the unique packet in Q \P , and ω is not in Q.

(b) pslack(Q, τ) = pslack(P, τ)− 1 for τ ∈ [t + 1, dω) and pslack(Q, τ) = pslack(P, τ)
for τ ∈ [dω, β].

(c) It holds that pslack(Q, τ) = pslack(P, τ) for β < τ < min(dp, dϱ) and for τ ≥
max(dp, dϱ). For the rest of slots, there are two cases:

(c1) If dϱ > dp, then pslack(Q, τ) = pslack(P, τ) + 1 for τ ∈ [dp, dϱ). Thus all
segments of P in (δ, γ] get merged into one segment (δ, γ] of Q.

(c2) If dϱ < dp, then pslack(Q, τ) = pslack(P, τ)− 1 for τ ∈ [dϱ, dp). In this case,
there might be new tight slots in [dϱ, dp) in Q.

P

dp

. . .p

Q

dp

.

. . .

d̺

d̺

̺

dω

dω

ω

P

dp

. . .p

Q

dp

.

. . .

d̺

d̺

̺

dω

dω

ω

β

β

β

β

δ

δ

δ

δ

γ

γ

γ

γ

Figure 2.8: An illustration of changes of tight slots and segments in case (c1) of
Lemma 2.16 on the top and in case (c2) on the bottom.

Proof. Consider the greedy procedure for computing the plan and run it in parallel for
P and for Q. Initially, the runs are the same, i.e., the order of packets is the same
and the same packets are added, except for p which is not considered in the run for Q.
As ω is accepted to P , we have pslack(P>ω, τ) > 0 for any τ ≥ dω, where P>ω is the
set of packets accepted to P before ω. This implies pslack(Q>ω, τ) ≥ 0 for τ ≥ dω as
Q is with respect to time t + 1. (Note that p ̸∈ Q>ω and p ∈ P>ω as wp > wω, thus
pslack(Q>ω, τ) may be equal to pslack(P>ω, τ) for τ ≥ dp.) Moreover, pslack(P, τ) > 0
for τ ∈ [t, dω) as ω is in S1, thus pslack(Q>ω, τ) ≥ 0 for any τ ≥ t+1. It follows that all
packets heavier than ω are accepted to Q. Note also that any packet a ̸∈ P is lighter
than ω, thus no such packet is accepted to Q before the procedure considers ω.

Since pslack(P≥ω, β) = 0 and dp > β, we have that pslack(Q,>ω, β) = 0 and thus
ω is not accepted to Q. After considering ω in both runs, the values of pslack are the
same for slots in [dω, dp) and pslack(P≥ω, β) = pslack(Q≥ω, β) = 0. Thus in both runs
no additional packet with deadline at most β is accepted and the same packets with
deadline at most δ = prevts(P, dp) are accepted.

32

After rejecting ω, the values of pslack after δ can only be higher in the run for
Q. It follows that both runs are the same, until considering ϱ, the heaviest pend-
ing packet not in P satisfying dϱ > δ. We claim that the procedure accepts ϱ to
Q. It is sufficient to show that pslack(Q>ϱ, τ) > 0 for any τ > δ. This holds,
since pslack(Q>ϱ, τ) ≥ pslack(P, τ) > 0 for τ ∈ (δ, dp) and since for τ ≥ dp we have
pslack(Q>ϱ, τ) > pslack(P, τ), as the procedure rejected ω to Q, p ̸∈ Q, but Q has one
slot less than P .

Furthermore, as wϱ < minwt(P, dϱ), all other packets with deadline not exceeding
γ = nextts(P, dϱ) are already added to both P and Q (except ω and p), thus no other
packet a ̸∈ P is added to Q. Thus after ϱ is accepted to Q, pslack(Q≥ϱ, γ) = 0 and no
other packet with deadline up to γ is added to Q. Finally, both runs accept the same
set of packets with deadlines after γ as the values of pslack(τ) for τ > γ are the same
for both after ϱ is added to Q. It follows that Q = P \ {p, ω} ∩ {ϱ}. This shows (a).

We now analyze the changes in the values of pslack and show (b) and (c). If dω > t,
it holds that pslack(Q, τ) = pslack(P, τ)−1 for τ ∈ [t+1, dω), as the time was increased
and there is no change in the set of packets taken into account.

For dω ≤ τ < min(dϱ, dp), we have pslack(Q, τ) = pslack(P, τ) as the time was
increased, but ω was forced out. As dω ≤ β < min(dϱ, dp), β is a tight slot in Q
(including the case β = t). Similarly, for τ ≥ max(dϱ, dp), it holds that pslack(Q, τ) =
pslack(P, τ), since the time was incremented, ω was forced out, p was scheduled, and ϱ
appeared in Q.

In case (c1), for dp ≤ τ < dϱ we have pslack(Q, τ) = pslack(P, τ) + 1 as the time
was increased, but ω was forced out and p was scheduled, thus Q has no tight slots in
[dp, dϱ). It follows that prevts(Q, dϱ) = δ and nextts(Q, dp) = γ.

In case (c2), for dϱ ≤ τ < dp note that pslack(P, τ) ≥ 1 as dp > τ ≥ dϱ > δ =
prevts(P, dp) and pslack(Q, τ) = pslack(P, τ)−1 as the time was increased, ω was forced
out, and ϱ appeared in Q.

Again, we may have w(sub(Q, j)) < w(sub(P, j)) for a packet j ̸= p, in particu-
lar, if sub(P, j) = ϱ. Also, minwt(dϱ) decreases, as clearly minwt(P, dϱ) > wϱ, but
minwt(Q, dϱ) = wϱ.

2.5.4 Plan-Based Algorithms

Equipped with a detailed understanding of the plan and its updates, we turn our focus
to algorithms and in particular, to algorithms that deliberately choose a packet to
schedule from the plan.

There are two very simple and natural such algorithms: Algorithm Greedy always
schedules the heaviest pending packet (which must be in the plan), while GreedyPlan
sends the first packet in (a realization of) the plan in each step. Both are 2-competiti-
ve [Haj01, KLM+04, CY03]; the proof for GreedyPlan by Chang and Yap [CY03] is for
sending the first packet from the rear-adjusted plan.2 It seems that in order to get a
better algorithm, one has to balance between these two algorithms very carefully. In
other words, the challenge is to balance the immediate profit (maximized by Greedy)
against future profits (maximized by GreedyPlan).

However, the most straightforward way of combining the greedy strategies does not
work. Namely, consider the algorithm that sends either the earliest-deadline packet
f in the plan if wf ≥ wh/α, or the heaviest packet h otherwise, where α > 1 is a
parameter. Englert and Westermann [EW12] showed that its competitive ratio is at

2We remark that the analysis techniques in Section 2.6 about our ϕ-competitive algorithm can be
used to show 2-competitiveness of a general version of GreedyPlan, which transmits an arbitrary packet
from the first segment.

33

least 2 for any α > 1. Their proof actually does not use that f is the earliest-deadline
packet in the plan, it can also be the heaviest packet in the first segment, since the first
segment consists of just one step in the lower bound instances.

At SODA 2007, better than 2-competitive plan-based algorithms appeared in two
papers: Li, Sethuraman, and Stein [LSS07] showed that their algorithm DPϕ (Dummy
Packets) with memory is 3/ϕ ≈ 1.854-competitive and also at least (3 + ϕ)/(1 + ϕ) ≈
1.764-competitive (by the example that forces the same ratio for EDFϕ on 4-bounded
instances). The authors build on their algorithm ModifiedGreedy (MG) [LSS05] for
the agreeable deadlines case. To avoid instances on which EDFα has a ratio close to 2,
when DP sends a packet f , which is neither the earliest-deadline packet in the plan,
nor h, it generates a dummy (virtual) packet with deadline df and weight wh/ϕ and
associates it with h. If it is about to send a dummy packet, instead it schedules its
associated (real) packet. Finally, if h has already an associated dummy packet, the
algorithm transmits it immediately.

In the second paper, Englert and Westermann [EW12] designed a 2
√

2− 1 ≈ 1.828-
competitive strategy using memory and an approximately 1.893-competitive memo-
ryless algorithm. Before describing these two algorithms, let us elaborate on how to
design a good plan-based algorithm and discuss which packets make sense to send.
Significant packets. Consider a packet j in a later segment Si of the plan. Recall
that by Lemma 2.16, if an algorithms schedules j, its substitute packet ϱ = sub(P, j)
appears in the plan. Moreover, recall that a realization of the plan can have any packet
in the first slot of a segment by Lemma 2.8 and that all packets in a segment have the
same substitute packet. This motivates the following definition.

Definition 2.17. A pending packet j is significant if j is in the plan and it is the
heaviest packet in its segment of the plan.

By the observation above, it seems that an algorithm should just choose one of the
significant packets to schedule. Pushing it further, among significant packets in later
segments that have the same substitute packet, the algorithm perhaps only needs to
take into account the heaviest one.
Algorithm Plan. Many algorithms can be described as scheduling a packet with the
maximum value, where the value vp of a packet p of course depends on wp, but it may
depend also on the weight of other packets or something else. In particular, if p is in a
later segment of the current plan P , then it makes sense that vp also depends on the
weight of its substitute packet sub(P, p), which gets into the plan when p is scheduled.

Concretely, a natural way how to set up values is as follows: Let P be the plan in
step t (after all arrivals at time t) and let α be a parameter. For each p ∈ P we define
its value vp = wp + α · w(sub(P, p)). This yields the following simple algorithm, called
Plan(α).

Pseudocode 1 Algorithm: Plan
1: schedule the packet p ∈ P with the maximum value vp = wp + α · w(sub(P, p))

Note that we just need to calculate the values of significant packets in the plan,
since the algorithm always sends a significant packet.
Remark. An equivalent way of defining Algorithm Plan is the following: Schedule the
packet p ∈ P that maximizes the value of wp + α′ ·w(Qp), where α′ < 1 is a parameter
and Qp is the plan after p is deliberately scheduled and the time is incremented; note
that p ̸∈ Qp. This alternative formulation is perhaps more intuitive: The term wp is
the immediate gain of the algorithm, while w(Qp) represents the optimal future profit
if no packet arrives.

34

We show the equivalence of the two formulations as follows: Let a be a packet in S1,
the first segment of P , and let g be a packet in a later segment of P . Then Qa = P \{a}
by Lemma 2.15 and Qg = P \ {g, ω} ∪ {sub(P, g)} by Lemma 2.16.

If packet p ∈ S1 is scheduled, then Qp = P \ {p} and by the choice of p we obtain

wp + α′ · w(Qp) ≥ wg + α′ · w(Qg)
wp + α′ · w(P \ {p}) ≥ wg + α′ · w(P \ {g, ω} ∪ {sub(P, g)}

wp + α′ · w(P)− α′ · wp ≥ wg + α′ · w(P)− α′ · wg − α′ · wω + α′ · w(sub(P, g))
(1− α′) · wp + α′ · wω ≥ (1− α′) · wg + α′ · w(sub(P, g)) ,

(1− α′) · wp + α′ · w(sub(P, p)) ≥ (1− α′) · wg + α′ · w(sub(P, g)) ,

which is the inequality implied by Plan, multiplied by 1− α′.
If the scheduled packet p is in a later segment of P , then Qp = P \{p, ω}∪{sub(P, p)}

by Lemma 2.16. By similar calculations as above, for any packet j ∈ P we have

(1− α′) · wp + α′ · w(sub(P, p))) ≥ (1− α′) · wj + α′ · w(sub(P, j)) ,

It follows that maximizing the value of wp + α′ · w(Qp) is equivalent to maximizing
wp + α · w(sub(P, p)) for α = α′/(1− α′).

Algorithms of Englert and Westermann. The memoryless algorithm of Englert
and Westermann [EW12], which we denote by EW-Memoryless, is very similar to Plan,
but it assigns a smaller value for packets in S1. The algorithm actually has two param-
eters, α ≤ 1 and β ≤ 1.

Pseudocode 2 Algorithm: EW-Memoryless(α, β)
1: let m ∈ P be the packet with the maximum value vm, where
2: vm = α · wm for m ∈ S1
3: vm = α · wm + (1− α) · w(sub(P, m)) for m ̸∈ S1
4: let f be the earliest-deadline packet in P
5: if wf ≥ β · vm then
6: schedule f
7: else
8: schedule m

Their algorithm with memory, which we call EW-Memory, is an extension of the
memoryless one by making f sometimes more valuable. The algorithm uses memory
to maintain the value of δ(τ) for each slot τ , which equals the maximum value of
minwt(Q, τ) for a plan Q so far. Then they just replace the condition wf ≥ β · vm by
max(wf , δ(t)) ≥ vm, where t is the current time (the parameter β does not occur in
the description, but one may easily add it).

Pseudocode 3 Algorithm: EW-Memory(α)
1: for each slot τ ≥ t, set δ(τ)← max(δ(τ), minwt(P, τ))
2: let m ∈ P be the packet with the maximum value vm, where vm is set up in the

same way as in EW-Memoryless
3: let f be the earliest-deadline packet in P
4: if max(wf , δ(t)) ≥ vm then
5: schedule f
6: else
7: schedule m

35

Note that both EW-Memoryless and EW-Memory may schedule a non-significant
packet if f is not the heaviest packet in S1. However, m is always a significant packet.

While these algorithms, especially Plan, seem promising to be ϕ-competitive, we
have examples that none of them is actually ϕ-competitive for any setting of parameters.

2.6 ϕ-Competitive Algorithm

2.6.1 Algorithm Description

Intuitions. Recall that Algorithm Plan(α) schedules packet p that maximizes wp +
α · w(sub(P, g)). By analyzing the 2-bounded case, one can get that the right value
of α for ϕ-competitiveness is ϕ.3 As it turns out, the above strategy for choosing p
does not, by itself, guarantee ϕ-competitiveness. The analysis of special cases and an
example where this simple idea fails lead to the second idea behind our algorithm.
The difficulty is related to how the values of minwt(P, τ), for a fixed τ , vary over
time. We were able to show ϕ-competitiveness for certain instances where minwt(P, τ)
monotonely increases with the time increasing. We call this property slot-monotonicity.
Slot monotonicity does not hold for arbitrary instances. The idea is then to simply force
it to hold by increasing weights and decreasing deadlines of some packets in the new
plan, including increasing the weight of the substitute packet sub(P, p). (To avoid
unfairly benefiting the algorithm from these increased weights, we will need to account
for them appropriately in the analysis.) Then the algorithm proceeds using these new
weights and deadlines for computing the plan and choosing the packet to schedule.
Notation.
• We use wt

p and dt
p for the weight and the deadline, respectively, of packet p in step

t before a packet is scheduled. We remark that our algorithm does not change
weights and deadlines when a new packet arrives. For simplicity, wp refers to wt

p

and dp to dt
p. By w0

p we refer to the original weight of packet p.
• P t is the plan at (the current) time t after all packets j with rj = t arrive and

before a packet is scheduled. By S1, S2, . . . we denote the segments of P t.
• ω is the lightest packet in P t in the first segment S1.
• We use subt(p) to denote sub(P t, p) and similarly for minwtt(τ), nexttst(τ), and

prevtst(τ).

Pseudocode 4 Algorithm: PlanM
1: schedule packet p ∈ P t that maximizes wt

p + ϕ · wt(subt(p))
2: if p is not in the first segment S1 of P t then ▷ “leap step”
3: ϱ← subt(p)
4: wt+1

ϱ ←minwtt(dt
ϱ) ▷ increase wϱ

5: γ← nexttst(dt
ϱ) and τ0← nexttst(dt

p)
6: i← 0 and h0← p
7: while τi < γ do
8: i← i + 1
9: hi← the heaviest packet in P t with dt

hi
∈ (τi−1, γ]

10: τi← nexttst(dt
hi

)
11: dt+1

hi
← τi−1 and wt+1

hi
← max(wt

hi
, minwtt(τi−1))

12: k← i ▷ final value of i

3Interestingly, there are two linear combinations of wp and w(sub(P, g)) that give ratio ϕ for the
2-bounded case; the other one is ϕ · wp + w(sub(P, g)), but we were not able to extend this one to the
general case.

36

For a pending packet j, if wt+1
j or dt+1

j are not explicitly set in the algorithm, then
wt+1

j ←wt
j or dt+1

j ← dt
j , respectively, i.e., weights and deadline remain the same by

default.
If p is in the first segment S1 of P t, the step is called a greedy step. Otherwise (if

p ̸∈ S1), the step is called a leap step, and then ϱ = subt(p) is the heaviest pending
packet ϱ ̸∈ P t with dt

ϱ > prevtst(dt
p). We will further consider two types of leap steps.

If p and ϱ are in the same segment (formally, dt
ϱ ≤ τ0, or equivalently, k = 0), then this

leap step is called a simple leap step. If ϱ is in a later segment than p (that is, dt
ϱ > τ0,

or k > 0) then this leap step is called an iterated leap step.
Let p be the packet sent by PlanM in step t. We observe that p is the heaviest

packet in its segment of P t as all packets in this segment have the same substitute
packet subt(p). Furthermore, p is not too light, compared to the heaviest pending
packet h, namely wp ≥ wh/ϕ2. Indeed, as mentioned earlier, we have wp ≥ w(subt(p)).
It follows that ϕ2wp = wp + ϕwp ≥ wp + ϕ · w(subt(p)) ≥ wh + ϕ · w(subt(h)) ≥ wh,
where the second inequality follows by the choice of p in line 1.

Note that line 1 of the algorithm is exactly Algorithm Plan(ϕ). Thus an equivalent
way of defining line 1 is the following: Schedule the packet p ∈ P t that maximizes the
value of ϕ · wt

p + wt(Qt
p), where Qt

p is the plan after p is deliberately scheduled and
the time is increased; note that p ̸∈ Qt

p and that for Qt
p we do not change weights or

deadlines.

Leap Step of Algorithm PlanM and Slot-Monotonicity

Our goal is to maintain the slot-monotonicity property, i.e., to ensure that for any slot
τ the value of minwtt(τ) does not decrease. For this reason, we need to increase the
weight of the substitute packet ϱ in each leap step (as wt

ϱ < minwtt(dt
ϱ)), which is done

in line 4. For the same reason, we also need to adjust the deadlines and weights of the
packets hi, which is done in line 11. The deadlines of hi’s are decreased to make sure
that the segments between δ = prevtst(dt

p) and γ do not merge (as merging could cause
decrease of some values of minwtt(τ)). These deadline changes can be thought of as
a sequence of substitutions, where h1 replaces p in the segment of P ending at τ0, h2
replaces h1, etc., and finally, ϱ replaces hk in the segment ending at γ.4 See Figure 2.9
for an illustration. Then, if the weight of some hi is too low for its new segment, it
is increased to match the earlier minimum of that segment, that is, minwtt(τi−1). (To
maintain assumption (A2), we also add an infinitesimal to the new weight of hi.)

P tp

̺Q

hk

hk

hk−1
. . .

. . .h1

h1

h2

h2

h3

h3

h4p

τ0 τ1 τ2 τ3 τk−1 τk = γδ

Figure 2.9: An illustration of the shift of the packets h1, . . . , hk in an iterated leap step
(lines 6-11 of the algorithm’s description). Q is the plan at time t + 1 just after p is
scheduled.

Note that Lemma 2.14 analyzes arrival of a new packet and Lemma 2.15 analyzes
scheduling a packet in a greedy step, even for our algorithm. However, we need an
adjusted analog of Lemma 2.16 for a leap step, since the algorithm modifies the weights
and deadlines in leap steps. Then we use this lemma to prove the slot-monotonicity
property stated in Lemma 2.20. In the following, we use P for P t and by Q we denote

4 We give an intuition behind such a complicated shift of packets in case L.2, where we analyze an
iterated leap step.

37

the plan just after p is scheduled, the time is incremented and weights and deadlines
are changed (and before new packets at time t + 1 arrive).

Lemma 2.18. Suppose that t is a leap step in which p was scheduled, and let ϱ =
subt(p) be p’s substitute packet. Let τ0, . . . , τk = γ = nexttst(dt

ϱ) be as in the algorithm.
Furthermore, let δ = τ−1 := prevtst(dt

p). Then:

(a) Q = P \ {p, ω} ∪ {ϱ}; in particular, if k ≥ 1, all packets h1, h2, . . . , hk are in Q.

(b) wt
p = wt

h0
> wt

h1
> wt

h2
> · · · > wt

hk
> wt

ϱ.

(c) hk’s deadline is in the segment of P ending at γ, that is, prevtst(P, dt
ϱ) < dt

hk
≤ γ.

(d) The pslack values change as follows (see Figure 2.10)

(d.i) For τ ∈ [t + 1, dt
ω), we have pslack(Q, τ) = pslack(P, τ)− 1.

(d.ii) For τ ∈ [dt
ω, δ] it holds that pslack(Q, τ) = pslack(P, τ).

(d.iii) If k ≥ 1, then for i = 0, . . . , k−1 we have the following changes in (τi−1, τi]:

(d.iii.1) For τ ∈ (τi−1, dt
hi

) and for τ = τi, we have pslack(Q, τ) = pslack(P, τ).
(d.iii.2) For τ ∈ [dt

hi
, τi), it holds that pslack(Q, τ) = pslack(P, τ) + 1,

(d.iv) For τ ∈ (τk−1, min(dt
hk

, dt
ϱ)), we have pslack(Q, τ) = pslack(P, τ).

(d.v) For τ ∈ [min(dt
hk

, dt
ϱ), max(dt

hk
, dt

ϱ)), there are two cases:
(d.v.1) If dt

hk
< dt

ϱ, then pslack(Q, τ) = pslack(P, τ) + 1 for dt
hk
≤ τ < dt

ϱ.
(d.v.2) If dt

ϱ < dt
hk

, then pslack(Q, τ) = pslack(P, τ)− 1 for dt
ϱ ≤ τ < dt

hk
.

(d.vi) Finally, for τ ≥ max(dt
hk

, dt
ϱ) we have pslack(Q, τ) = pslack(P, τ).

(e) Any tight slot of P is a tight slot of Q, but there might be new tight slots before
dt

ω and in case (d2) also in [dt
ϱ, dt

hk
). In other words, nextts(Q, τ) ≤ nextts(P, τ).

(f) wt+1
hi
≥ minwtt(dt+1

hi
) for any i = 1, . . . , k, and wt+1

ϱ ≥ minwtt(dt+1
ϱ).

Proof. (a) The claim clearly holds for a simple leap step by Lemma 2.16, i.e., when
k = 0, since the algorithm does not decrease deadlines if k = 0 and since increasing the
weight of ϱ does not change the new plan Q.

Thus consider an iterated leap step. Let Q be the plan after p is scheduled and
the time is increased, but before weights and deadlines are adjusted by the algorithm,
i.e., Q is with respect to weights and deadlines at time t. Thus Q is the same as
Q in Lemma 2.16, which yields that Q = P \ {p, ω} ∪ {ϱ}; in particular, packets
h1, h2, . . . , hk are in Q. Our goal is to prove Q = Q. Clearly, increasing the weights
of packets in the plan cannot change the plan, but the algorithm also decreases the
deadlines of h1, h2, . . . , hk. To see that no hi is forced out of the plan because of
decreasing the deadlines, consider again Q and note that by Lemma 2.16 all segments
between δ = prevtst(dt

p) and γ = nexttst(dt
ϱ) get merged into one and in particular,

pslack(Q, τ) ≥ 1 for any τ ∈ (δ, γ).
Decreasing the deadline of hi from dt

hi
to dt+1

hi
= τi−1 decreases pslack(τ) by one for

τ ∈ [τi−1, dt
hi

), i = 1, . . . , k; all these intervals are contained in (δ, γ) and since dt
hi
≤ τi,

these intervals do not overlap. Thus after decreasing the deadlines of hi’s (and keeping
the set of packets in the plan) no slot has a negative value of pslack. It follows that
Q = Q; in particular, packets h1, h2, . . . , hk remain in Q.

(b) Note that p is the heaviest packet in segments of P in (δ, γ] as ϱ is the substitute
packet for any packet in P in (δ, γ]. Since δ < dt

hi
≤ γ for i = 1, . . . , k, we get wt

p > wt
hi

.

38

The ordering of weights of hi’s follows by the definition of hi’s in line 9 of the algorithm’s
description.

Item (c) holds by the definition of hi’s in line 9 and by the condition of the while
loop in line 7.

(d) Note that for any slot τ ≤ δ or τ > γ the value of pslack(τ) is not affected by
the decrease of the deadlines of hi’s, since hi’s are both in P and in Q and since their
old and new deadlines are in (δ, γ]. We thus get exactly the same changes of the pslack
values outside (δ, γ] as in Lemma 2.16. Regarding slots in (δ, γ], Lemma 2.16(c1) shows
that pslack(Q, τ) decreases by one for τ ∈ [dt

ϱ, dt
p) if dt

ϱ < dt
p, and increases by one for

τ ∈ [dt
p, dt

ϱ) if dt
p < dt

ϱ. In the former case, we have τ0 = γ as dt
ϱ and dt

p are in the same
segment, thus k = 0. In the latter case, we sum the increase of pslack(τ) for τ ∈ [dt

p, dt
ϱ)

with the changes of the pslack values due to decreasing the deadlines of hi’s, analyzed
in (a), and we get the same changes as in (d); see Figure 2.10.

Finally, item (e) follows from (c), (d) and the fact that the value of pslack(τ) does
not increase for any tight slot in P .

Item (f) follows from changing the weights in lines 4 and 11.

P tp

̺Q

. . .h1 h2 h3

p

τ0 τ1 τ2 τ3 = γδ

Q p

dth1
dth2

dth3
dt̺dtp

. . .

h1 h2 h3

τ0 = dt+1
h1

τ1 = dt+1
h2

τ2 = dt+1
h3

dth1
dth2

dth3
dt̺dtpδ

. . .
δ

h1 h2 h3 ̺

dt+1
̺

. . .

τ3 = γ

τ3 = γ

+ + + + + + + + + + + + + + + + +

− − − − − − − − − − − − − −
+ + + + + + − −

−

−

dtω

∆pslack(P t → Q) :

∆pslack(Q → Q) :

∆pslack(P t → Q) :

Figure 2.10: An illustration of changes of the pslack values in an iterated leap step.
For plans P ′, Q′, by ∆pslack(P ′ → Q′) we denote the difference of the pslack values of
P and of Q. The plus sign represents that pslack(τ) increases by one, while the minus
sign represents that pslack(τ) decreases by one.

Next, we show that the minimum weight in the plan does not decrease even in a
leap step.

Lemma 2.19. If step t is a leap step, then minwt(Q, τ) ≥ minwt(P, τ) for any τ > t.

Proof. We use notation from Lemma 2.18. By Lemma 2.18(e) all tight slots of P
are tight slots of Q (in particular, δ and γ remain tight slots); thus nextts(Q, τ) ≤
nextts(P, τ). Fix τ , and let a be the packet that realizes minwt(Q, τ), that is the
minimum-weight packet in Q with dt+1

a ≤ nextts(Q, τ). We need to show that wt+1
a ≥

minwt(P, τ). We have three cases.
Case 1: τ ≤ δ. Lemma 2.18(a) shows that ω is forced out of the plan, thus not in Q,
and otherwise the set of packets in the plan with deadline at most δ does not change.
It follows that a is in P and its weight was not increased. Moreover, dt+1

a = dt
a ≤

nextts(Q, τ) ≤ nextts(P, τ), thus wt+1
a ≥ minwt(P, τ).

Case 2: τ ∈ (δ, γ]. If a ̸= hi for all i = 1, . . . , k + 1, in particular, if a ̸= ϱ = hk+1, then
a is also in P with the same deadline and weight. As nextts(Q, τ) ≤ nextts(P, τ), we
get dt

a ≤ nextts(P, τ) and wt+1
a ≥ minwt(P, τ) easily follows.

39

Next, suppose that a = hi for some i ∈ {1, . . . , k} (excluding the case a = hk+1 = ϱ).
Recall that wt+1

a ≥ minwt(P, τi−1) and that dt+1
a = τi−1. Since τ > prevts(Q, τi−1) and

since tight slots of P are tight also in Q, we have τ > prevts(P, τi−1). This implies
minwt(P, τi−1) ≥ minwt(P, τ) and we get wt+1

a ≥ minwt(P, τi−1) ≥ minwt(P, τ).
Finally, consider the case a = ϱ, which is similar to the previous case. Recall

that wt+1
ϱ = minwt(P, dt

ϱ) and dt
ϱ = dt+1

ϱ . We have τ > prevts(Q, dt
ϱ), which implies

τ > prevts(P, dt
ϱ). It follows that wt+1

ϱ = minwt(P, dt
ϱ) ≥ minwt(P, τ).

Case 3: τ > γ. Note that the set of packets in the plan with deadline after γ does not
change and also their weights and deadlines remain the same. Thus if dt

a > γ, then
using nextts(Q, τ) ≤ nextts(P, τ) again, we get wt+1

a ≥ minwt(P, τ). Otherwise, dt
a ≤ γ,

thus wt+1
a ≥ minwt(Q, γ) ≥ minwt(P, γ) ≥ minwt(P, τ), where the second inequality

follows from case 2 and the third one from γ < τ .

The previous lemma together with Lemma 2.14(b) for arrival of a new packet and
Lemma 2.15(c) for a greedy step immediately yield the slot-monotonicity property in
Lemma 2.20.

Lemma 2.20. Let P be the current plan in step t just before an event of either arrival
of a new packet, or scheduling a packet (and increasing the time), and let Q be the plan
after the event. Then minwt(Q, τ) ≥ minwt(P, τ) for any τ > t and also for τ = t in
the case of packet arrival.

Hence, in the computation of Algorithm PlanM, for any fixed τ , function minwtt(τ)
is non-decreasing in t as t grows from 0 to τ .

2.6.2 Competitive Analysis

Overview, Adversary Schedule, and Shadow Packets

Let ALG be the schedule of PlanM and let OPT be a fixed optimal schedule, also called
the adversary schedule (actually, OPT can be any schedule for the instance). Our goal
is to show that ϕ · w0(ALG) ≥ w0(OPT), where w0 refers to the original weights of
packets.

We bound the competitive ratio via amortized analysis, using a combination of
three techniques:
• In leap steps, when the algorithm increases weights of some packets (the substitute

packet and some hi’s), we charge it a “penalty” equal to ϕ times the total weight
increase. We remark that we increase the weight only for the algorithm and not
in the adversary schedule.
• We use a potential function, which quantifies the advantage of the algorithm over

the adversary in future steps. This potential function is defined in Section 2.6.2.
• During the analysis, some packets in the adversary schedule are replaced by lighter

packets. If this happens, we add the appropriate “credit” (equal to the weight
decrease) to the adversary’s gain in this step. In the rest of this subsection, we
explain how the adversary schedule is maintained and its packets replaced.

Adversary schedule. We actually work with the adversary schedule ADV that serves
as a method of bookkeeping of future adversary’s gain on the packets that are already
released. (Abusing notation, we use ADV to also denote the set of packets in the
adversary schedule.) We enforce that ADV has two types of packets only: (i) real
packets that are pending also for the algorithm and are in the plan, and (ii) virtual
shadow packets that we introduce below. Schedule ADV evolves as follows. Initially,
ADV is empty. When a packet j arrives and j ∈ OPT, then we add j to ADV to
the slot in which j is in OPT; note that this slot is empty in ADV. In each step t,
we remove packet ADV[t] from ADV (and the adversary gains its weight). We also

40

occasionally modify ADV by replacing some packets by different and lighter packets
(and the adversary gains the credit equal to the weight decrease); as a result, in general,
ADV[τ] need not be equal to OPT[τ].
Packet replacements. We now describe the process of replacing some packets in
ADV by lighter packets. Such replacement is done for packets in ADV that are also in
the current plan of the algorithm. (Later, we describe replacing packets in ADV that
are not in the plan.) So let g be the packet scheduled in slot τ in ADV that we want
to replace. Depending on circumstances, we replace g either by a new virtual packet
or by another packet in the plan. This new packet will be in the same slot τ in ADV.
We now describe these two types of replacements.
Replacement by a shadow packet. In most cases, we replace g = ADV[τ] by a new
“virtual” packet s, called a shadow packet, with weight minwtt(dt

g). Shadow packets
exist only in ADV — they are not pending for the algorithm at any time and we do
not need to impose a canonical order on them. Consequently, they are also exempt
from assumption (A2), which is why the weight minwtt(dt

g) need not be perturbed.
Once created, shadow packets are tied to their specific slot and never change, and thus
there is no need to specify their release times and deadlines. As g is in the plan, its
weight is at least minwtt(dt

g). Thus s is no heavier than g, and its weight will never
exceed minwtt(dt

g) in the future, due to the slot-monotonicity property (Lemma 2.20).
In essence, shadow packets are an accounting trick: They represent deposits of profit,
to be collected when the time reaches their associated time slot.
Replacement by another packet from the plan. In an iterated leap step, we
replace each hi, i = 0, . . . , k, that is in ADV. Some packets hi ∈ ADV are replaced
by a shadow packet, but in a certain case, we replace a packet hi ∈ ADV by hi+1.
(As a forward reference, we note that this replacement happens only in the case M.ii
when processing a middle group of segments.) Recall that hi+1 is lighter than hi (cf.
Lemma 2.18(b)); furthermore, we guarantee that in the case of this replacement the
weight of hi+1 does not change. As a result, we again replace a packet by a lighter
packet. During these replacements, we also guarantee that at the end of the process no
packet hi appears twice in ADV.
Replacing real packets not in the plan. As mentioned earlier, all real pending
packets that are in ADV must be in the current plan P t. To ensure this, we replace
each real packet in ℓ ∈ ADV \P t by a new shadow packet s of the same weight as ℓ and
in the same slot of ADV. Naturally, the adversary gets no credit for this replacement.
Notice that packet ℓ (and thus s as well) has weight below minwtt(dℓ). Since ADV does
not contain any packets pending for the algorithm that are not in P t, the substitute
packet added to the plan in a leap step is never in ADV (although its shadow copy may
be in ADV).

pending for PlanM

not in plan P

F

plan P

ADV

shadowF ADV ∩ P

Figure 2.11: The sets of packets in the competitive analysis. Set F together with
bijection F : ADV ∩ P → F are introduced in Section 2.6.2.

Summary. To summarize, we will maintain the invariant that the packets in ADV in

41

each step t are of two types:
• Packets in ADV∩P t. Each packet m ∈ ADV∩P t satisfies wt

m ≥ minwtt(dt
m) and

has the same weight in ADV and in P t. These packets may be changed in ADV
in the future.
• Packets in ADV \ P t, which are all shadow and not pending for the algorithm.

These packets are never changed in the future. Each shadow packet s in slot τs

in ADV satisfies ws ≤ minwtt(τs) and, by Lemma 2.20, its weight does not exceed
minwtt(τs) until it is scheduled by the adversary.

Set F and Invariant (P)

In our analysis we maintain a set F , which is a subset of “forced-out” pending packets,
i.e., packets that got ousted from the plan, either by arrivals of other packets or in a
leap step. A useful property of F is each packet in F can be used as a substitute packet
(if it has an appropriate deadline).

In our analysis we will maintain the invariant that |F| = |ADV∩P | (where P is the
current plan). We also use the following natural bijection F between ADV ∩ P and F :
Let f1, . . . , fℓ be all packets in F in the canonical ordering, i.e., df1 ≤ df2 ≤ · · · ≤ dfℓ

(breaking ties in favor of heavier packets), and let g1, . . . , gℓ be all packets in ADV∩P ,
again in the canonical ordering. Then F (gi) = fi.

For each slot τ ≥ t of the current plan, we define a quantity that will be crucial in
our analysis; its name is explained in Section 2.6.2:

#pairs(τ) = |F≤τ | − |(ADV ∩ P)≤τ | ; (2.1)

(Recall that X≤τ = {x ∈ X : dt
x ≤ τ}.)

Throughout the analysis, we will maintain the following important invariant which
relates the values of pslack and of #pairs:

For any slot τ ≥ t it holds that pslack(P, τ) ≥ #pairs(τ). (P)

After expanding the definitions of pslack(P, τ) and of #pairs(τ) and rearranging, we get
that invariant (P) for a slot τ can equivalently be defined as |F≤τ |+ |(P \ ADV)≤τ | ≤
τ − t + 1. Thus, intuitively, this invariant guarantees that if we modify P by replacing
any subset of packets g ∈ ADV ∩ P by the corresponding packets F (g), we obtain a
feasible set of pending packets.

After each event (i.e., arrival of a packet or scheduling a packet) we change the
adversary schedule ADV and set F so that invariant (P) is preserved. Sometimes, it
will be convenient to show this separately in the segments of the plan. Namely, we say
that invariant (P) holds for segment S of the plan (or more generally, for an interval S
of slots) if (P) holds for any τ ∈ S.

Potential Function and Overview of the Analysis

Potential function. Sets F , ADV and P undergo changes in the course of our analysis,
not only when a packet is scheduled, but also when new packets arrive. We thus index
these sets not by the current time, but by events, where an event is either the arrival
of a new packet, or scheduling a packet in step t (together with increasing the time).
Events are numbered by integers, starting from 0. Let Pσ be the plan just before event
σ; similarly for F and ADV. Note that if σ is the scheduling event in step t, then
P t = Pσ.

The potential just before event σ at time t is the following:

Ψσ := 1
ϕ ·
[
wt(Pσ) + wt(Fσ)− wt(ADVσ ∩ Pσ)

]
. (2.2)

42

We remark that the potential can equivalently be defined as 1
ϕ [wt(Pσ\ADVσ)+wt(Fσ)],

but it is more convenient to explicitly have the term wt(ADVσ ∩ Pσ) in the potential.
Initial and final state. At the beginning, before any packet arrives, we assume that
the plan is filled with virtual 0-weight packets, each in a slot equal to its deadline,
and none of them scheduled by the adversary. Both set F and the adversary schedule
ADV are empty, thus invariant (P) clearly holds, and Ψ0 = 0. At the end, after all
(non-virtual) packets expire, the potential is zero as well.
Adversary gain. In each step t, the adversary gain, denoted advgaint, is the weight
of packet ADV[t] that the adversary schedules in step t plus the credit (the difference
between old and new weights) for replacing some packets in ADV by lighter packets.
Since each packet in OPT is added to ADV upon its arrival with its original weight
into an empty slot and since the adversary gets a corresponding credit for each packet
that it schedules and for each replacement in ADV, the sum of advgaint over all steps t
equals w0(OPT) as desired.
Amortized analysis. At the core of our analysis are bounds relating amortized gains
of the algorithm and the adversary at each event σ. If σ is the index of a packet arrival
event, then we will show the following packet-arrival inequality:

Ψσ+1 −Ψσ ≥ 0 . (2.3)

If σ is the index of the scheduling event in a step t, then we will show that the following
packet-scheduling inequality holds:

ϕ · wt(ALG[t])− ϕ · (∆tWeights) + (Ψσ+1 −Ψσ)− advgaint ≥ 0, (2.4)

where ALG[t] is the packet in step t in the algorithm’s schedule ALG (thus the algo-
rithm’s gain), wt refers to its weight at time t, and ∆tWeights is the total amount by
which the algorithm increases the weights of its pending packets in step t.

We prove the packet-arrival inequality in Section 2.6.3 and the packet-scheduling
inequality in Section 2.6.4. Assuming these two, we now show our main result.

Theorem 2.21. Algorithm PlanM is ϕ-competitive for Bounded-Delay Packet Schedul-
ing.

Proof. We show that ϕ · w0(ALG) ≥ w0(OPT), which implies the theorem. First, note
that the sum of terms Ψσ+1 −Ψσ over all events σ equals ΨT +1 −Ψ0, where Ψ0 = 0 is
the initial potential and ΨT +1 = 0 is the final potential after the last (scheduling) event
T . Second, as we noted above, the sum of advgaint over all steps t equals w0(OPT).
Finally, observe that ∑

t

[wt(ALG[t])− (∆tWeights)] ≤ w0(ALG) . (2.5)

This follows from the observation that if the weight of ALG[t] was increased by some
value δ > 0 at some step t′ < t, then δ also contributes to ∆t′Weights. (There may
be several such δ’s, as the weight of a packet may have been increased multiple times.)
Note that the bound (2.5) may not be tight if some packets with increased weights are
later dropped.

Hence, using (2.3) for each arrival event, (2.4) for each scheduling event, and (2.5)
yields

0 ≤
∑

σ

(Ψσ+1 −Ψσ) +
∑

t

(
ϕ · wt(ALG[t])− ϕ · (∆tWeights)− advgaint

)
≤ ϕ · w0(ALG)− w0(OPT) ,

concluding the proof.

43

Pairs and Consequences of Invariant (P)

In this section, we first give an intuitive view of bijection F : ADV ∩ P → F and
invariant (P) and then we state the corollaries of the invariant. Recall that bijection F
assigns fi to each gi ∈ ADV ∩ P , where fi and gi are the i-th packets in the canonical
ordering of F and ADV ∩ P , respectively. An equivalent view is that there are pairs
(fi, gi), i = 1, . . . , ℓ; we will work with both, i.e., with these pairs and F .

We classify the pairs and define their d-intervals as follows: A pair (f, g) is positive
if df < dg, negative if df > dg, and otherwise, if df = dg, the pair is neutral. The
d-interval of a pair (f, g) is [df , dg) if the pair is positive, and [dg, df) otherwise. Note
that the d-interval of a pair is always left-closed and right-open. Moreover, a pair
contains a slot τ if its d-interval contains τ , i.e., if df ≤ τ < dg for a positive pair, and
if dg ≤ τ < df for a negative pair. A neutral pair does not contain any slot, as the
corresponding d-interval is empty.

By the definition of F , the pairs are agreeable, i.e., for any two pairs (f, g) and
(f ′, g′), if df < df ′ , then dg ≤ dg′ . Indeed, if df < df ′ , then f is before f ′ in the
canonical ordering of F , thus also g is before g′ in the canonical ordering of ADV ∩ P
and dg ≤ dg′ follows. Similarly, a positive pair does not overlap with a negative pair
(f ′, g′), i.e., there is no slot contained in both pairs.

Recall that #pairs(τ) = |F≤τ | − |(ADV ∩ P)≤τ |. Observe that #pairs(τ) equals the
number of positive pairs containing τ minus the number of negative pairs containing
τ . As positive and negative pairs do not overlap, #pairs(τ) is either the number of
positive pairs containing τ , or minus the number of negative pairs containing τ .

Since pslack(τ) is non-negative, an equivalent formulation of invariant (P) is that
pslack(τ) is at least the number of positive pairs containing the slot τ . From the
invariant it follows that there is no positive pair containing a tight slot, although a
negative pair may contain a tight slot. It follows that the d-interval of a positive pair
is fully contained in a single segment of the plan, while the d-interval of a negative pair
may span several segments.

The important, though simple consequences of invariant (P) are summarized in
the following lemma, which in particular shows that each g in ADV ∩ P has a good
substitute packet.

Lemma 2.22. Suppose that g is in ADV ∩ P and let f = F (g), i.e., (f, g) is a pair.
Then:

(a) df > prevts(P, dg),
(b) w(sub(P, g)) ≥ wf , and
(c) wf < minwt(P, dg) ≤ wg.

Proof. (a) Since δ = prevts(P, dg) is a tight slot, pslack(P, δ) = 0, and invariant (P) for
δ implies that no positive pair contains δ. As δ < dg by definition, df > δ follows.

(b) Note that f ∈ F is pending, but not in P . If g ∈ S1, then sub(P, g) = ω
and wω ≥ wf as ω is heavier than any pending packet not in P . Otherwise, by (a)
df > δ = prevts(P, dg) and thus f is a candidate for the substitute packet sub(P, g),
which implies the inequality.

(c) As f is pending, but not in P and as df > prevts(P, dg) by (a), we have wf <
minwt(P, dg). The inequality minwt(P, dg) ≤ wg follows from the fact that g ∈ P .

The next lemma bounds the number of packets in F that are expiring in the current
step t.

Lemma 2.23. In each step t, |F≤t| ≤ 1, i.e., there is at most one packet f ∈ F with
df = t.

44

Proof. Recall that invariant (P) can equivalently be stated as |F≤τ | ≤ (τ − t + 1) −
|(P \ ADV)≤τ |. For τ = t, this gives |F≤t| ≤ 1− |(P \ ADV)≤t| ≤ 1.

Finally, in some cases of the analysis we just remove a pair (f, g), that is, whenever g
is either removed from ADV or no longer in the plan, then we remove the corresponding
f = F (g) from F . The next observation shows that this affects #pairs in a way that
preserves invariant (P).

Lemma 2.24. Suppose that (f, g) is a pair, f is removed from F , and g is removed
from ADV ∩P . If df ≤ dg, then #pairs(τ) decreases by one for τ ∈ [df , dg). Otherwise,
df > dg and #pairs(τ) ≤ 0 for τ ∈ [dg, df) both before and after these removals. In
both cases, for other slots the value of #pairs stays the same.

Moreover, in both cases, other pairs remain the same.

Proof. First, suppose df ≤ dg. Note that #pairs(τ) remains the same for τ ≥ dg and
for τ < df as both f and g are taken into account before their removals, or none of
them, respectively. For τ ∈ [df , dg), only f appears in (2.1), thus #pairs(τ) decreases
by one after we remove τ .

Otherwise df > dg. Similarly, #pairs(τ) remains the same for τ ≥ df and for τ < dg.
Consider a slot τ ∈ [dg, df) and note that for such a slot, #pairs(τ) increases by one as
only g was taken into account and not f . Recall that the position of f in the canonical
ordering of F is the same as the position of g in the canonical ordering of ADV ∩ P .
We get that |F≤τ | < |(ADV ∩ P)≤τ |, meaning that #pairs(τ) < 0 before the removals.
It follows that #pairs(τ) ≤ 0 after the removals.

The claim that other pairs are unchanged follows from the fact that the positions
of f and g in the canonical orderings of F and ADV ∩ P , respectively, were equal.

2.6.3 Arrival of a Packet

Let σ be the index of an arrival event. Let P = Pσ be the plan just before a new
packet j arrives and let Q = Pσ+1 be the plan just after j arrives. Our aim is to
maintain invariant (P) using appropriate modifications of sets F and ADV. We also
show that the packet-arrival inequality (2.3) holds after the modifications. All weights
and deadlines in this subsection are implicitly at the current time t (as the algorithm
does not change the weights and deadlines after packet arrival). There are two cases,
depending on whether or not j ∈ Q.

Case A.1: j is not added to the plan, i.e., P = Q. Then wj < minwt(P, dj) =
minwt(Q, dj). If j ∈ OPT, we add a new shadow packet s of weight wj to the adversary
schedule ADV to the slot where j is in OPT. Otherwise, i.e., if j ̸∈ OPT, we do nothing.
In both subcases Ψσ+1 = Ψσ, implying the packet-arrival inequality (2.3). Also, the
functions pslack and #pairs do not change, so invariant (P) is preserved.

Case A.2: j is added to the plan. Let u be the lightest packet in P with du ≤
nextts(P, dj); by assumption (A1) u exists. Then Q = P ∪ {j} \ {u} and wj > wu by
Lemma 2.14. Note that the values of pslack change according to Lemma 2.14.

Dealing with u ∈ ADV . If u is in ADV, then u ∈ ADV ∩ P , so F (u) ∈ F is defined. In
this case, we remove packet F (u) from F . Moreover, u ̸∈ ADV ∩ Q and we replace u
in ADV by a new shadow packet s of weight wu, which is placed in ADV in the former
slot of u. We use Lemma 2.24 for u and F (u) to get that invariant (P) is preserved by
these removals. The contribution of these changes to the potential change is positive,
as w(F) decreases by wF (u), but w(ADV ∩ P) decreases by wu and wu > wF (u), by

45

Lemma 2.22(c). In the cases below, when bounding Ψσ+1 − Ψσ, we will account for
this contribution without an explicit reference.

There are several cases, depending on whether or not j ∈ OPT and on the ordering
of du and dj .

Case A.2.a: j is not in the optimal schedule OPT.
Case A.2.a.P: du ≤ dj (the positive case). We do not further change F or ADV.

Thus Ψσ+1 −Ψσ ≥ 1
ϕ(w(Q)− w(P)) = 1

ϕ(wj − wu) > 0. The function #pairs does not
change and pslack does not decrease, so invariant (P) is preserved.

Case A.2.a.N: du > dj (the negative case). Let δ = prevts(P, du). If there is no
packet f ∈ F with df ∈ (δ, du), then we do nothing. Otherwise, let f∗ be the earliest-
deadline packet in F with deadline after δ, i.e., the first such packet in the canonical
ordering of F ; note that df∗ < du. We remove f∗ from F and add u to F .

If we replaced f∗ by u in F , then, as f∗ is pending but not in P and df∗ > δ, we
get that wf∗ < minwt(P, du) ≤ wu. Since also wu < wj , we obtain that Ψσ+1 − Ψσ ≥
1
ϕ(wj −wu + wu−wf∗) > 0. Otherwise, Ψσ+1−Ψσ ≥ 1

ϕ(wj −wu) > 0. This shows the
packet-arrival inequality (2.3).

We claim that invariant (P) is maintained. Recall that by Lemma 2.14(a2) and the
case assumption du > dj , both dj and du are in the same segment of P . Lemma 2.14(a2)
also shows that pslack(Q, τ) = pslack(P, τ) − 1 for τ = dj , dj + 1, . . . , du − 1, while for
other slots pslack is not changed.

If there was no packet f ∈ F with df ∈ (δ, du), invariant (P) is preserved since no
pair changes and since for any τ ∈ [dj , du) ⊆ (δ, du) we have #pairs(τ) ≤ 0, whereas
pslack(τ) does not change for other τ .

Otherwise, df∗ < du and #pairs(τ) decreases by one for τ ∈ [df∗ , du). Since
#pairs(τ) ≤ 0 for τ ∈ (δ, df∗) even after replacing f∗ by u in F , invariant (P) is
maintained.

Case A.2.b: Otherwise, j ∈ OPT. We add j to ADV in the same slot as in OPT
and add u to F . We first analyze Ψσ+1 − Ψσ. The weight of the plan increases by
w(Q)−w(P) = wj −wu, the term w(ADV∩P) increases by wj , and w(F) increases by
wu. Summing it up, Ψσ+1−Ψσ ≥ 1

ϕ((wj−wu)−wj +wu) = 0. Hence the packet-arrival
inequality (2.3) holds.

We now show that (P) holds, splitting the proof into two cases, depending on the
order of du and dj :

Case A.2.b.P: du ≤ dj (the positive case). In this case, Lemma 2.14(a1) shows
that pslack(Q, τ) = pslack(P, τ) + 1 for τ ∈ [du, dj), while for other slots pslack is not
changed. It holds that #pairs(τ) increases by one for τ ∈ [du, dj) and for other slots it
stays the same. Hence (P) is maintained.

Case A.2.b.N: du > dj (the negative case). By Lemma 2.14(a2) we have that
pslack(Q, τ) = pslack(P, τ) − 1 for τ ∈ [dj , du), while for other slots pslack is not
changed. Similarly, it holds that #pairs(τ) decreases by one for τ ∈ [dj , du) and for
other slots it stays the same, which implies that (P) holds.

2.6.4 Scheduling a Packet

After all packets with release time equal to t arrive, the algorithm schedules a packet
p. Let j be the packet scheduled in ADV at t. Recall that since we change ADV, j is
not necessarily the packet scheduled in step t in the original optimal schedule OPT; in
particular, j can be a shadow packet that replaced it or another real packet. Let P = P t

be the plan just before scheduling p and let Q be the plan after the algorithm schedules
p and possibly adjusts weights and deadlines, and after the time is incremented.

46

u j

f4

f5
f6

f7
f8

f9
g4

g5
g6

g7
g8

g9

jf4 g5 f7g8 f9
f5

f6

g9g6
g7

f8

g3f3

g3u
g4f3

f1 g1
g2f2 f10g10

f10g10

f1 g1
g2f2

Figure 2.12: An illustration of the changes of the pairs in the positive case of packet ar-
rival. In the upper part (above the dotted line) there are “old” pairs (f1, g1), . . . , (fℓ, gℓ)
and a (virtual) dashed pair (u, j). Each pair (f, g) is represented by its d-interval, i.e.,
the interval between df (depicted by a cross) and dg (depicted by a dot). Below the dot-
ted line, new pairs (f ′

1, g′
1), . . . , (f ′

ℓ+1, g′
ℓ+1) are shown. Note that #pairs(τ) increases by

one for τ ∈ [du, dj) and for other slots it stays the same; intuitively, this means that we
add a new positive pair (u, j), and then restructure the pairs to the implicit structure;
the latter does not change #pairs(τ) for any slot.

We split the scheduling step into the adversary step and the algorithm’s step such
that in the former, the adversary schedules j, but the plan remains the same, and in
the latter, the algorithm schedules p and the time is increased, thus the plan changes
from P to Q. We make changes in set F and in the adversary schedule ADV and then
we show that invariant (P) holds after each of the two steps. Some of the changes are
enforced by scheduling a packet or by changes of the plan, e.g., if a packet from F
gets into the plan as a substitute packet or if the algorithm schedules a packet in ADV.
Furthermore, during processing the algorithm’s step, if there is an expiring packet in
F , we remove it; there is at most one such packet by Lemma 2.23. In addition to the
enforced changes, we also do other deliberate modifications to maintain invariant (P).

First, we process the adversary step and bound the adversary gain in this step.
Then we deal with the algorithm’s step, which differs in a greedy step and in a leap
step; these are the two main cases. In both of them, our goal is to show the packet-
scheduling inequality (2.4). Processing of a leap step will be further divided into several
parts.

Processing a step (or a part of it) means that we first make changes in set F and in
ADV, then we show that invariant (P) is preserved and finally, we calculate the change
of the potential caused by the changes together with the credit for the adversary for
replacing packets in ADV and the penalty for increasing weights. To make calculations
less cluttered, j stands for wt

j and similarly for other packets. (Later, in the case of a
leap step, we extend the notation, as the weights change.)

Adversary Step

The adversary schedules j = ADV[t], thus j is removed from the adversary schedule
ADV. If j ∈ P , we also need to remove a packet from F .

Changes in the adversary step. If j ∈ P , then F (j) ∈ F is defined. We remove F (j)
from F .

Invariant (P) after the adversary step. If j ̸∈ P , then invariant (P) is clearly preserved.
Otherwise, j is no longer in ADV ∩ P and we removed F (j) from F , thus the pair
(F (j), j) is removed. By Lemma 2.24, other pairs remain the same and invariant (P)
holds after the adversary step.

47

The calculation in the adversary step. The adversary gain advgaint is j = wt
j plus some

credit for changing ADV in the algorithm’s step (which we take into account when
processing this step); we remark that if j is a shadow packet, then wt

j refers to its
weight upon creation (it never changes in future). By ∆ADVΨ we denote the change of
the potential in the adversary step. We now bound ∆ADVΨ− j, for which we have two
cases:

Case ADV.1: j ∈ P . Then removing F (j) from F decreases the potential by F (j)/ϕ,
but as j is no longer in ADV∩P , the potential increases by j/ϕ (the term wt(ADV∩P)
decreases by j). By Lemma 2.22(b) we have w(subt(j)) ≥ F (j). It follows that

∆ADVΨ− j = j

ϕ
− F (j)

ϕ
− j = − j

ϕ2 −
F (j)

ϕ
≥ − j

ϕ2 −
w(subt(j))

ϕ
≥ − p

ϕ2 −
w(subt(p))

ϕ
,

(2.6)
where that last inequality follows from the choice of p in line 1 of the algorithm’s
description; here we use that j ∈ P .

Case ADV.2: j /∈ P . In this case j is a shadow packet and thus wj ≤ minwtt(dj) ≤ ω,
as ω is in the first segment. Note that subt(ω) = ω and that ∆ADVΨ = 0. Then clearly

∆ADVΨ− j = −j ≥ −ω = − ω

ϕ2 −
w(subt(ω))

ϕ
≥ − p

ϕ2 −
w(subt(p))

ϕ
, (2.7)

where the last inequality holds by the choice of p again.

Thus in both cases

∆ADVΨ− j ≥ − p

ϕ2 −
w(subt(p))

ϕ
. (2.8)

Greedy Step

In this case p is the heaviest packet in the first segment of P . All weights and deadlines
in this subsection are at time t, as the algorithm does not change them in a greedy step.
Also ∆tWeights = 0. Since w(subt(p)) = ω, we get that ∆ADVΨ− j ≥ −p/ϕ2−ω/ϕ by
(2.8).

We now process the algorithm’s step. First, note that packet p is in P , but not in
Q, which decreases the potential by p/ϕ.

By Lemma 2.15 the values of pslack(P, τ) are not changed for τ ≥ dp, while for
τ < dp, the value of pslack(P, τ) decreases by one. We have two cases, depending on
whether p ∈ ADV or a change of F and of ADV is necessary to maintain invariant (P).

Case G.1: If p ̸∈ ADV and there is no positive pair containing a slot τ < dp, then we
do not further change any set and advgaint = j. Invariant (P) holds since the pairs do
not change, there is no positive pair containing a slot τ < dp by the case assumption,
and the value of pslack(τ) remains the same for τ ≥ dp.

We claim that there is no f ′ ∈ F with df ′ = t, which implies that no packet in F
expires in this step. Suppose for a contradiction that df ′ = t. Note that f ′ is in a pair
with g′ and dg′ > t, since after the adversary step, there is no packet in ADV in slot
t. We thus have dp > t as g′ is in the first segment by invariant (P). Moreover, pair
(f ′, g′) is positive, implying that t < dp is in a positive pair, which contradicts the case
condition.

The calculation showing the packet-scheduling inequality (2.4) is easy, as we just
need to take into account the adversary gain bounded in (2.8) and the contribution of

48

removing p from the plan to the potential change, denoted ∆pΨ:

ϕ · wt(ALG[t])− ϕ · (∆tWeights) + (Ψσ+1 −Ψσ)− advgaint

= ϕ · p− ϕ · 0 + [∆pΨ + ∆ADVΨ]− j

= ϕ · p + ∆pΨ + [∆ADVΨ− j]

≥ ϕ · p− p

ϕ
+
[
− p

ϕ2 −
ω

ϕ

]
= p

ϕ
− ω

ϕ
≥ 0 ,

where we use p ≥ ω in the last inequality.

Case G.2: Otherwise, p ∈ ADV or there is a positive pair containing a slot τ < dp.

Changes in case G.2. Let f1 be the earliest-deadline packet in F ; note that possibly
df1 = t, which means that in such a case, f1 cannot be in F in the next step.

Let g∗ be the latest-deadline packet in ADV ∩ P with deadline at most β :=
nexttst(dp). Packet g∗ is trivially defined if p ∈ ADV. Otherwise, the case condition
implies that there is a positive pair (f ′, g′) containing a slot τ < dp, thus df ′ ≤ τ < dp.
By invariant (P), the first tight slot β is not contained in any positive pair, thus dg′ ≤ β,
so g′ is a candidate for g∗.

If p ∈ ADV, let g = p; otherwise let g = g∗. We remove f1 from F and we replace g
in ADV by a new shadow packet s of weight minwtt(dp) = ω, which is added to the slot
of g in ADV. Of course, s is not pending for the algorithm. Note that by Lemma 2.23
all packets in F except f1 have deadline after t and as we removed f1, no packet in F
expires in the current step.

Invariant (P) in case G.2. We show that invariant (P) holds. By Lemma 2.15 the
value of pslack decreases by one for slots in (t, dp) and for other slots it is not changed.
We analyze how the values of #pairs change. If df1 < dg, then #pairs(τ) decreases by
one for τ ∈ [df1 , dg) and for other slots it remains the same. Otherwise, df1 ≥ dg and
the value of #pairs(τ) increases by one for τ ∈ [dg, df1), while for other slots it does
not change.

From the definitions of f1, g∗, and invariant (P), we have that #pairs(τ) ≤ 0 holds
for τ ∈ (t, df1) ∪ [dg∗ , β], even after the step. If follows that we just need to show that
invariant (P) holds for τ ∈ [df1 , dg∗) and we can assume that df1 < dg∗ . In particular,
as dg∗ ≤ β and dp ≤ β, invariant (P) holds for slots outside S1.)

We only need to consider the case when either #pairs(τ) increases or pslack(τ)
decreases, because in other cases, the inequality pslack(τ) ≥ #pairs(τ) is preserved
after the step as these quantities change by at most 1.

The first case, when #pairs(τ) increases, is actually already covered. Indeed, if
#pairs(τ) increases, then dg < df1 and τ ∈ [dg, df1), thus #pairs(τ) ≤ 0 as shown above
(even after the step).

The second case, when pslack(τ) decreases, happens when τ < dp. This, combined
with τ ∈ [df1 , dg∗), implies that τ ∈ [df1 , min(dp, dg∗)). As g ∈ {g∗, p}, it holds that
τ ∈ [df , dg), so #pairs(τ) decreases as well. Therefore, invariant (P) holds after the
greedy step.

Calculation in case G.2. Let ∆p,g,f1Ψ be the change of Ψ caused by removing p from
the plan, removing f1 from F , and g from ADV∩P , that is, ∆p,g,f1Ψ = (−p−f1 +g)/ϕ.
The adversary gain is advgaint = g− s + j = g−ω + j. Note that f1 ≤ ω as f1 ̸∈ P and
that g ≤ p as p is the heaviest packet in S1 and dg ≤ β. We show the packet-scheduling
inequality (2.4) by summing these changes and the cost of the adversary step bounded

49

in (2.8):

ϕ · wt(ALG[t])− ϕ · (∆tWeights) + (Ψσ+1 −Ψσ)− advgaint

= ϕ · p− ϕ · 0 + [∆p,g,f1Ψ + ∆ADVΨ]− [g − ω + j]
= ϕ · p + ∆p,g,f1Ψ− g + ω + [∆ADVΨ− j]

≥ ϕ · p +
[
− p

ϕ
− f1

ϕ
+ g

ϕ

]
− g + ω +

[
− p

ϕ2 −
ω

ϕ

]
= p

ϕ
− f1

ϕ
− g

ϕ2 + ω

ϕ2

≥ p

ϕ
− ω

ϕ
− p

ϕ2 + ω

ϕ2 = p

ϕ3 −
ω

ϕ3 ≥ 0 ,

where the penultimate inequality holds by f1 ≤ ω and by g ≤ p, and the last inequality
uses p ≥ ω. This concludes the analysis of a greedy step.

Leap Step

Suppose that the algorithm schedules p from a segment of P t other than the first
segment. Recall that in a leap step ω disappears from the plan, while ϱ = subt(p)
appears. As in this case the weights change, we use ϱt for wt

ϱ and ϱt+1 for wt+1
ϱ , and

similarly for other packets. The deadlines are implicitly at time t, i.e., da = dt
a. Let

δ = prevtst(dt
p) and γ = nexttst(dt

ϱ).
Regarding the cost in the adversary step, we have that ∆ADVΨ−jt ≥ −pt/ϕ2−ϱt/ϕ

by (2.8). We now process the algorithm’s step. For any τ ≥ t, we use the following
inequalities

pt

ϕ2 + ϱt

ϕ
≥ ωt ≥ minwtt(τ) , (2.9)

where the first one follows from the choice of p in line 1 of the algorithm’s description
and the second one uses ωt = minwtt(t) ≥ minwtt(τ) by the monotonicity of minwt in
τ .

We split processing the algorithm’s step into more parts. We start by accounting
for the changes of the plan and for increasing the weight of ϱ. Then we process the
first segment S1 and in most cases we make changes in F and in ADV with the goal to
maintain invariant (P) in S1, while not violating it outside S1. The final part of the
step will be processing segments in (δ, γ], which we further split into groups in the case
of an iterated leap step (i.e., if k > 0). The changes of pslack are divided into two or
more parts as well, i.e., changes of pslack in S1 are taken into account when processing
S1 and similarly for the changes in (δ, γ].

In the rest of segments, i.e., in segments after S1 not contained in (δ, γ], the values
of pslack are not changed by Lemma 2.18. However, in some cases, we remove a packet
with deadline in such a segment from ADV, namely, the latest-deadline packet which is
in a segment before the interval (δ, γ]. Similarly, from F we may remove some packets
with deadline outside S1 and outside (δ, γ]. We show that such removals preserve
invariant (P); more precisely, that for a slot τ ̸∈ S1 ∪ (δ, γ] either #pairs(τ) ≤ 0 even
after the removals, or #pairs(τ) does not change.
Changes of the plan and increasing the weights. Recall that by Lemma 2.18(a)
Q = P \ {p, ω} ∪ {ϱ} and that the algorithm increases the weight of ϱ to µ :=
minwt(P, dt

ϱ). This changes the plan’s weight by

∆p,ω,ϱw(P) := −pt − ωt + µ ≥ −pt − pt

ϕ2 −
ϱt

ϕ
+ µ , (2.10)

50

where the inequality follows from (2.9). We do not take into account yet that the plan’s
weight changes by the increase of weights of hi’s in an iterated leap step. We remark
that if still p ∈ ADV (and thus p ̸= j) or if ϱ ∈ F , we remove p from ADV or ϱ from
F later, when we process (δ, γ]. Similarly, we deal with ω ∈ ADV when we process S1.
Note that ϱ ̸∈ ADV, since ϱ was not in the plan and we enforce that all real packets in
ADV are in the plan. (However, a shadow copy of ϱ may be in ADV.)

Let ∆twϱ := µ−ϱt be the amount by which the algorithm increases the weight of ϱ;
we need to pay ϕ·∆twϱ for this change. In the case of an iterated leap step, the algorithm
increases the weights of hi’s as well. Let H = {h1, . . . , hk} be the set of hi’s and let
∆tw(H) be the total amount by which the weights of hi’s are increased; we set H = ∅
and ∆tw(H) = 0 in the case of a simple leap step. Thus ∆tWeights = ∆twϱ +∆tw(H).
Calculation in the leap step. Before processing S1 and segments in (δ, γ], we show
what we want to achieve in these parts, which we use to prove the packet-scheduling
inequality (2.4).

Let ∆S1Ψ be the total change of the potential due to changes in F when processing
S1; we remark that we do not change ADV when processing the first segment. We show
below that

∆S1Ψ ≥ 0 . (2.11)

Similarly, let ∆(δ,γ]Ψ be the total change of the potential due to changes done when
processing segments in (δ, γ] and let advgaint

(δ,γ] be the credit for the adversary for re-
placing packets in (δ, γ] in ADV by lighter packets; note that advgaint = jt+advgaint

(δ,γ].
We also include ∆tw(H) in calculations when processing segments in (δ, γ] and our aim
will be to show

∆(δ,γ]Ψ− ϕ ·∆tw(H)− advgaint
(δ,γ] ≥ −

pt

ϕ2 −
ϱt

ϕ
+ µ . (2.12)

Note that −pt/ϕ2 − ϱt/ϕ + µ is non-positive as µ ≤ pt/ϕ2 + ϱt/ϕ by (2.9), thus if we
change nothing while processing segments in (δ, γ] and if the weights of hi’s do not
change, (2.12) holds.

Given that (2.11) and (2.12) hold, we prove the packet-scheduling inequality (2.4)
by the following calculation:

ϕ·wt(ALG[t])− ϕ · (∆tWeights) + (Ψσ+1 −Ψσ)− advgaint

= ϕ · pt − ϕ · [∆twϱ + ∆tw(H)] + [1
ϕ∆p,ω,ϱw(P) + ∆ADVΨ + ∆S1Ψ + ∆(δ,γ]Ψ]

− [jt + advgaint
(δ,γ]]

= ϕ · pt − ϕ · (∆twϱ) + 1
ϕ∆p,ω,ϱw(P) + [∆ADVΨ− jt] + ∆S1Ψ

+ [∆(δ,γ]Ψ− ϕ ·∆tw(H)− advgaint
(δ,γ]]

≥ ϕ · pt − ϕ(µ− ϱt) + 1
ϕ

[
−pt − pt

ϕ2 −
ϱt

ϕ
+ µ

]
+
[
− pt

ϕ2 −
ϱt

ϕ

]
+ 0

+
[
− pt

ϕ2 −
ϱt

ϕ
+ µ

]
= 0 (2.13)

where the inequality uses, in this order, (2.10), (2.8), (2.11), and (2.12).

Processing S1. We first deal with the case of ω in ADV, and then we make changes
in F to maintain invariant (P) in S1.
Removing the pair with ω if ω is in ADV . If ω ∈ ADV, then F (ω) is defined. We
remove F (ω) from F and replace ω by a shadow packet of the same weight ωt in ADV,

51

which is placed in the former slot of ω in ADV. As ω is not in ADV ∩Q, the potential
increases by ωt/ϕ. On the other hand, removing F (ω) from F decreases Ψ by F (ω)t/ϕ.
By Lemma 2.22(c) F (ω)t < ωt, so the overall change of the potential is positive. By
Lemma 2.24 these removals do not affect other pairs and preserve invariant (P) in all
segments.

Maintaining invariant (P) in S1. By Lemma 2.18 the value of pslackt(τ) decreases by
one for τ < dω, thus for such τ we need to decrease #pairs(τ) if #pairs(τ) > 0. If f1, the
earliest-deadline packet in F , has deadline at least dω, then we do nothing. Otherwise,
we replace f1 by ω in F , which increases the potential by (ωt − f t

1)/ϕ ≥ 0. As these
are all changes done when processing S1, we get ∆S1Ψ ≥ 0 and (2.11) holds.

We show that invariant (P) holds for slots in S1. If df1 ≥ dω, then there is clearly
no positive pair containing a slot before dω and no pair changes, thus invariant (P) is
maintained. Otherwise, note that after replacing f1 by ω in F , the value of #pairs(τ)
decreases by one for τ ∈ [df1 , dω) and for other slots it remains the same. Moreover,
#pairs(τ) ≤ 0 for τ < df1 . Hence invariant (P) holds for slots in S1 and it is preserved
in any segment after S1.

No packet from F expires. We claim that after processing S1, no packet in F expires
in the current step. This holds by Lemma 2.23 if we removed f1 from F . Otherwise,
df1 ≥ dω, thus the claim trivially holds if dω > t. In the remaining case, dω = t, which
implies that S1 consists of just a single slot t. Note that f1 is in a pair with g1 and
dg1 > t, since after the adversary step, there is no packet in ADV in slot t. However,
invariant (P) implies that g1 needs to be in S1, which is a contradiction. Hence the
claim holds.

Processing segments in (δ, γ]. Similarly to the analysis of a greedy step, in most
cases we make the following changes in ADV and F : (i) in ADV we replace some packet
g with gt ≤ pt by a shadow packet, and (ii) from F we remove some packet f of weight
at most ϱt. Of course, things get more complicated in an iterated leap step, where we
possibly do several changes in ADV and F .

In each of the cases below, depending on whether the leap step is simple or iterated,
our goal is to show that (2.12) holds and that invariant (P) is maintained.

Case L.1: Simple leap step, i.e., k = 0 and dϱ ≤ nexttst(dp). In this case, dϱ and dp

are in the same segment (δ, γ], i.e., nexttst(dϱ) = nexttst(dp) = γ. We have H = ∅ and
∆tw(H) = 0. There are two subcases, depending on whether some changes are needed
or not. We remark that it may happen that ϱ was in F , but we have already removed
it and thus ϱ ̸∈ F now (in such a case, either ϱ was in a pair with ω, i.e., ϱ = F (ω), or
ϱ was in a pair with j, i.e., ϱ = F (j)).

Case L.1.A: First, suppose that ϱ ̸∈ F and there exists no packet in ADV ∩ P with
deadline in (δ, γ]; in particular p ̸∈ ADV ∩ P . Then g remains undefined, we do not
further change the set F or ADV, and the pairs remain the same as well. Observe
that there was no positive (or neutral) pair containing a slot in (δ, γ], as such a pair
(f ′, g′) satisfies dt

g′ ∈ (δ, γ] by invariant (P). Hence, #pairs(τ) ≤ 0 for τ ∈ (δ, γ], thus
invariant (P) holds for slots in (δ, γ] and it is clearly preserved for a slot outside (δ, γ].

Since we do no changes in ADV and F , we have ∆(δ,γ]Ψ = 0, advgaint
(δ,γ] = 0, and

the left-hand side of (2.12) is zero. As the right-hand side is non-positive, (2.12) holds.
Case L.1.B: Otherwise, either ϱ ∈ F or there is a packet in ADV ∩ P with deadline

in (δ, γ]. In this case, ADV and F will be changed to maintain invariant (P).

Changes in case L.1.B. We now define packets g and f as follows.

52

Let g∗ be the latest-deadline packet in ADV∩P with deadline not exceeding γ. We
note that g∗ is well defined. This is trivially true if the second condition of the case is
satisfied. If ϱ ∈ F then F −1(ϱ) is a candidate, because dϱ ≤ γ and thus dF −1(ϱ) ≤ γ by
invariant (P). (It is possible that dg∗ ≤ δ in this case.) If p ∈ ADV, let g = p; otherwise
let g = g∗.

Similarly, let f∗ be the earliest-deadline packet in F with deadline larger than δ.
This f∗ is also well-defined, because either ϱ ∈ F , in which case ϱ is a candidate, or
dg∗ ∈ (δ, γ], in which case F (g∗) is a candidate by Lemma 2.22(a). (It is possible that
df∗ > γ.) If ϱ ∈ F , let f = ϱ; otherwise let f = f∗.

We remove f from F and we replace g in ADV by a new shadow packet s of weight
µ = minwtt(dp), added to the slot of g in ADV. It follows that g is no longer in ADV∩P .

Calculation in case L.1.B. Note that f t ≤ ϱt as df > δ and as ϱ is the heaviest pending
packet not in P with deadline after δ. Furthermore, gt ≤ pt as w(sub(P, g)) ≥ ϱt and
thus if gt > pt, the algorithm schedules g instead of p. In this case, removing packet f
from F and replacing g in ADV cause the following change:

∆(δ,γ]Ψ− advgaint
(δ,γ] = −f t

ϕ
+ gt

ϕ
− (gt−µ) = −f t

ϕ
− gt

ϕ2 + µ ≥ −ϱt

ϕ
− pt

ϕ2 + µ , (2.14)

which shows (2.12).
Invariant (P) in case L.1.B. We claim that after we remove f from F and g from ADV,
invariant (P) holds for slots in (δ, γ]. Moreover, we show that these removals do not
violate invariant (P) for a slot outside (δ, γ], namely, for τ ̸∈ (δ, γ] either #pairs(τ) does
not change, or #pairs(τ) ≤ 0 after the removals.

Recall that by Lemma 2.18 the value of pslack(τ) increases by one for τ ∈ [dp, dϱ)
if dp < dϱ, and decreases by one for τ ∈ [dϱ, dp) if dϱ < dp, while for other slots in
(δ, γ] it remains the same. If df < dg, then #pairs(τ) decreases by one for τ ∈ [df , dg).
Otherwise, df ≥ dg and #pairs(τ) increases by one for τ ∈ [dg, df). For other slots,
#pairs(τ) remains the same.

From the definitions of f∗, g∗, and invariant (P), we have that #pairs(τ) ≤ 0 holds
for τ ∈ (δ, df∗) ∪ [dg∗ , γ], even after the step. Thus the claim holds in this range,
which includes slots outside (δ, γ] if df∗ > γ or if dg∗ ≤ δ (note that either of the two
conditions implies df∗ > dg∗). So for the rest of the proof we can assume that df∗ < dg∗

and that τ ∈ [df∗ , dg∗).
Moreover, δ < df∗ < dg∗ ≤ γ together with dϱ ∈ (δ, γ] and dp ∈ (δ, γ] implies that

#pairs(τ) remains the same for a slot τ ̸∈ (δ, γ] in this case. It follows that invariant (P)
is not violated for such τ by removing f from F and g from ADV.

We only need to consider the case when either #pairs(τ) increases or pslack(τ)
decreases, because in other cases, the inequality pslack(τ) ≥ #pairs(τ) is preserved
after the step as these quantities change by at most 1. The first case, when #pairs(τ)
increases, happens when dg < df and τ ∈ [dg, df). Since also τ ∈ [df∗ , dg∗), this gives
us that g ̸= g∗ and f ̸= f∗. Therefore g = p and f = ϱ, which means that pslack(τ)
also increases.

The second case, when pslack(τ) decreases, happens when dϱ < dp and τ ∈ [dϱ, dp).
This, combined with τ ∈ [df∗ , dg∗), implies that τ ∈ [max(dϱ, df∗), min(dp, dg∗)). As
f ∈ {f∗, ϱ} and g ∈ {g∗, p}, this implies that τ ∈ [df , dg), so #pairs(τ) decreases as
well.

Case L.2: Iterated leap step, i.e., k > 0 and dϱ > nexttst(dp). Let h0 = p, h1, . . . , hk

be as in the algorithm and let hk+1 = ϱ. Recall that any hi for i ≤ k is in P by
definition. First, we give a reason, why the algorithm does such a complicated shift

53

of packets h1, . . . , hk in this case (the shift is implemented by the decrease of the
deadlines).
Intuition on the shift of hi’s. Recall that without the shift, the new plan Q would have
a (long) segment (δ, γ], consisting of several segments of P , and then the monotonicity
of minwt for a fixed slot does not hold.

There is actually a simpler way how to avoid merging the segments: Let h′ be the
heaviest packet in P in the segment ending at γ = nexttst(dt

ϱ); note that this choice of
h′ is equivalent to the definition of hk in the algorithm by Lemma 2.18(c). Then we
just set the new deadline of h′ to τ0 = nexttst(dt

p), and we get the same changes of tight
slots as in Lemma 2.18(e); in particular, we avoid merging segments. Increasing the
weight of h′ still works similarly — we set its new weight to minwtt(dt

p) if it is below
that. Since the simpler algorithm also increases the weight of the substitute packet ϱ
to minwtt(dt

ϱ), it is possible to prove that the slot-monotonicity property holds for it.
However, the following breaks down in the analysis: Suppose that ϱ ∈ F is in a pair

with a packet g ∈ ADV ∩P with deadline before the segment ending at γ and after the
segment containing dt

p. Moreover, g is heavier than h′. As ϱ gets into the plan, we need
to remove it from F and then there may be no way how to create a new pair for g,
while preserving invariant (P). Moreover, changing g into a shadow packet would cost
too much even though gt ≤ pt, especially if p ∈ ADV or if the algorithm increases the
weight of h′. Therefore, maintaining invariant (P) is impossible or too costly in some
cases.

PlanM avoids this problem by choosing g (or a heavier packet with deadline at most
γ) as h1. If h1 has deadline before the segment of P ending at γ, we need to iterate the
choice of the packet to shift, yielding the iterative definition of hi’s. (Similar reasons
as above show that if we choose h2 as the heaviest packet in the segment ending at γ,
instead of in any segment in (τ1, γ], then the analysis does not work.)

We proceed similarly to case L.1 and split the analysis according to whether a
change of the pairs is needed or not. For i = 0, . . . , k, let µi = minwtt(dt

hi
); note

that ω ≥ µ0 ≥ µ1 ≥ · · · ≥ µk = µ = minwtt(dt
ϱ) and the algorithm ensures that

ht+1
i = wt+1

hi
≥ µi−1 for i = 1, . . . , k + 1. In both cases below, we use the following

simple bound on the change of weights of hi’s.

Lemma 2.25. For any 1 ≤ a′ ≤ b′ ≤ k, let ∆t(wha′ , . . . , whb′) be the total amount
by which the algorithm increases the weights of packets ha′ , . . . , hb′. Suppose that there
exists i ∈ [a′, b′] such that ht

i < µi−1, i.e., the algorithm increases the weight of hi.
Then ∆t(wha′ , . . . , whb′) ≤ µa′−1 − ht

b′.

Proof. Let c be the largest c′ ∈ [a′, b′] such that ht
c′ < µc′−1; such c exists by the

assumption of the lemma. We show the claim as follows:

∆t(wha′ , . . . , whb′) =
c∑

i=a′

(max(µi−1, ht
i)− ht

i)

=
c∑

i=a′

max(µi−1 − ht
i, 0)

≤
c−1∑
i=a′

max(µi−1 − µi, 0) + max(µc−1 − ht
c, 0) (2.15)

=
c−1∑
i=a′

(µi−1 − µi) + µc−1 − ht
c (2.16)

= µa′−1 − ht
c

≤ µa′−1 − ht
b′ . (2.17)

54

where inequality (2.15) follows from ht
i ≥ µi, equation (2.16) from µi−1 ≥ µi and from

µc−1 > ht
c (by the choice of c), and inequality (2.17) from ht

c ≥ ht
b′ as c ≤ b′.

Case L.2.A: First, suppose that ϱ ̸∈ F and there exists no packet in ADV ∩ P
with deadline in (δ, γ]. Then f and g remain undefined, we do not further change the
adversary schedule ADV or set F , and the pairs remain the same as well. From the
case condition, no hi, i = 0, . . . , k, is in ADV, because each hi is in P and its deadline is
in (δ, γ]. Also note that invariant (P) holds for slots in (δ, γ] as there is no positive pair
containing a slot in (δ, γ] and that invariant (P) is preserved for a slot outside (δ, γ] as
we do not change the pairs.

It remains to show (2.12). Since we have not changed ADV, we have advgaint
(δ,γ] = 0.

Next, we claim ∆tw(H) ≤ µ0 − µk. If there is no i ∈ [1, k] such that ht
i < µi−1, then

∆tw(H) = 0 ≤ µ0 − µk as µ0 ≥ µk. Otherwise, we use Lemma 2.25 with a′ = 1 and
b′ = k to get ∆tw(H) ≤ µ0 − ht

k, which is a stronger upper bound than µ0 − µk as
ht

k ≥ µk.
In this case, the potential change ∆(δ,γ]Ψ only reflects the increase of weights of

hi’s, that is, ∆(δ,γ]Ψ = ∆Hw(P)/ϕ, where ∆Hw(P) is the change of the plan’s weight
due to increasing the weights of hi’s. Since all hi’s, for i = 1, . . . , k, are both in P and
in Q (by Lemma 2.18(a)), we have ∆Hw(P) = ∆tw(H), and therefore ∆Hw(P)/ϕ −
ϕ ·∆tw(H) = −∆tw(H). Then (2.12) follows from the above bound on ∆tw(H) and
an easy calculation:

∆(δ,γ]Ψ− ϕ ·∆tw(H)− advgaint
(δ,γ] = ∆Hw(P)

ϕ
− ϕ ·∆tw(H)− 0

= −∆tw(H)
≥ −µ0 + µk

≥ − pt

ϕ2 −
ϱt

ϕ
+ µk , (2.18)

where inequality (2.18) follows from µ0 ≤ pt/ϕ2 + ϱt/ϕ by (2.9).
Case L.2.B: Otherwise, ϱ ∈ F or there exists a packet in ADV ∩ P with deadline

in (δ, γ]. ADV and F need to be changed, for which we first define a packet g. For
i = 0, . . . , k, let S′

i be the segment of P containing dt
hi

, which ends at τi = nexttst(dt
hi

).
(See Figure 2.9.)

Let g∗ be the latest-deadline packet in ADV ∩ P with deadline at most γ; it exists,
otherwise the previous case applies — in particular, if there is no packet in ADV ∩ P
with deadline in (δ, γ], then ϱ ∈ F and the packet F −1(ϱ) from ADV ∩ P in the pair
with ϱ is a candidate for g as γ ≥ dϱ > prevtst(dF −1(ϱ)) by Lemma 2.22(a). If dt

g∗ is in
a segment S′

i for some i and hi ∈ ADV, then let g = hi; otherwise, let g = g∗. Note
that if hk ∈ ADV, then g = hk.

We will process segments S′
i in groups, where a group is an interval of indexes

1, . . . , k of segments S′
i. Intuitively, we have a group for each hi ∈ ADV, which needs

to be replaced in ADV as its deadline was decreased, a special last group, and possibly
a special group at the beginning. Let i1 < i2 < · · · < iℓ be the indexes of those hi’s
(i = 0, . . . , k) that are in ADV. Note that if g = hi for some i, then i = iℓ by the
definitions of g∗ and g.

First, suppose that ℓ > 0. If ℓ > 1, then for each a = 1, . . . , ℓ − 1, the interval
[ia, ia+1 − 1] is a middle group. If i1 > 0, meaning that h0 = p ̸∈ ADV, then there is a
special initial group [0, i1 − 1]; it does not exist if i1 = 0. Next, we assign the indexes
in [iℓ, k] to one or two groups. If g = hiℓ

(in particular, if iℓ = k), then [iℓ, k] is the
last group. Otherwise, let α be the smallest i such that τi ≥ dt

g. Then [α, k] is the

55

last group and the interval [iℓ, α− 1] is a new middle group; note that the new middle
group is non-empty, since α = iℓ implies g = hiℓ

, thus α > iℓ. See Figure 2.13 for an
illustration.

Otherwise, ℓ = 0 (thus no hi is in ADV) and then there are only at most two groups.
There is the last group [α, k], where α is again the smallest i ≥ 0 with τi ≥ dt

g, and if
α > 0, we also have the initial group [0, α− 1] .

Note that in each group [a, b], packet ha is in ADV, unless it is the initial group or
it is the last group and g ̸= hiℓ

. Packets ha+1, . . . , hb are not in ADV for any group
[a, b].

P tp = h0 h1 h2 h3

S′
0 γδ S′

1

h4 h5 h6 h7 h8g∗
S′
2 S′

3 S′
4 S′

5 S′
6 S′

7 S′
8

Figure 2.13: An example of creating the groups with k = 8. The circled packets are in
ADV. Thus [0, 1] is the initial group, [2, 2], [3, 3], [4, 6], and [7, 7] are the middle groups,
and [8, 8] is the last group.

To show (2.12), we split the cost of the changes and the adversary credit for replacing
packets in ADV among groups in a natural way. Namely, for a group [a, b], let ∆[a,b]Ψ
be the total change of the potential due to changes done when processing group [a, b],
let advgaint

[a,b] be the adversary credit for the changes of ADV in segments S′
a, . . . , S′

b,
and let ∆t(wha+1 , . . . , whb+1) be the total amount by which the algorithm increases the
weights of ha+1, . . . , hb+1. Our goal is to prove that for each middle group [a, b] and for
the possible initial group [a, b] (which has a = 0) it holds

∆[a,b]Ψ− ϕ ·∆t(wha+1 , . . . , whb+1)− advgaint
[a,b] ≥ −

ht
a

ϕ2 +
ht

b+1
ϕ2 . (2.19)

Similarly, for the last group [a, k], which is defined in all cases, we show

∆[a,k]Ψ− ϕ ·∆t(wha+1 , . . . , whk
)− advgaint

[a,k] ≥ −
ht

a

ϕ2 −
ϱt

ϕ
+ µk . (2.20)

(Note that the right-hand side of (2.20) may be positive.) The sum of (2.19) over all
middle groups and the possible initial group plus (2.20) equals exactly (2.12).

We process the groups in the reverse order of time, i.e., from the last one to the
first one, which may be of any type. After processing a group [a, b], we maintain that
ha is not in ADV (even though it may have been in ADV beforehand).

Regarding invariant (P), we divide the changes of pslack in (δ, γ] into groups in a
natural way. After processing a group [a, b], we show that invariant (P) holds for slots
in segments S′

a, . . . , S′
b and that invariant (P) is not violated for other slots, i.e., for a

slot τ not in one of the segments in the group either #pairs(τ) does not increase, or
#pairs(τ) ≤ 0 after processing the group. After we process all groups, invariant (P)
holds for any slot, since by Lemma 2.18(d) the value of pslack changes only for slots
in the first segment S1 of P and in any of the segments S′

0, . . . , S′
k and since we have

already shown that invariant (P) holds for S1.
Last group. Let [a, k] be the interval of indexes corresponding to the last group.

Let f∗ be the earliest-deadline packet in F with deadline after δ. Such an f∗ clearly
exists if ϱ ∈ F ; otherwise, there exists a packet g′ in ADV∩P with deadline in (δ, γ] and
the packet F (g′) is a candidate for f∗ as dF (g′) > prevtst(dt

g′) ≥ δ by Lemma 2.22(a).
Note that f∗t ≤ ϱt by the definition of ϱ.

56

If ϱ ∈ F , let f = ϱ; otherwise, let f = f∗. We remove f from F and replace g in
ADV by a new shadow packet s of weight minwtt(dt

g), which we add to the slot of g in
ADV.

Calculation showing (2.20) for the last group. Apart from the changes in the paragraph
above, we need to take into account the possible change of weights of ha+1, . . . , hk,
which also increases the weight of the plan as any hi is both in the old plan P and in
the new plan Q by Lemma 2.18(a). (Increasing the weight of ϱ = hk+1 has already
been taken into account in (2.13).) We show ∆t(wha+1 , . . . , whk

) ≤ µa − µk. If there
is no i ∈ [a + 1, k] such that ht

i < µi−1, then ∆t(wha+1 , . . . , whk
) = 0 ≤ µa − µk

as µa ≥ µk. Otherwise, we use Lemma 2.25 with a′ = a + 1 and b′ = k to get
∆t(wha+1 , . . . , whk

) ≤ µa − ht
k ≤ µa − µk by ht

k ≥ µk.
The key observation in this case is that gt ≤ ht

a. This is trivial if g = hiℓ
and thus

iℓ = a. Otherwise, recall that a = α > iℓ is the smallest i with τi ≥ dt
g and that ha

is the heaviest packet in plan P after τa−1 and till γ. As g was in ADV ∩ P and as
dt

g ∈ (τa−1, γ] by the definition of a = α, we get that gt ≤ ht
a. Since τa ≥ dt

g, we get
minwtt(dt

g) ≥ µa.
Thus for the changes in segments S′

a, S′
a+1, . . . , S′

k it holds

∆[a,k]Ψ− ϕ ·∆t(wha+1 , . . . , whk
)− advgaint

[a,k]

=
(

∆t(wha+1 , . . . , whk
)

ϕ
− f t

ϕ
+ gt

ϕ

)
− ϕ ·∆t(wha+1 , . . . , whk

)

− (gt −minwtt(dt
g))

= − gt

ϕ2 −
f t

ϕ
−∆t(wha+1 , . . . , whk

) + minwtt(dt
g)

≥ −ht
a

ϕ2 −
ϱt

ϕ
− (µa − µk) + µa = −ht

a

ϕ2 −
ϱt

ϕ
+ µk ,

which shows (2.20).

Invariant (P) after processing the last group. We claim that after we process the last
group, invariant (P) holds for slots in segments S′

a, S′
a+1, . . . , S′

k and invariant (P) is
not violated for another slot. (The proof is similar to the one in case L.1.B.)

Recall that by Lemma 2.18(d) the value of pslack(τ) increases by one for τ ∈ [dt
hi

, τi),
i = a, . . . , k − 1. Moreover, if dt

hk
< dϱ, the value of pslack(τ) increases by one for

τ ∈ [dt
hk

, dϱ), and otherwise, it decreases by one for τ ∈ [dϱ, dt
hk

). For other slots in
(δ, γ], the value of pslack(τ) remains the same (or we take its change into account when
processing the group that contains τ).

If df < dg, then #pairs(τ) decreases by one for τ ∈ [df , dg) and for other slots it
remains the same. Otherwise, df ≥ dg and #pairs(τ) increases by one for τ ∈ [dg, df),
while for other slots it does not change.

From the definitions of f∗, g∗, and invariant (P), we have that #pairs(τ) ≤ 0 holds
for τ ∈ (δ, df∗) ∪ [dg∗ , γ], even after the step. Thus the claim holds in this range,
which includes slots outside (δ, γ] if df∗ > γ or if dg∗ ≤ δ (note that either of the two
conditions implies df∗ > dg∗). So for the rest of the proof we can assume that df∗ < dg∗

and that τ ∈ [df∗ , dg∗).
We only need to consider the case when either #pairs(τ) increases or pslack(τ)

decreases, because in other cases, the inequality pslack(τ) ≥ #pairs(τ) is preserved
after the step as these quantities change by at most 1.

The first case, when #pairs(τ) increases, happens when dg < df and τ ∈ [dg, df).
Since also τ ∈ [df∗ , dg∗), this gives us that g ̸= g∗ and f ̸= f∗. Therefore g = ha and
f = ϱ. If a = k, then pslack(τ) also increases. Otherwise, a < k and dg∗ ≤ τa by the

57

definitions of g∗, g, and a, thus τ ∈ [dt
ha

, τa), which implies that pslack(τ) increases as
well.

The second case, when pslack(τ) decreases, happens when dϱ < dt
hk

and τ ∈
[dϱ, dhk

). Since also τ ∈ [df∗ , dg∗), we get τ ∈ [max(dϱ, df∗), min(dt
hk

, dg∗)). Thus
we only need to consider that case when dg∗ is in segment S′

k (that contains both dϱ

and dt
hk

), which implies a = k and g = hk. As f ∈ {f∗, ϱ}, we have that τ ∈ [df , dg),
so #pairs(τ) decreases as well. Thus the claim holds.
Middle group. Let [a, b] be a middle group; recall that ha ∈ ADV. We have two
subcases.

Case M.i: There is i ∈ [a, b] such that ht
i+1 < µi, i.e., the algorithm increases the

weight of hi+1. Let F (ha) be the packet that is in a pair with ha. We remove F (ha)
from F and replace ha in ADV by a new shadow packet s of weight µa = minwtt(τa),
added to the slot of ha in ADV.

Calculation showing (2.19) in case M.i. We take into account the possible change of
weights of ha+1, . . . , hb+1. By the case condition, there is i ∈ [a, b] such that ht

i+1 < µi,
we thus use Lemma 2.25 with a′ = a + 1 and b′ = b + 1 to get ∆t(wha+1 , . . . , whb+1) ≤
µa − ht

b+1.
Next, observe that F (ha)t ≤ ht

b+1. Indeed, F (ha) is not in P and it was in a pair
with ha, thus dt

F (ha) > prevtst(dt
ha

) ≥ δ by Lemma 2.22(a). Thus F (ha)t ≤ ϱt as ϱ is the
heaviest pending packet not in P with deadline after δ. By Lemma 2.18(b) ϱt ≤ ht

b+1,
which implies F (ha)t ≤ ht

b+1.
Then we prove (2.19) as follows:

∆[a,b]Ψ− ϕ ·∆t(wha+1 , . . . , whb+1)− advgaint
[a,b]

=
(

∆t(wha+1 , . . . , whb+1)
ϕ

− F (ha)t

ϕ
+ ht

a

ϕ

)
− ϕ ·∆t(wha+1 , . . . , whb+1)

− (ht
a − µa)

= −F (ha)t

ϕ
− ht

a

ϕ2 −∆t(wha+1 , . . . , whb+1) + µa

≥ −F (ha)t

ϕ
− ht

a

ϕ2 − (µa − ht
b+1) + µa

≥ −ht
a

ϕ2 +
ht

b+1
ϕ2 ,

where the last inequality follows from F (ha)t ≤ ht
b+1.

Invariant (P) in case M.i. We claim that after we process the middle group, invari-
ant (P) holds for slots in segments S′

a, S′
a+1, . . . , S′

b and it is not violated for another
slot. Note that as b < k, Lemma 2.18(d) shows that the value of pslack remains the
same or increases for slots in segments S′

a, S′
a+1, . . . , S′

b (recall that changes of pslack
values in another segment are taken into account when we process the group contain-
ing that segment). We use Lemma 2.24 to analyze how the values of #pairs change.
If dt

F (ha) ≤ dt
ha

, then #pairs(τ) decreases by one for τ ∈ [dt
F (ha), dt

ha
). Otherwise,

dt
F (ha) > dt

ha
and #pairs(τ) ≤ 0 for τ ∈ [dt

ha
, dt

F (ha)). For other slots, #pairs(τ) remains
the same. Hence, the claim holds.

Case M.ii: Otherwise, the algorithm does not increase the weight of hi+1 for any
i ∈ [a, b], i.e., ∆t(wha+1 , . . . , whb+1) = 0. We replace ha in ADV by ha+1, i.e., we put
ha+1 on the slot of ha in ADV. Note that the new deadline of ha+1 is τa and the new
slot of ha+1 in ADV is not after τa.

58

We claim that ha+1 is not in ADV before the replacement, therefore it is not twice
in ADV after the replacement. This is trivial if b > a, since then packets ha+1, . . . , hb

are not in ADV before processing the groups. Otherwise, we have a = b. Recall that
we are processing groups from the last one to the first one, thus the group containing
index a + 1 is already processed. Furthermore, we maintain that after processing a
group [a′, b′], packet ha′ is not in ADV, which shows the claim.
Calculation showing (2.19) in case M.ii. We bound the cost of changes in the middle
group [a, b] by

∆[a,b]Ψ− ϕ ·∆t(wha+1 , . . . , whb+1)− advgaint
[a,b]

=
(

ht
a

ϕ
−

ht
a+1
ϕ

)
− ϕ · 0− (ht

a − ht
a+1)

= −ht
a

ϕ2 +
ht

a+1
ϕ2

≥ −ht
a

ϕ2 +
ht

b+1
ϕ2 ,

where that last inequality follows from ht
a+1 ≥ ht

b+1 as a ≤ b. This shows (2.19).
Invariant (P) in case M.ii. We show that after we process the middle group, invari-
ant (P) holds for slots in segments S′

a, S′
a+1, . . . , S′

b and it is not violated for another
slot. Note that #pairs(τ) increases by one for τ ∈ [dt

ha
, τa) as we replaced ha by ha+1.

By Lemma 2.18(d) the value of pslack(τ) increases by one for τ ∈ [dt
ha

, τa), thus invari-
ant (P) holds for such τ . For other slots, the value of #pairs stays the same and the
value of pslack remains the same or increases by Lemma 2.18(d).
Initial group. If i1 > 0 or if ℓ = 0 and α > 0, then there is the initial group
[0, b]. Note that for any i ∈ [0, b], hi ̸∈ ADV. We do not change ADV or set F , thus
advgaint

[0,b] = 0 and #pairs(τ) remains the same for any slot τ . Invariant (P) holds
for a slot τ ∈ S′

0 ∪ · · · ∪ S′
b as b < k and as the value of pslack does not decrease by

Lemma 2.18(d).
The only cost we need to calculate is that of changing the weights of h1, . . . , hb+1,

denoted ∆t(wh1 , . . . , whb+1). First, suppose that the algorithm increases the weight of
at least one of the packets h1, . . . , hb+1, i.e., there is i ∈ [0, b] such that ht

i+1 < µi. By
Lemma 2.25 with a′ = 1 and b′ = b + 1 we have ∆t(wh1 , . . . , whb+1) ≤ µ0 − ht

b+1.
Then the calculation showing (2.19) is simple:

∆[0,b]Ψ− ϕ ·∆t(wh1 , . . . , whb+1)− advgaint
[0,b]

= 1
ϕ

∆t(wh1 , . . . , whb+1)− ϕ ·∆t(wh1 , . . . , whb+1)− 0

= −∆t(wh1 , . . . , whb+1)
≥ −µ0 + ht

b+1

≥ − pt

ϕ2 −
ϱt

ϕ
+ ht

b+1

≥ − pt

ϕ2 +
ht

b+1
ϕ2 ,

where the penultimate inequality follows from µ0 ≤ pt/ϕ2 + ϱt/ϕ by (2.9) and the last
inequality uses ϱt ≤ ht

b+1.
Otherwise, ∆t(wh1 , . . . , whb+1) = 0 and (2.19) holds, since its left-hand side is zero

and the right-hand side is at most zero. This concludes the proof that the packet-
scheduling inequality (2.4) holds in a leap step and also the proof of ϕ-competitiveness
of Algorithm PlanM.

59

2.7 Algorithms with Lookahead

2.7.1 An Algorithm for 2-Bounded Instances with 1-Lookahead

In this section, we present an algorithm for 2-bounded Bounded-Delay Packet Scheduling
with 1-lookahead, as defined in Section 2.1.

Consider some online algorithm A with 1-lookahead. Recall that, for a time step t,
packets pending for A are those that are released at or before time t and have neither
expired nor been scheduled by A before time t. Lookahead packets at time t are the
packets with release time t + 1. For A, we define the canonical plan in step t to be
the canonical optimal schedule in the time interval [t,∞) that consists of pending and
lookahead packets at time t. Note that this definition corresponds to the canonical
realization of the plan as defined in Section 2.5. As in this section we work solely with
the canonical plan, we refer to it just as the plan.

For 2-bounded instances, this plan uses slots t, t+1 and t+2 only. We will typically
denote the packets in the plan scheduled in these slots by p1, p2, p3, respectively. The
canonical property then implies that if both p1 and p2 have release time t and deadline
t + 1, then p1 is heavier than p2. A similar condition holds for p2 and p3.
Remark. Note that for general instances and higher lookahead, the structure of the
plan gets more complicated. For example, if we define segments in the same way as
in Section 2.5, not all packets from a segment can be scheduled in the first slot of the
segment. Moreover, the front-adjusted (realization of the) plan is not unique and the
definition of the substitute packet sub(P, p) needs to be changed to take into account
also the release time of the substitute packet, which can be in future. However, in the
2-bounded case with 1-lookahead, the plan is quite simple and we actually do not need
the tools from Section 2.5 to obtain our result.

Fix some parameter α > 1. We now give a definition of our algorithm.

Pseudocode 5 Algorithm: CompareWithBias(α)
1: let p1, p2, p3 be the canonical plan at time t

2: if rp2 = t and wp1 < min
(

wp2 , wp3 , 1
2α(wp2 + wp3)

)
then

3: schedule p2
4: else
5: schedule p1

Note that if the algorithm schedules p2, then p1 must be expiring, as otherwise
wp1 > wp2 (by the canonical ordering). Also, the scheduled packet is at least as heavy
as the heaviest expiring packet q, since clearly wp1 ≥ wq and the algorithm schedules
p2 only if wp1 < wp2 .

Theorem 2.26. The algorithm CompareWithBias(α) is R-competitive for packet
scheduling on 2-bounded instances for R = 1

2(
√

13 − 1) ≈ 1.303 if α = 1
4(
√

13 + 3) ≈
1.651.

Let ALG be the schedule produced by CompareWithBias. Let us consider the
optimal schedule OPT (a.k.a. schedule of the adversary) satisfying the canonical order-
ing, i.e., if a packet x is scheduled before a packet y in OPT then either y is released
after x is scheduled or x ≺ y. Recall that assumption (A2) assures that the weights of
packets are different.

The analysis of CompareWithBias is based on a charging scheme. First, we define
a few packets by their schedule times, relative to some time t (note that the notation
in this section differs from the notation in other sections):

60

• e = packet scheduled at t−1 in ALG,
• f = packet scheduled at t in ALG,
• g = packet scheduled at t+1 in ALG,
• h = packet scheduled at t+2 in ALG,
• i = packet scheduled at t−1 in OPT,
• j = packet scheduled at t in OPT,
• k = packet scheduled at t + 1 in

OPT,
• ℓ = packet scheduled at t+2 in OPT.

ALG

t− 1 t t + 1 t + 2

OPT i j k

e f g h

ℓ

Figure 2.14: Packet definition.

Informal description of charging. We use three types of charges. The adversary’s
packet j in step t is charged using a full charge either to step t − 1 if ALG schedules
j in step t − 1 or to step t if wf ≥ wj (including the case f = j) and f is not in step
t + 1 in OPT; the last condition assures that step t does not receive two full charges.

The second type are split charges that occur in step t if wf > wj , j is pending in
step t in ALG and f is in step t + 1 in OPT, i.e., step t receives a full back charge from
f . In this case, we distribute the charge from j to f and another relatively large packet
f ′ scheduled in step t+1 or t+2 in ALG; we shall prove that one of these steps satisfies
2α ·wj < wf + w′

f . We charge to step t + 2 only when it is necessary, which allows
us to prove that split-charge pairs are pairwise disjoint. Also, in this case we analyze
the charges to both steps together, thus it is not necessary to fix a distribution of the
weight to the two steps.

The remaining case is when wf < wj and j is not scheduled in t−1 in ALG. We an-
alyze these steps in maximal consecutive intervals, called chains and the corresponding
charges are chain charges. Inside each chain, we distribute the charge of each packet j
scheduled at t in OPT to steps t − 1, t and t + 1, if these steps are also in the chain.
The distribution of weights shall depend on a parameter δ. Packets at the beginning
and at the end of the chain are charged in a way that minimizes the charge to steps
outside of the chain. In particular, the step before a chain receives no charge from the
chain.

t− 1 t

j

j

a full back charge

t

j

f

a full up

t t + 1

j

f g

t t + 1 t + 2

j

f g h

a close split a distant split charge

f f

ALG

OPT

charge charge

Figure 2.15: Full and split charges. Note that for split charges, f is scheduled in step
t+1 in OPT, which follows from the fact that we do not charge j using a full up charge.

Parameters and constants. We set the parameter α and constants δ and R which
we will use in the analysis so that they satisfy the following equalities:

2− δ − R− 1 + 2δ

α
= R (2.21)

1− 2δ + 2αδ = R (2.22)

1 + 1
2α

= R (2.23)

61

By solving these equations we get α = 1
4(
√

13 + 3) ≈ 1.651, δ = 1
6(5 −

√
13) ≈ 0.232,

and R = 1
2(
√

13− 1) ≈ 1.303. We will prove that the algorithm is R-competitive.
We also use the following properties of these constants:

2−R− 3δ = 0 (2.24)
2−R− 2δ > 0 (2.25)

1− δ − R− 1 + 2δ

2α
> 0 (2.26)

1− R

2α
> 0 (2.27)

3αδ < R (2.28)

2− R

α
< R (2.29)

where (2.24) follows from (2.21) and (2.22) and the strict inequalities can be verified
numerically.
Notations and the charging scheme. A step t for which wf < wj and j is pending
in step t in ALG is called a chaining step. A maximal sequence of successive chaining
steps is called a chain. The chains with a single step are called singleton chains, the
chains with at least two steps are called long chains.

The pair of steps that receives a split charge from the same packet is called a split-
charge pair. The charging scheme does not specify the distribution of the weight to the
two steps of the split-charge pair, as the charges to them are analyzed together.

Packet j scheduled in OPT at time t is charged according to the first rule below
that applies. See Figures 2.15, and 2.16 for an illustration of different types of charges.

t− 1 t t + 1 t + 2

i j k

e f g h

t t + 1

j

f g

a singleton chaina chain of length 3

ALG

OPT

ALG

OPT

Figure 2.16: On the left, a chain of length 3 starting in step t − 1 and ending in step
t + 1. The chain beginning charges are denoted by dotted (blue) lines, the chain end
charges are denoted by gray lines and the forward charge from a chain is depicted by
a dashed (red) arrow. Black arrows denote the chain link charges. On the right, an
example of a singleton chain, with the up charge from a singleton chain denoted with
a dashed (green) line and the forward charge from a singleton chain denoted with a
dotted (orange) line.

1. If j is scheduled in step t− 1 in ALG (that is, e = j), charge wj to step t− 1. We
call this charge a full back charge.

2. If wf ≥ wj and f is not scheduled in step t + 1 in OPT (in particular, if j = f),
charge wj to step t. We call this charge a full up charge.

3. If wf > wj and at least one of the following holds (in both cases, p1 is the first
packet in the plan at time t):
• 2α ·wp1 < wf + wg, or
• g does not get a full back charge and 2α ·(wp1 − wg) < wf + wg,

62

then charge wj to the pair of steps t and t + 1. We call this charge a close split
charge.

4. If wf > wj , then charge wj to the pair of steps t and t + 2. We call this charge a
distant split charge.

5. Otherwise step t is a chaining step, as wf < wj and ALG does not schedule j in
step t− 1 by the previous cases. We distinguish the following subcases.

(a) If step t is (the only step of) a singleton chain, then charge min(wj , R ·wf)
to step t and wj − R ·wf to step t + 1 if wj > R ·wf . We call these charges
an up charge from a singleton chain and a forward charge from a singleton
chain.

(b) If step t is the first step of a long chain, charge 2δ ·wj to step t, and (1−2δ) ·wj

to step t + 1. We call these charges chain beginning charges.
(c) If step t is the last step of a long chain, charge δ ·wj to step t− 1, (R− 1 +

2δ) ·wf to step t, and (1−δ) ·wj−(R−1+2δ) ·wf to step t+1. We call these
charges chain end charges; the charge to step t+1 is called a forward charge
from a chain. (Note that we always have (1−δ) ·wj > (R−1+2δ) ·wf , since
wj > wf and 1− δ = R− 1 + 2δ which follows from (2.24).)

(d) Otherwise, i.e., if step t is inside a long chain, charge δ ·wj to step t − 1,
δ ·wj to step t, and (1 − 2δ) ·wj to step t + 1. We call these charges chain
link charges.

To estimate the competitive ratio we need to show that each step or a pair of steps
does not receive too much charge. We start with a useful observation about plans of
Algorithm CompareWithBias(α), that will be used multiple times in our proofs.

Lemma 2.27. Consider a time t, where the algorithm has two pending packets a, b
and a lookahead packet c with the following properties: da = t, (rb, db) = (t, t + 1),
(rc, dc) = (t + 1, t + 2), and wa < min(wb, wc). If the algorithm schedules packet a in
step t, then the plan at time t is a, b, c, and 2α ·wa ≥ wb + wc.

Proof. We claim that there is no pending or lookahead packet q /∈ {b, c} heavier than
a. Suppose for a contradiction that such a q exists. Then a schedule containing packets
q, b, c in some order is feasible and has larger profit than a, b, c. This implies that the
plan does not contain a and thus a cannot be scheduled, contradicting the assumption
of the lemma.

The schedule a, b, c is feasible and the claim above implies that it is optimal, thus
it is the plan. It remains to show that 2α ·wa ≥ wb + wc, which follows easily by a
contradiction: Otherwise 2α ·wa < wb+wc and CompareWithBias(α) would schedule
b, contradicting the assumption of the lemma.

Next, we will provide an analysis of full, split and chain charges, starting with full
and split charges. We prove several lemmas from which the analysis follows. We fix
some time slot t, and use the notation from Figure 2.14 for packets at time slots t− 1,
t, t + 1 and t + 2 in the schedule ALG of the algorithm and the optimal schedule OPT.

Analysis of full charges. Using Rules 1 and 2, if step t receives a full back charge,
then the condition of Rule 2 guarantees that it will not receive a full up charge. This
gives us the following observation.

Lemma 2.28. Step t receives at most one full charge, i.e., a charge by Rule 1 or 2.

63

Analysis of split charges. We now analyze close and distant split charges. The
crucial property of split charges is that, similar to full charges, each step receives at
most one split charge. Before we prove this, we establish several useful properties of
split charges.

Lemma 2.29. Let the plan at time t be p1, p2, p3. If j is charged using a close or a
distant split charge, then the following holds:
(a) j is not scheduled by the algorithm in step t−1, i.e., j is pending for the algorithm

in step t.
(b) df = t + 1 and f is scheduled in step t + 1 in OPT (that is, k = f). In particular,

step t receives a full back charge.
(c) dj = t and wj ≤ wp1.
(d) p2 = f .

Proof. By Rule 1, packet j would be charged using a full back charge if it were scheduled
in step t−1, implying (a). The case conditions for split charges in the charging scheme
imply that OPT schedules f in step t + 1 and wf > wj . Now (b) follows from the fact
that we do not charge j using a full up charge.

To show (c), note that if j is not expiring, then j and f would have equal deadlines.
As we also have wf > wj , f would be scheduled before j in OPT by the canonical
ordering, a contradiction. The inequality wj ≤ wp1 now follows from the definition of
the plan.

It remains to prove (d). Towards contradiction, suppose that f = p1. We know
that j is expiring and thus it is not in the plan. If dp2 = t + 1 then the optimality of
the plan implies wp2 > wj (otherwise j, f, p3 would be a better plan), so, since p2 is not
in OPT, we could improve OPT by scheduling f in step t and p2 in step t + 1.

Next, assume that dp2 = t+2. The optimality of the plan implies that wp2 > wj and
wp3 > wj . Since both p2, p3 have deadline t + 2, at least one of them is not scheduled
in OPT. So OPT could be improved by scheduling f in step t and one of p2 or p3 in
step t + 1. In both cases we get a contradiction with the optimality of OPT.

We show a useful lemma about a distant split charge from which we derive an upper
bound on wj , similar to the upper bound in the definition of the close split charge.

Lemma 2.30. If j is charged using a distant split charge, then wg < wp3 where p3 is
the third packet in the plan at time t, and dg = t + 1.

Proof. Suppose that wg ≥ wp3 . Then, from Lemma 2.29(d) and the choice of p2 = f in
the algorithm, we have that 2αwp1 < wp2 + wp3 ≤ wf + wg, so we would use the close
split charge in step t, not the distant one. Thus wg < wp3 , as claimed.

To prove the second part, if we had dg = t + 2 then, since the algorithm chose g in
step t + 1 and also dp3 = t + 2, we would have wg ≥ wp3 – a contradiction.

Lemma 2.31. If j is charged using a distant split charge, then 2α ·wj < wf + wh.
(Recall that h is the packet scheduled in step t + 2 in ALG.)

Proof. Let p1, p2, p3 be the plan in step t. By Lemma 2.29(d) we have that f = p2.
Thus 2α ·wp1 < wp2 + wp3 by the definition of the algorithm. By Lemma 2.29(c), j is
expiring and wj ≤ wp1 . As g ̸= p3 by Lemma 2.30, the algorithm has p3 pending in
step t + 2 where it is expiring, implying that wp3 ≤ wh. Putting it all together, we get
2αwj ≤ 2αwp1 < wp2 + wp3 ≤ wf + wh.

For a split charge from j in step t, let t′ be the other step that receives the split
charge from j; that is, t′ = t + 1 for a close split charge and t′ = t + 2 for a distant split
charge. We now show that split-charge pairs are pairwise disjoint.

64

Lemma 2.32. If j is charged using a split charge to a pair of steps t and t′, then
neither of t and t′ is involved in another pair that receives a split charge from a packet
j′ ̸= j.

Proof. No matter which split charge we use for j, using Lemma 2.29(b), step t + 1 does
not receive a split charge from k = f . By a similar argument, since j is not scheduled in
step t− 1 in ALG, step t does not receive a close split charge from the packet scheduled
in step t− 1 in OPT.

It remains to prove that if j is charged using a distant split charge, then the packet
ℓ scheduled in step t + 2 in OPT is not charged using a split charge. (This also ensures
that step t does not receive a distant split charge from a packet scheduled in step t− 2
in OPT.)

For a contradiction, suppose that packet ℓ is charged using a split charge. Let
p1, p2, p3 be the plan in step t. Recall that g and h are the packets scheduled in steps
t + 1 and t + 2 in ALG.

From Lemma 2.30, step t + 1 does not receive a full back charge. Since we did not
apply the close split charge for j in Rule 3, we must have

2α(wp1 − wg) ≥ wf + wg ≥ wf . (2.30)

By Lemma 2.29(b) applied to step t + 2, we get dh = t + 3. Since dp3 = t + 2,
we get wp3 < wh. We now use Lemma 2.27 for step t + 1 with a = g, b = p3, and
c = h. We note that all the assumptions of the lemma are satisfied: we have dg = t+1,
(rp3 , dp3) = (t + 1, t + 2), (rh, dh) = (t + 2, t + 3), and wg < wp3 < wh. This gives us
that 2αwg ≥ wp3 + wh > wp3 .

Since the algorithm schedules f = p2 in step t, we have 2αwp1 < wf + wp3 . Sub-
tracting the inequality derived in the previous paragraph, we get 2α(wp1 − wg) <
(wf + wp3)− wp3 = wf – a contradiction with (2.30). This completes the proof.

The lemmas above allow us to estimate the total of full and split charges.

Lemma 2.33. If j is charged using a split charge to a pair of steps t and t′, then the
total of full and split charges to steps t and t′ does not exceed R ·(wf + wf ′) where f ′

is the packet scheduled in step t′ in ALG.

Proof. Each of steps t and t′ may receive a full charge, but each step at most one full
charge from a packet of smaller or equal weight by Lemma 2.28 and charging rules.

First suppose that we use a distant split charge, or we use a close split charge and
2α ·wp1 < wf +wf ′ . Then we have 2α ·wj < wf +wf ′ by Lemma 2.31 for a distant split
charge or by wj ≤ wp1 from Lemma 2.29(c) for a close split charge. Thus the total of
full and split charges to steps t and t′ is upper bounded by

wf + wf ′ + wj < wf + wf ′ + wf + wf ′

2α
=
(

1 + 1
2α

)
·(wf + wf ′) = R ·(wf + wf ′)

where we used (2.23) in the last step.
Otherwise, i.e., if we use a close split charge and 2α ·wp1 ≥ wf + wf ′ , then step

t′ = t + 1 does not get a full back charge and we have 2α ·(wp1 − wf ′) < wf + wf ′ by
Rule 3. By Lemma 2.29(c) we have wj ≤ wp1 and 2α ·(wj−wf ′) < wf +wf ′ . Also, step
t + 1 does not receive a full up charge by Lemma 2.29(b). We thus bound the total of
full and split charges to steps t and t + 1 by

wf + wj < wf + wf + (2α + 1) ·wf ′

2α
=
(

1 + 1
2α

)
·(wf + wf ′) = R ·(wf + wf ′)

using (2.23) in the last step again.

65

Analysis of chain charges. We now analyze chaining steps starting with a lemma
below consisting of several useful observations. In particular, Part (c) motivates the
name “chaining” for such steps.

Lemma 2.34. If step t is a chaining step, then the following holds:
(a) dj = t + 1,
(b) df = t.
Moreover, if step t + 1 is also a chaining step, then
(c) j is scheduled by the algorithm in step t + 1, i.e., g = j,
(d) 2α ·wf ≥ wj + wk (recall that k is the packet scheduled in step t + 1 in OPT).

Proof. Recall that Algorithm CompareWithBias(α) never schedules a packet lighter
than the heaviest expiring packet. As in step t it schedules f with wf < wj (by Rule 5
for chain charges) and j is pending (otherwise we use Rule 1), (a) follows. Furthermore,
it follows that f is expiring in step t, because otherwise, the algorithm would schedule
j (or another packet of weight at least wj), since both would have the same deadline
and j is heavier. Thus (b) holds as well.

Now assume that step t+1 is also in the chain and for a contradiction suppose that
g ̸= j. Since j is expiring and pending for the algorithm in step t + 1, we have wg > wj

and wk > wg as step t + 1 is in the chain.
Summarizing, the algorithm sees all packets f, j, g, k in step t (some are pending

and some may be lookahead packets), and they are all distinct packets with wf < wj <
wg < wk, df = t, (rj , dj) = (t, t + 1), and both g and k can be feasibly scheduled at
time t + 1. Thus, independently of the release times and deadlines of g and k, the plan
at time t containing f would not be optimal – a contradiction. This proves that (c)
holds.

Finally, we show (d). Since f is expiring in step t by (b) and both j and k are
considered for the plan at time t and satisfy (rj , dj) = (t, t + 1), (rk, dk) = (t + 1, t + 2)
by (a), wf < wj < wk, we use Lemma 2.27 with a = f, b = j, and c = k and get the
inequality in (d).

First, we show that chaining steps do not receive charges of other types.

Lemma 2.35. If step t is a chanining step, then t does not receive a full charge or a
split charge.

Proof. By Lemma 2.34, f is expiring, thus step t does not receive a full back charge.
As wj > wf , the step also does not get a full up charge or a split charge from step t.
So it remains to show that f does not receive a split charge.

First observe that step t cannot receive a close split charge from step t− 1 in OPT,
because j is pending in step t in ALG, while Lemma 2.29(b) states that a split charge
from step t− 1 would require j to be scheduled at time t− 1 in ALG.

Finally, we show that step t does not receive a distant split charge. For a contradic-
tion, suppose that step t receives a distant split charge from the packet x scheduled in
step t− 2 in OPT. Let p1, p2, p3 be the plan in step t− 2. According to Lemma 2.29(d)
and (b), p2 is scheduled in step t − 2 in ALG and in step t − 1 in OPT. Moreover, by
Lemma 2.29(c), x is pending and expiring in step t−2 and wp1 ≥ wx. As the algorithm
scheduled p2 in step t− 2 we get rp2 = t− 2 and wp1 < wp3 .

Observe that p3 is not scheduled in OPT, since it is expiring in step t and j is not
expiring, by Lemma 2.34(a). Thus we could increase the weight of OPT if we scheduled
p2 in step t − 2 instead of x and p3 in step t − 1. This contradicts the optimality of
OPT.

We now analyze how much charge does each chaining step get.

66

Lemma 2.36. If step t is a chaining step, then it receives a charge of at most R ·wf .

Proof. By Lemma 2.35, step t does not receive any full or split charges; therefore we
just need to prove that the total of chain charges to step t does not exceed R ·wf .
Case 1: t is the last step of a chain. If t is the only step in the chain then Rule 5a implies
directly that the charge to t is at most R ·wf . Otherwise, Lemma 2.34(c) implies that
f is scheduled in step t− 1 in OPT, and thus the charge from step t− 1 is (1− 2δ) ·wf .
The charge from step t is (R − 1 + 2δ) ·wf by Rule 5c. So the total charge is at most
R ·wf .
Case 2: t is not the last step of a chain. Since step t + 1 is also in the chain, by
Lemma 2.34(c) we have that j is scheduled in step t + 1 in ALG and OPT has a packet
k with wk > wj in step t + 1. From Lemma 2.34(d) we know that 2α ·wf ≥ wj + wk.

There are two sub-cases. If t is the first step of the chain, then the charge to t is at
most

2δ ·wj + δ ·wk ≤ 3
2δ ·(wj + wk) ≤ 3αδ ·wf < R ·wf ,

where the last inequality follows from (2.28). Otherwise, using Lemma 2.34(c), f is
scheduled in step t− 1 in OPT, so the total charge to step t is at most

(1− 2δ) ·wf + δ ·wj + δ ·wk ≤ (1− 2δ) ·wf + 2αδ ·wf = R ·wf

where the last equality follows from (2.22).

Analysis of forward charges from chains. We now show that a forward charge
from a chain does not cause an overload on the step just after the chain which may also
get both a full charge and a split charge. (This is the only case when a step receives
charges of all three types.)

For the following lemmas, we assume that step t− 1 is a chaining step. Recall that
i is the packet scheduled in step t−1 in OPT and e is the packet scheduled in step t−1
in ALG. First, we prove some useful observations.

Lemma 2.37. If step t receives a forward charge from a chain, then the following holds
(a) j ̸= e (that is, j is not charged using a full back charge),
(b) wf ≥ wj,
(c) wf ≥ wi.
Moreover, if step t is not in a split-charge pair:
(d) j is charged using a full up charge to step t,
(e) step t does not receive a full back charge.

Proof. Part (a) holds because e is expiring in step t − 1, by Lemma 2.34(b). Part (b)
follows from (a) and the fact that step t is not chaining.

To show (c), Lemma 2.34(a) implies that di = t. Also, since i ̸= e, i is pending in
ALG in step t. Now (c) follows, because each packet scheduled by the algorithm is at
least as heavy as the heaviest expiring packet.

Part (d) follows from (a) and (b) and the assumption that t is not in a split-charge
pair. Part (e) follows from (d) and Lemma 2.28.

Note that f may be the same packet as i or j. We start with the case in which f
is not in a split-charge pair.

Lemma 2.38. If step t receives a forward charge from a chain C and t is not in a
split-charge pair, then the total charge to step t is at most R ·wf .

67

Proof. The proof is by case analysis, depending on the relative weights of j and e, and
on whether C is a singleton or a long chain. In all cases we use Lemma 2.37 and the
charging rules to show upper bounds on the total charge.

Case 1: wj < we.

Case 1.1: The chain C is long. The charge to step t is then at most

wj + (1− δ) ·wi − (R− 1 + 2δ) ·we < wj + (1− δ) ·wi − (R− 1 + 2δ) ·wj

= (2−R− 2δ) ·wj + (1− δ) ·wi

≤ (2−R− 2δ) ·wf + (1− δ) ·wf (2.31)
= (3−R− 3δ) ·wf = wf . (2.32)

To justify inequality (2.31), note that 2 − R − 2δ ≥ 0 by (2.25) and 1 − δ ≥ 0 by the
choice of δ, so we can apply inequalities wj ≤ wf and wi ≤ wf from Lemma 2.37(b)
and (c). The last step (2.32) follows from equation (2.24).

Case 1.2: The chain C is singleton. We assume that wi > R ·we, otherwise there is no
forward charge from the chain. Then the charge to step t is

wj + wi −R ·we ≤ wj + wi −R ·wj ≤ wi ≤ wf ,

where in the last step we used Lemma 2.37(c).

Case 2: wj > we. We claim first that j is not expiring in step t, that is dj = t + 1.
Indeed, if we had dj = t, then in step t− 1 the algorithm would have pending packets
e and i, plus packet j (pending or lookahead), that need to be scheduled in slots t− 1
and t. Since we < wi (because step t− 1 is a chaining step) and we < wj (by the case
assumption), packet e could not be in the plan in step t − 1 which is a contradiction.
Thus dj = t + 1.

Recall that e is expiring in step t − 1 by Lemma 2.34(b) and both i and j are
considered for the plan in step t − 1. Moreover, we know that wi > we, wj > we,
(ri, di) = (t−1, t) (by Lemma 2.34(a)), and (rj , dj) = (t, t+1). We thus use Lemma 2.27
for step t− 1 with a = e, b = i, and c = j, to get that 2α ·we ≥ wi + wj .

Case 2.1: The chain C is long. The charge to step t is

wj + (1− δ) ·wi − (R− 1 + 2δ) ·we

≤ wj + (1− δ) ·wi − (R− 1 + 2δ) ·wi + wj

2α

=
(

1− R− 1 + 2δ

2α

)
·wj +

(
1− δ − R− 1 + 2δ

2α

)
·wi

≤
(

1− R− 1 + 2δ

2α

)
·wf +

(
1− δ − R− 1 + 2δ

2α

)
·wf (2.33)

=
(

2− δ − R− 1 + 2δ

α

)
·wf = R ·wf . (2.34)

To justify inequality (2.33), we note that 1 − δ − (R − 1 + 2δ)/(2α) ≥ 0 by (2.26), so
we can again apply inequalities wj ≤ wf and wi ≤ wf from Lemma 2.37(b) and (c). In
the last step (2.34) we used equation (2.21).

Case 2.2: The chain C is singleton. We assume that wi > R ·we, otherwise there is no

68

forward charge from the chain. Then the charge to step t is

wj + wi −R ·we ≤ wj + wi −R ·wi + wj

2α

=
(

1− R

2α

)
·(wi + wj)

≤
(

1− R

2α

)
·(2wf) (2.35)

=
(

2− R

α

)
·wf < R ·wf . (2.36)

Inequality (2.35) is valid, because wi ≤ wf and wj ≤ wf , by Lemma 2.37, and 1 −
R/(2α) ≥ 0 by (2.27). In step (2.36) we used (2.29).

We now analyze how the forward charge from a chain combines with split charges.
First, we observe that only the first step from a split-charge pair may receive a forward
charge from a chain.

Lemma 2.39. If j is charged using a split charge to a pair of steps t and t′ (where t′

is t + 1 or t + 2), then t′ does not receive a forward charge from a chain.

Proof. By Lemma 2.29(b) we have k = f , which implies that steps t and t + 1 are not
chaining steps.

Lemma 2.40. If j is charged using a split charge to a pair of steps t and t′, f ′ is the
packet scheduled in t′ in ALG, and step t receives a forward charge from a chain C,
then the total charge to steps t and t′ is at most R ·(wf + wf ′).

Proof. First, we note that j is expiring in step t by Lemma 2.29(c). Furthermore, i is
expiring in step t by Lemma 2.34(a) and f is not expiring in step t by Lemma 2.29(b),
so f ̸= i.

We claim wj < we. Indeed, if wj > we, then in step t − 1 the algorithm would
have pending packets e and i, plus packet j (pending or lookahead), that need to be
scheduled in slots t − 1 and t. Since we < wi (because step t − 1 is a chaining step)
and we < wj , packet e could not be in the plan in step t− 1 which is a contradiction.
Therefore wj < we.

Let p1, p2, p3 be the plan at time t. We split the proof into two cases, both having
two subcases, one for long chains and one for singleton chains.
Case 1: j is charged using a distant split charge or f ′ gets a full back charge.

We claim that 2α ·wi < wf + wf ′ . Indeed, since i is expiring and pending in
step t by Lemma 2.34(a), we have wi ≤ wp1 . As the algorithm scheduled f = p2 by
Lemma 2.29(d), we get 2α ·wp1 < wf + wp3 . To prove the claim, it remains to show
wf ′ ≥ wp3 .

If j is charged using a distant split charge, then by Lemma 2.30 we have wg < wp3

and in particular, g ̸= p3. Thus p3 is pending and expiring in step t+2, hence wp3 ≤ wf ′ .
Otherwise, if j is charged using a close split charge, then f ′ = g gets a full back charge.
Hence df ′ = t + 2. Since also dp3 = t + 2 and the algorithm chooses the heaviest such
packet, we have wp3 ≤ wf ′ .

The claim follows, since

2α ·wi ≤ 2α ·wp1 < wf + wp3 ≤ wf + wf ′ . (2.37)

Case 1.1: The chain C is long. The total charge to steps t and t′, consisting of the full
charge to f , a possible full charge to f ′, the split charge, and the forward charge from

69

the chain, is at most

wf + wf ′ + wj + (1− δ) ·wi − (R− 1 + 2δ) ·we

≤ wf + wf ′ + (2−R− 2δ) ·we + (1− δ) ·wi

< wf + wf ′ + (2−R− 3δ) ·wi + wi (2.38)
= wf + wf ′ + wi (2.39)

< wf + wf ′ + wf + wf ′

2α
(2.40)

= R ·(wf + wf ′) .

We can use we < wi in (2.38), because 2−R−2δ ≥ 0 by (2.25). Equality (2.39) follows
from 2 − R − 3δ = 0 by (2.24) and inequality (2.40) from (2.37). In the last step we
use (2.23).
Case 1.2: The chain C is singleton. We suppose that wi > R ·we, otherwise there is no
forward charge from the chain. We upper bound the total charge to steps t and t′ by

wf + wf ′ + wj + wi −R ·we ≤ wf + wf ′ + (1−R) ·we + wi

< wf + wf ′ + wi

< wf + wf ′ + wf + wf ′

2α
(2.41)

= R ·(wf + wf ′) ,

where we apply Equation 2.37 in (2.41), and we use (2.23) in the last step.
Case 2: j is charged using a close split charge and f ′ = g does not get a full back charge.
Observe that in this case g does not receive any full charge as k = f is charged by a full
back charge. We have (i) 2α ·wp1 < wf + wg, or (ii) 2α ·(wp1 − wg) < wf + wg by the
definition of the close split charge. We suppose that we have (ii), since (i) is stronger
than (ii).

Since i is expiring and pending in step t by Lemma 2.34(a), we have wi ≤ wp1 .
Hence 2α ·(wi − wg) < wf + wg. This is equivalent to

wi <
wf + (2α + 1) ·wg

2α
. (2.42)

Case 2.1: The chain C is long. The total charge to steps t and t′ = t + 1 is

wf + wj + (1− δ) ·wi − (R− 1 + 2δ) ·we

≤ wf + (2−R− 2δ) ·we + (1− δ) ·wi

< wf + (2−R− 3δ) ·wi + wi (2.43)
= wf + wi (2.44)

< wf + wf + (2α + 1) ·wf ′

2α
(2.45)

= wf + wf ′ + wf + wf ′

2α
= R ·(wf + wf ′) ,

We can use we < wi in (2.43), because 2 − R − 2δ ≥ 0 by (2.25). Then we use
2 − R − 3δ = 0 by (2.24) in (2.44), Equation 2.42 in (2.45), and Equation 2.23 in the
last step.
Case 2.2: The chain C is singleton. We again suppose that wi > R ·we, as otherwise
there is no forward charge from the chain. We upper bound the total charge to steps t

70

and t + 1 by

wf + wj + wi −R ·we ≤ wf + (1−R) ·we + wi

< wf + wi

< wf + wf + (2α + 1) ·wf ′

2α
(2.46)

= wf + wf ′ + wf + wf ′

2α
= R ·(wf + wf ′) ,

where we apply (2.42) in inequality (2.46), and (2.23) in the last step.

We now summarize our analysis of CompareWithBias(α). If t is not in a split-
charge pair, we show upper bounds on the total charge to step t. For each split-charge
pair (t, t′), we show upper bounds on the total charge to both steps t and t′. This is
sufficient since split-charge pairs are pairwise disjoint by Lemma 2.32, thus summing
all the bounds gives the result in Theorem 2.26.

For each step t, we distinguish three cases according to whether t is in a split-charge
pair and whether t is a chaining step. In all cases, let f be the packet scheduled at
time t in ALG and let j be the packet scheduled at time t in OPT.
Case 1: Step t is not chaining and it is not in a split-charge pair. Then t receives at
most one full charge from a packet p such that wp ≤ wf (by Lemma 2.28 and charging
rules) and possibly a forward charge from a chain C; then Lemma 2.38 shows that the
sum of a forward charge from a chain and a full charge is at most R ·wf .
Case 2: Step t is a chaining step. Then it does not receive a split charge or a full charge,
by Lemma 2.35. Lemma 2.36 implies that step t receives a charge of at most R ·wf .
Case 3: (t, t′) is a split-charge pair, i.e., t is the first step of the split-charge pair and
t′ = t + 1, or t′ = t + 2. Thus j is charged using a split charge. Let f ′ be the packet
scheduled in step t′ in ALG.

By Lemma 2.39 step t′ does not receive a forward charge from a chain. If step t
also does not receive a forward charge from a chain, then the total charge to steps t
and t′ is at most R ·(wf + wf ′) by Lemma 2.33. Otherwise, step t receives a forward
charge from a chain and we apply Lemma 2.40 to show that the total charge to steps
t and t′ is again at most R ·(wf + wf ′).

2.7.2 A Lower Bound for 2-bounded Instances with Lookahead

In this section, we prove that there is no deterministic online algorithm for Bounded-
Delay Packet Scheduling with ℓ-lookahead that has competitive ratio smaller than R :=

1
2(ℓ+1)(1 +

√
5 + 8ℓ + 4ℓ2) for any ℓ ≥ 0, even for 2-bounded instances. We note that

R > 1 for any ℓ ≥ 0, that R tends to 1 as ℓ goes to infinity, and that R is the positive
root of the quadratic equation

(ℓ + 1)R2 −R− (ℓ + 1) = 0 . (2.47)

The idea of our proof is similar to the proof of the lower bound of ϕ for Bounded-
Delay Packet Scheduling [Haj01, AMZ03, CF03] and, indeed, for ℓ = 0 our lower bound is
equal to ϕ. For the case of 1-lookahead we obtain a lower bound of 1

4(1+
√

17) ≈ 1.281.

Theorem 2.41. Let ℓ ≥ 0 be an integer and R = 1
2(ℓ+1)(1 +

√
5 + 8ℓ + 4ℓ2). For each

ε > 0, no deterministic online algorithm for Bounded-Delay Packet Scheduling with
ℓ-lookahead can be (R− ε)-competitive, even for 2-bounded instances.

71

a0

1 2 3 4 5

b0,0
b0,1

a1
b1,0

b1,1

a2

r0 r1 r2

Figure 2.17: The instance for ℓ = 1 and k = n = 2. Each packet has a row which shows
slots between its release time and deadline. Packets from different phases are separated
by a dashed line.

Proof. Fix some online algorithm A and some ε > 0. We will show that, for some
sufficiently large integer n and sufficiently small δ > 0, there is a 2-bounded instance
of Bounded-Delay Packet Scheduling with ℓ-lookahead, parameterized by n and δ, for
which the optimal profit is at least (R− ε) times the profit of A.

Our instance will consist of phases 0, . . . , k, for some k ≤ n. The number k of
phases is determined by the adversary based on the behavior of A. Each phase (except
phase n) will involve ℓ + 2 packets. The weights of these packets will grow roughly
exponentially from one phase to next.

The adversary strategy is as follows. We start with phase 0. Suppose that some
phase i, where 0 ≤ i < n, has been reached. Let ri = (ℓ + 1)i + 1 be the first slot of
phase i. In phase i the adversary releases the following ℓ + 2 packets:
• A packet ai with weight wi, release time ri and deadline ri, i.e., a tight packet.
• Packets bi,j for j = 0, . . . , ℓ with weight wi+1, release time ri + j and deadline

ri + j + 1.
(The weights wi will be specified later.) Now, if A schedules an expiring packet in step
ri (a tight packet ai or bi−1,ℓ, which may be pending from the previous phase), then the
game continues; the adversary will proceed to phase i + 1. Otherwise, the algorithm
schedules packet bi,0, in which case the adversary lets k = i and the game ends. Note
that in steps ri +1, . . . , ri +ℓ the algorithm may schedule only bi,j (for some j) of weight
wi+1. Also, importantly, in step ri the algorithm cannot yet see whether the packets
from phase i + 1 will arrive or not.

If phase i = n is reached, then k = n, and in phase n the adversary releases a single
tight packet an with weight wn and release time and deadline rn. See Figure 2.17 for
an illustration.

We calculate the ratio between the weight of packets in an optimal schedule and
the weight of packets sent by the algorithm. Let Sk =

∑k
i=0 wi. There are two cases:

either k < n, or k = n.

Case 1: k < n. In all steps ri for i < k algorithm A scheduled an expiring packet of
weight wi and in step rk it scheduled packet bk,0 of weight wk+1. In steps ri+1, . . . , ri+ℓ
for i < k it scheduled packets of weight wi+1. Finally, in phase k the algorithm scheduled
ℓ+1 packets of weight wk+1, including bk,0. Overall, A scheduled packets of total weight
Sk−1 + ℓ · (Sk − w0) + (ℓ + 1) · wk+1 = (ℓ + 1) · Sk+1 − wk − ℓ · w0.

The adversary schedules packets of weight wi+1 in steps ri, . . . , ri + ℓ for i < k and
all packets from phase k in steps rk, . . . rk + ℓ + 1. In total, the optimum has a schedule
of weight (ℓ + 1) · (Sk − w0) + wk + (ℓ + 1) · wk+1 = (ℓ + 1) · Sk+1 + wk − (ℓ + 1) · w0.

72

The ratio is
Rk = (ℓ + 1) · Sk+1 + wk − (ℓ + 1) · w0

(ℓ + 1) · Sk+1 − wk − ℓ · w0
.

Case 2: k = n. As before, in all steps ri for i < n algorithm A scheduled an expiring
packet of weight wi and in steps ri+1, . . . , ri+ℓ for i < n it scheduled a packet of weight
wi+1. In the last step rn it scheduled a packet of weight wn as there is no other choice.
Overall, the total weight of theA’s schedule is Sn−1+ℓ·(Sn−w0)+wn = (ℓ+1)·Sn−ℓ·w0.

The adversary schedules packets of weight wi+1 in steps ri, . . . , ri + ℓ for i < n and
a packet of weight wn in the last step rn which adds up to (ℓ+1) ·Sn +wn− (ℓ+1) ·w0.
The ratio is

R̂n = (ℓ + 1) · Sn + wn − (ℓ + 1) · w0
(ℓ + 1) · Sn − ℓ · w0

.

We normalize the instances so that w0 = 1. It remains to show that we can set the
weights so that Rk ≥ R− ε for all k ≥ 0 and R̂n ≥ R− ε.

We first define a sequence of weights, parametrized by some parameter δ ≥ 0, such
that Rk = R for all k ≥ 1. Using wk = Sk − Sk−1 for k ≥ 1 and w0 = 1, the condition
Rk = R for k ≥ 1 is rewritten as

R = (ℓ + 1) · Sk+1 + Sk − Sk−1 − (ℓ + 1)
(ℓ + 1) · Sk+1 − Sk + Sk−1 − ℓ

,

or equivalently as

(ℓ + 1)(R− 1)Sk+1 − (R + 1)Sk + (R + 1)Sk−1 = ℓR− (ℓ + 1) . (2.48)

By (2.47) we get that (ℓ+1)(R−1) = R/(R+1) and similarly ℓR−(ℓ+1) = −R2/(R+1).
Substituting and multiplying by R + 1, we obtain that (2.48) is equivalent to

R · Sk+1 − (R + 1)2Sk + (R + 1)2Sk−1 = −R2 . (2.49)

To define our instance, we set w0 = 1 and for i = 1, 2, . . .,

wi = (γ + 1)αi−1(α− 1) + δ[βi−1(β − 1)− αi−1(α− 1)] ,

where
α = 1 + 1

R
= R + 1

R
, β = R + 1, γ = R,

and δ > 0 is a parameter to be chosen later. Summing the geometric sequences in
Sk =

∑k
i=0 wi, we obtain that, for k = 0, . . . , n,

Sk = (γ + 1)αk + δ(βk − αk)− γ . (2.50)

It can be verified that (2.49) holds and thus, for any choice of δ and any k ≥ 1, we
have Rk = R. In fact, (2.50) describes a general solution of the linear recurrence (2.49)
that satisfies one initial condition S0 = w0 = 1, as α, β are the two roots of Rx2 −
(R + 1)2x + (R + 1)2 which is the characteristic polynomial of the recurrence, and
S0 = S1 = · · · = Sn = −γ is a particular solution of the recurrence; furthermore, for
δ = 0 (2.50) gives a particular solution satisfying S0 = 1 and changing δ does not
change S0.

We now show that for δ = 0 the solution would satisfy R0 = R. We first calculate
w1:

w1 = (γ + 1)(α− 1) = (R + 1) · 1
R

= α .

73

By (2.47) we have (ℓ + 1)α = 1/(R− 1). Using this we can calculate R0 as

R0 = (ℓ + 1)w1 + 1
(ℓ + 1)w1

= 1 + 1
(ℓ + 1)α = R .

By continuity of the dependence of w1 and R0 on δ, for a sufficiently small δ > 0 we
have R0 ≥ R− ε. We fix such a δ > 0.

Since 1 < α < β, for n→∞, the dominating term in Sn is δβn and w0 is negligible
compared to Sn. Thus we obtain

lim
n→∞

R̂n = lim
n→∞

(ℓ + 1)Sn + Sn − Sn−1
(ℓ + 1)Sn

= lim
n→∞

(ℓ + 2)δβn − δβn−1

(ℓ + 1)δβn

= (ℓ + 2)β − 1
(ℓ + 1)β = R .

The last equality follows from (2.47). Actually, this is the equation that defines R as
the optimal ratio for our construction (if β is expressed in terms of R as the root of the
characteristic polynomial). Consequently, for some sufficiently large n, we have that
R̂n ≥ R− ε. Fix this n.

Summarizing, we showed that for any ε > 0 the adversary can choose δ > 0 and n,
and an instance with up to n phases, such that for this instance we have R0 ≥ R − ε,
Rk = R for all k ≥ 1, and R̂n ≥ R− ε. This implies that the competitive ratio of A is
at least R, completing the proof.

2.7.3 Lower Bounds for Randomized Algorithms with Lookahead

Finally, we show that if packets have large spans, then any constant lookahead does
not help to achieve a ratio close to 1 even for randomized algorithms. Our lower bound
of 1.25 against the oblivious adversary is a straightforward generalization of the one by
Chin and Fung [CF03] for 2-bounded instances without lookahead.

Theorem 2.42. For any fixed ℓ ≥ 0, there is no better than 1.25-competitive ran-
domized algorithm with ℓ-lookahead against the oblivious adversary, even on agreeable
instances.

Proof. We use the easy direction of the Yao’s minimax principle for online algorithms
(see e.g. [BE98]), which states that the expected ratio of a randomized algorithm on
the worst-case instance is no better than the expected ratio of the best deterministic
algorithm on an input drawn from the worst-case probability distribution of instances.

Let n, k ≫ ℓ be large integers. We define a set of n + 1 instances as follows (each
instance is a set of packets, with each packet p specified by a triple (rp, dp, wp)):

J0 = {a0,m = (1, k, 1), b0,m = (1, 2k, 2) |m = 1, . . . , k},
Ji = Ji−1 ∪ {ai,m = (ik + 1, (i + 1)k, 2i), bi,m = (ik + 1, (i + 2)k, 2i+1) |m = 1, . . . , k}

for i = 1, . . . , n− 1,

Jn = Jn−1 ∪ {an,m = (nk + 1, (n + 1)k, 2n) |m = 1, . . . , k} .

In words, in instance Ji, i = 0, . . . , n−1, in step ik + 1 the adversary releases k packets
ai,1, . . . , ai,k of span k and k packets bi,1, . . . , bi,k of span 2k in addition to packets from
instance Ji−1. In instance Jn it additionally releases k packets an,1, . . . , an,k of span k
only. See Figure 2.18 for an example. Clearly, all instances Ji have agreeable deadlines.
For i = 0, . . . , n, we call the interval [ik + 1, (i + 1)k] of slots the i-th phase. Note that
in each phase except the last one, pending packets are of two types: lighter packets
expiring in that phase and heavier packets expiring in the next phase.

74

We define the probability distribution of the instances Ji such that for i = 0, . . . , n−
1, instance Ji is drawn with probability pi = 1/2i+1 and instance Jn is drawn with
probability pn = 1/2n. Clearly,

∑
i pi = 1.

First, we analyze the offline optimum profits. Observe that on instance Ji, i =
1, . . . , n − 1, in the j-th phase for j = 0, . . . , i − 1 the adversary schedules k heavier
packets (of span 2k), which are expiring in the next phase, while in each of the last
two phases it transmits k packets expiring in the phase. Thus its profit is OPT(Ji) =∑i−1

j=0 k · 2j+1 + k · 2i + k · 2i+1 = k · (2i+2 + 2i − 2). Similarly, it holds that OPT(Jn) =∑n−1
j=0 k · 2j+1 + k · 2n = k · (2n+1 + 2n− 2). It follows that the expected optimum profit

is

E [OPT] =
n∑

i=0
pi · OPT(Ji) =

n−1∑
i=0

k · (2i+2 + 2i − 2)
2i+1 + k · (2n+1 + 2n − 2)

2n

= k ·
(

n−1∑
i=0

2 + 1
2 −

1
2i

)
+ k ·

(
2 + 1− 1

2n−1

)
= k ·

(5
2n− 2 + 1

2n−1 + 3− 1
2n−1

)
= k ·

(5
2n + 1

)
.

Fix a deterministic algorithm ALG. To analyze the expected profit of ALG, we first
get rid of the influence of lookahead, which affects its behavior only in the last ℓ steps
in each phase. Namely, we make the following assumption about the schedule ALG(Ji)
without loss of generality: For each phase j = 0, . . . , i − 1, in the last ℓ slots of the
phase (when the algorithm knows that more packets will arrive) there are packets not
expiring in the j-th phase only, i.e., the heaviest pending packets. Moreover, if i < n,
in the last ℓ slots of the i-th phase (which is the penultimate phase) there are packets
expiring in that phase only; this also trivially holds for the last phase.

Let αi, i = 0, . . . , n−1, be the number of lighter packets that the algorithm schedules
in the first k− ℓ slots of the phase. We get the following expressions of the algorithm’s
profits on the instances:

ALG(Ji) =

⎛⎝i−1∑
j=0

αj · 2j + (k − ℓ− αj + ℓ) · 2j+1

⎞⎠+ (αi + ℓ) · 2i + k · 2i+1

=

⎛⎝i−1∑
j=0

k · 2j+1 − αj · 2j

⎞⎠+ αi · 2i + ℓ · 2i + k · 2i+1

≤ k · 2i+2 + ℓ · 2i −
i−1∑
j=0

αj · 2j + αi · 2i

ALG(Jn) =

⎛⎝n−1∑
j=0

αj · 2j + (k − ℓ− αj + ℓ) · 2j+1

⎞⎠+ k · 2n

=

⎛⎝n−1∑
j=0

k · 2j+1 − αj · 2j

⎞⎠+ k · 2n

≤ k · 2n+1 + k · 2n −
n−1∑
j=0

αj · 2j .

Our goal is to express E [ALG] =
∑

i pi · ALG(Ji). We now show that for any j =
0, . . . , n − 1 the coefficient of αj in E [ALG] is 0 by simply summing for each i the

75

J0

J1

J2

J3

Phase
0 1 2 3

Figure 2.18: An illustration of the lower bound of 1.25 with k = 2 and n = 3. The
dotted vertical lines split slots into phases.

coefficient of αj in ALG(Ji) multiplied by pi:

2j

2j+1 −
n−1∑

i=j+1

2j

2i+1 −
2j

2n
= 0

It follows that

E [ALG] ≤
n−1∑
i=0

k · 2i+2 + ℓ2i

2i+1 + k · 2n+1 + k · 2n

2n

= k · n · 2 + ℓ · n · 1
2 + k · 3 = k · (2n + 3) + ℓ · 1

2n .

We conclude that the ratio E [OPT]/ E [ALG] tends to 1.25 if n and k go to infinity.

Note that in the case ℓ = 0 (i.e., no lookahead), we can choose k = 1 and then the
construction is the same as in [CF03].

2.8 Conclusions and Open Problems

Our main contribution is a ϕ-competitive algorithm for Bounded-Delay Packet Schedul-
ing. It is based on a deep understanding of the plan and its updates after a packet arrives
or after a packet is scheduled. The key idea is to maintain the slot-monotonicity prop-
erty by increasing weights and decreasing deadlines of certain packets, which in turn
can be used to amortize the adversary cost. However, maintaining the monotonicity
property seems to require memory and we have some examples that the memoryless
variant of our algorithm, called Plan(α), is not ϕ-competitive for any α. Hence, it is
likely that we need a different approach to achieve ϕ-competitiveness without the help
of memory. The best memoryless algorithm remains the 1.893-competitive algorithm
due to Englert and Westermann [EW12] (which is very similar to Plan(α)). It would
also be interesting to determine the competitive ratio of Plan(α) for the best choice of
α.

Open Problem 1. Design a ϕ-competitive memoryless deterministic algorithm for
general instances, or improve the lower bound for memoryless algorithms.

We remark that a promising approach for improving the lower bound is to somehow
try to simulate the lower bound of 1.633 for Item Collection from [BCD+13a].
Randomized algorithms. The best randomized algorithm is RMix, which is e

e−1 ≈
1.582-competitive against both the oblivious and the adaptive adversary [CCF+06,

76

BCJ11]. The lower bounds are 1.25 against the oblivious adversary [CF03] and 4
3

against the adaptive adversary [BCJ11]; both use 2-bounded instances only. The ques-
tion is thus whether the techniques developed in this work and used to design our
optimal deterministic algorithm can also be applied to improve the ratio of randomized
algorithms.

Open Problem 2. Design a better than e
e−1 -competitive randomized algorithm, at

least against the oblivious adversary, or improve one of the lower bounds.

Special types of instances. Regarding deterministic algorithms, the optimal com-
petitive ratio is resolved for most types of restricted instances, since the lower bound
of ϕ holds already on 2-bounded instances. Moreover, the 2-uniform case is resolved
as well (it is interesting that the optimal competitive ratio of memoryless determin-
istic algorithms is slightly larger than the optimal ratio of unrestricted deterministic
algorithms). Thus the only missing piece in our understanding of special types of in-
stances is to analyze s-uniform instances for s > 2. In particular, up to our knowledge,
there is no lower bound for deterministic algorithms and the only result specifically
for s-uniform instances with arbitrary s is the lower bound for randomized algorithms
against the oblivious adversary by Chin et al. [CCF+06], which tends to 1.25 as s
goes to infinity (this is an interesting coincidence with our lower bound for randomized
algorithms with lookahead in Section 2.7.3).

Open Problem 3. Design (deterministic or randomized) competitive algorithms for
s-uniform instances, ideally working for any s, and construct lower bounds on the
competitive ratio of algorithms on s-uniform instances.

There are also many gaps for randomized algorithms, even on instances with agree-
able deadlines or on 3-bounded instances; see Table 2.1.
Algorithms with lookahead. We initiated the study of the semi-online setting
with ℓ-lookahead, in which the algorithm is aware of packets that arrive in the next ℓ
steps. Generalizing the lower bound of ϕ, we constructed deterministic lower bounds
for any ℓ that hold even on 2-bounded instances; the lower bound is equal to 1

4(1 +√
17) ≈ 1.281 for ℓ = 1. We complemented the lower bound by a nearly optimal

algorithm for 2-bounded instances with 1-lookahead, whose competitive ratio equals
1
2(
√

13−1) ≈ 1.303. The main question is whether lookahead helps on general instances.
We conjecture that the answer is yes.

Open Problem 4. Is there a better than ϕ-competitive deterministic algorithm with
ℓ-lookahead for general instances, where ℓ is a constant?

A related question is how the properties of the plan need to be adjusted so that
one can use them in the setting with lookahead. At the beginning of Section 2.7.1, we
briefly sketched that the situation is more complicated than without lookahead.

We also argued that if packets have large spans, then we get the same lower bound
of 1.25 for randomized algorithms against the oblivious adversary as without looka-
head. We leave open whether it is possible to generalize the lower bound of 4

3 against
the adaptive adversary by Bieńkowski et al. [BCJ11]. However, the straightforward ex-
tension used in Section 2.7.3, i.e., stretching each time slot to k slots, thus multiplying
packet spans by k, and having k copies of each packet in the strategy, does not work.

It would be interesting to see whether a combination of lookahead and randomiza-
tion can improve the competitive ratio, at least on some restricted instances. Finally,
an interesting research direction is to apply lookahead on other buffer management
models, such as the model with a FIFO buffer of limited capacity or Item Collection.

77

Instances with large spans only. Note that most lower bounds for deterministic or
randomized algorithms use just 2-bounded instances, unless they are specifically for the
s-uniform case. Overall, it seems that if packets have large spans (and none of them
has a small span), then it is harder for the adaptive adversary to create constructions
forcing a high ratio.

However, in the aforementioned lower bounds of 1.25 against the oblivious adversary
(with lookahead in Section 2.7.3 or for s-uniform instances by Chin et al. [CCF+06]) all
packets have large spans. Thus the barrier of 1.25 holds even on instances with large
spans only.

Open Problem 5. Is there a better than ϕ-competitive deterministic algorithm for
instances in which the span of each packet is at least s, for some s > 1? What lower
bound can be proven using instances with large spans only for the deterministic case
and for randomized algorithms against the adaptive adversary?

Higher bandwidth. Kesselman et al. [KLM+04] proposed Bounded-Delay Packet
Scheduling in the setting with bandwidth m, i.e., m packets can be sent in each step.
However, not much was shown about this more general setting and the only other
paper that studied bandwidth higher than 1 is by Chin et al. [CCF+06] who designed
an algorithm with competitive ratio which tends to e

e−1 ≈ 1.582 for m → ∞. They
noted that the lower bound of 1.25 for randomized algorithms against the oblivious
adversary applies to higher bandwidth as well and this remains the best lower bound
even for the deterministic case for m > 1.

Open Problem 6. For the case of higher bandwidth m > 1, design an improved (de-
terministic or randomized) competitive algorithm and construct better lower bounds for
deterministic algorithms and for randomized algorithms against the adaptive adversary.

Weights decreasing over time. In Section 2.4 we propose a generalization of
Bounded-Delay Packet Scheduling in which the weight of each packet decreases over
time (and thus no explicit deadline is needed). As we argued, the greedy algorithm
remains 2-competitive even in the non-clairvoyant setting, where the algorithm knows
only the current weights, and there is no deterministic non-clairvoyant algorithm with a
competitive ratio below 2, thus the simple greedy algorithm is optimal in such a model.
This naturally leads to the following question.

Open Problem 7. Is there a better than 2-competitive randomized or clairvoyant
algorithm for the model with weights decreasing over time?

78

3. Packet Scheduling under
Adversarial Jamming
This chapter focuses on deterministic online algorithms with speedup for the Packet
Scheduling under Adversarial Jamming problem. In particular, we describe and analyze
a universal algorithm for the problem. The outline of the chapter is as follows:
• We start by defining the problem formally in Section 3.1, where we also describe

the terminology used, the resource augmentation of speedup, and other prelimi-
naries.
• In Section 3.2 we continue by a survey of the previous work.
• In Section 3.3 we outline the results contained in this chapter.
• In Section 3.4 we describe our algorithm and prove a few of its crucial properties.
• Section 3.5 contains a few examples of the algorithm’s behavior, which also pro-

vide some intuition what are the tight instances for the algorithm (indeed, we
give matching upper bounds in the following sections).
• In Section 3.6 we present a universal framework for analyzing our algorithm locally

that we subsequently apply on general instances and on a few special types of
instances.
• In Section 3.7 we prove that the algorithm is 1-competitive with speedup 4 which

is the main result of this chapter. The proof is by a more sophisticated non-local
analysis.
• In Section 3.8 we prove a lower bound of ϕ+1 ≈ 2.618 on speedup of 1-competitive

deterministic algorithms.
• Finally, in Section 3.9 we discuss possible future research directions.
All results in this chapter are contained in the following paper:

[BJSV18] Martin Böhm, Lukasz Jeż, Jǐŕı Sgall, and Pavel Veselý. On packet
scheduling with adversarial jamming and speedup. In Proc. of the
15th Workshop on Approximation and Online Algorithms (WAOA’17),
volume 10787 of LNCS, pages 190–206, 2018.

The algorithm together with the local analysis framework was devised by Martin
Böhm, Lukasz Jeż, and Jǐŕı Sgall.

3.1 Problem Definition and Preliminaries

Problem statement. We define the Packet Scheduling under Adversarial Jamming
problem as follows: The instance consists of a set of packets and a set of times in
which instantaneous jamming errors (or faults) occur. Each packet p is specified by its
release time r(p) ≥ 0 and its size ℓ(p) ≥ 0. We assume that there are only k different
packet sizes ℓ1 < ℓ2 < · · · < ℓk, for some constant k, and these sizes are assumed to
be constant as well. Time is continuous, begins at 0 and ends at the time horizon T ,
which is a part of the instance. (Alternatively, one can say that after T , the jamming
errors are so frequent that it is not possible to transmit any packet.)

A schedule is an assignment of a subset S of packets to time intervals [t, t′) such
that

(i) the time intervals assigned to two packets in S are disjoint,
(ii) each packet p ∈ S is assigned one interval [t, t+ℓ(p)) for some r(p) ≤ t ≤ T−ℓ(p),

and

79

(iii) no time of a jamming error is contained in the interior of a time interval assigned
to a packet in S.

The objective is to compute a schedule which maximizes the total size of the packets
in S (the completed packets).

For the online setting, when arrivals of packets and jamming errors are unknown in
advance, we extend the definition of the schedule. Namely, the online schedule is a set
S of packets and a set I of time intervals [t, t′) such that each interval is assigned to
one packet (not necessarily in S) and the following holds:

(i) any two time intervals in I are disjoint,
(ii) each packet p ∈ S is assigned one sufficient interval [tp, tp + ℓ(p)) for some r(p) ≤

tp ≤ T − ℓ(p),
(iii) any packet p may be assigned several short intervals [ti, t′

i) such that t′
i−ti < ℓ(p),

r(p) ≤ ti < t′
i ≤ T , and at time t′

i there is a jamming error,
(iv) if p ∈ S, all short intervals [ti, t′

i) assigned to p are before its sufficient interval,
i.e., t′

i ≤ tp, and
(v) no time of a jamming error is contained in the interior of any time interval in I.

Other terminology and notation. If a packet p is assigned a time interval [t, t′),
then we say that p is scheduled or starts at time t and that p is running at any time
in (t, t′). Moreover, if t′ = t + ℓ(p), then p is completed at t′; otherwise, there is a fault
at time t′. Note that at the completion time of a packet p the algorithm may start
another packet, or the completion time may be the time of a jamming error and still,
p is successfully transmitted. Similarly, the algorithm may start transmitting a packet
at the time of a fault, meaning that we assume that the jamming error takes no time.

We say that a packet p is pending for the algorithm at time t if r(p) ≤ t, p is not
completed before or at t and not started before t and still running. (Notice that in
the online setting a pending packet may be started before t, but its transmission is
interrupted and stopped due to a jamming error.)

For a set of packets P , let ℓ(P) denote the total size of all the packets in P . Let
LALG(i, Y) denote the total size of packets of size ℓi completed by an algorithm ALG
during a time interval Y . Similarly, LALG(≥ i, Y) and LALG(< i, Y) denote the total size
of packets of size at least ℓi and less than ℓi, respectively, completed by an algorithm
ALG during a time interval Y ; formally, we define LALG(≥ i, Y) =

∑k
j=i LALG(j, Y) and

LALG(< i, Y) =
∑i−1

j=1 LALG(j, Y). We use the notation LALG(Y) with a single parameter
to denote the size LALG(≥ 1, Y) of packets of all sizes completed by ALG during Y and
the notation LALG without parameters to denote the size of all packets of all sizes
completed by ALG at any time.

Online algorithms. In the online variant of Packet Scheduling under Adversarial Jam-
ming, at time t only the packets with release time up to t are revealed and an online
algorithm is aware only of jamming errors till time t. At time t, if no packet is running,
the algorithm may start any pending packet. Moreover, preemption is not allowed,
meaning that the algorithm cannot interrupt or even stop the current transmission of a
packet and choose another packet to transmit. If a jamming error occurs and a packet
p is running (and it is not completed yet), then the current transmission is lost com-
pletely, that is, p may be retransmitted now or at any time later, but the retransmission
needs to send the whole packet p. Furthermore, the algorithm does not know the time
horizon T .

We analyze the performance of an online algorithm in the worst-case, i.e., we use
competitive analysis; see Chapter 1 for an introduction to competitive analysis. In
particular, we use the asymptotic competitive ratio in which the additive constant may

80

depend on packet sizes ℓ1, . . . , ℓk and their number k. Thus an algorithm ALG is R-
competitive if there exists a constant A, possibly dependent on k and ℓ1, . . . , ℓk, such
that for any instance and its optimal schedule OPT we have LOPT ≤ R ·LALG + A. We
remark that in our analyses we show only a crude bound of O(k · ℓk) on A.

Remark. We note that the absolute competitive ratio, i.e., with no additive term, is not
suitable for our problem. Specifically, using an example we show that a deterministic
online algorithm can be (constant) competitive only if the additive term in the definition
of the competitive ratio depends on the values of the packet sizes, even if there are only
two packet sizes. Suppose that a packet of size ℓ arrives at time 0. If the algorithm
starts transmitting it immediately at time 0, then at time ε > 0 a packet of size ℓ− 2ε
arrives, the next fault is at time ℓ− ε and then the schedule ends, i.e., the time horizon
is at T = ℓ − ε. Thus the algorithm does not complete the packet of size ℓ, while the
adversary completes a slightly smaller packet of size ℓ−2ε. Otherwise, the algorithm is
idle till some time ε > 0, no other packet arrives and the next fault is at time ℓ, which
is also the time horizon. In this case, the packet of size ℓ is completed in the optimal
schedule, while the algorithm completes no packet again.

Resource augmentation: speedup. We focus on algorithms with resource aug-
mentation, namely, on online algorithms that transmit packets s ≥ 1 times faster than
the offline optimum solution they are compared against; such an algorithm is often said
to be speed-s, running at speed s, or having a speedup of s. This means that such an
algorithm needs time ℓ/s to transmit the whole packet of size ℓ, i.e., the sufficient time
interval in the online schedule is [t, t+ℓ/s). We denote an algorithm ALG with speedup
s ≥ 1 by ALG(s).

Special types of instances. An instance is divisible (or the packet sizes are divisible)
if ℓi divides ℓi+1 for i = 1, . . . , k − 1. More generally, an instance is α-separated if
ℓi+1 ≥ α · ℓi for i = 1, . . . , k − 1. Note that all divisible instances are 2-separated, but
not vice versa.

Offline optimal schedule. Anta et al. [AGK+16] show that computing an offline
optimal schedule is strongly NP-hard. The proof is by a straightforward reduction from
the 3-partition problem in which a set of 3m numbers needs to be partitioned into m
triplets that all have the same sum. However, the number of different packet sizes in
the resulting instance is large and we assume that this number is a constant.

We remark that the offline setting without release times resembles bin packing
with bins of different sizes (each interval between two consecutive faults corresponds
to a bin). For bin packing with a constant number of item sizes, Goemans and
Rothvoß [GR14] recently gave a polynomial-time algorithm, which works even for dif-
ferent bin sizes. Nevertheless, due to release times of packets, we cannot apply their
technique directly. It is thus open whether there is a polynomial-time algorithm to find
the optimum for a constant number of sizes.

3.2 Previous Work and Related Models

Packet Scheduling under Adversarial Jamming was proposed by Anta, Georgiou, Kowalski,
Widmer, and Zavou [AGK+16], but adversarial jamming appears also in earlier works
on wireless networks; see e.g. [RSSZ13] and references thereof. Anta et al. [AGK+16]
restricted their work to two packet sizes only, for which they provide matching upper

81

and lower bounds: If γ > 1 denotes the ratio of the two sizes, then the optimal asymp-
totic competitive ratio for deterministic algorithms is (γ + ⌊γ⌋)/⌊γ⌋, which is always in
the range [2, 3) and equals 2 iff γ ∈ N.

They note that their lower bound strategy for two sizes applies to randomized
algorithms as well, even against the oblivious adversary, which would imply that ran-
domization provides no advantage. However, their argument works in the adaptive
adversary model only, since in the lower bound strategy, the adversary needs to make
decisions based on the previous behavior of the algorithm that depends on random bits.
To our best knowledge, randomized algorithms for our problem were never considered
for the more common oblivious adversary model, where the adversary needs to fix the
instance in advance and cannot change it according to the decisions of the algorithm.

Anta et al. [AGK+16] also discuss a few variants of the problem. First, they prove
that with the deferred feedback mechanism, which notifies the online algorithm of an
error in the current transmission only when it ends, no (deterministic) algorithm is
competitive as its throughput will be 0, while the adversary is able to send arbitrarily
many packets. This holds even if all packets have the same size and their arrivals are
stochastic (i.e., not controlled by the adversary). They thus focus on the instantaneous
feedback mechanism, which notifies the algorithm of an error immediately.

Finally, [AGK+16] contains results for stochastic packet arrivals, where the com-
petitive ratio depends also on the arrival rate of smaller packets; in particular, their
algorithm CSL-Preamble achieves the optimal ratio for a wide range of distributions in
which the rate is small enough, but still only for two packet sizes.

Jurdziński, Kowalski, and Loryś [JKL15] extended the results in [AGK+16] for
adversarial packet arrivals by designing an optimal deterministic algorithm for any
constant number of packet sizes, which are assumed to be constant as well (thus
the model in [JKL15] is exactly our model). In particular, its competitive ratio is
max1≤j<i≤k(γi,j + ⌊γi,j⌋)/⌊γi,j⌋, where γi,j = ℓi/ℓj > 1 is the ratio of the i-th size to
the j-th size, thus it matches the aforementioned lower bound in [AGK+16]. Note that
the above formula gives 2 if and only if the packet sizes are divisible in which case their
algorithm is simpler, and they show that it can be generalized to the setting with more
parallel channels, which suffer jamming errors independently. Moreover, for the divis-
ible case, they show that speed 2 is sufficient for 1-competitiveness, using a different
algorithm.

In another work, Anta et al. [AGKZ18] consider popular scheduling algorithms,
namely Longest In System (LIS, also known as FIFO), Shortest In System (SIS or
LIFO), Largest Processing Time (LPT), and Shortest Processing Time (SPT). They
analyze their performance under speed augmentation with respect to three efficiency
measures, which they call completed load, pending load, and latency. The first is pre-
cisely the objective of our model, the second is the total size of the available but not yet
completed packets (which we minimize in turn), and finally, the last one is the maxi-
mum time elapsed from a packet’s arrival till the end of its successful transmission. We
note that a 1-competitive algorithm (possibly with an additive constant) for any of the
first two objectives is also 1-competitive for the other, but there is no similar relation
for larger ratios.

Regarding latency, LIS is 1-competitive with speedup ϱ := ℓk/ℓ1, otherwise, it has
an unbounded competitive ratio as well as all other three algorithms with any speedup.
If we want to achieve 1-competitiveness for completed load or for pending load, then
speedup ϱ (or a bit larger) is sufficient and necessary for any of these algorithms. Since
ϱ can be arbitrarily large, none of these algorithms performs very well. Additionally,
for deterministic algorithms and for work-conserving (randomized) algorithms which
transmit a packet whenever one is pending, they provide an example showing that with

82

speedup 1 it is not possible to be competitive, however, the additive constant cannot
depend on packet sizes and their number.

Recently, Kowalski, Wong, and Zavou [KWZ17] studied the effect of speedup on
latency and pending load objectives in the case of two packet sizes only. They use two
conditions on the speedup, defined in [AGKZ15], and show that if both hold, then there
is no 1-competitive deterministic algorithm for either objective (but speedup must be
below 2), while if one of the conditions is not satisfied, such an algorithm exists.

Multiple channels or machines. The problem we study was generalized to multiple
communication channels (or machines, depending on particular application). The stan-
dard assumption, in communication jargon, is that the jamming errors on each channel
are independent and that any packet can be transmitted on at most one channel at any
time.

As mentioned above, for divisible instances, Jurdziński et al. [JKL15] extended their
(optimal) 2-competitive algorithm without speedup to an arbitrary number of channels.

The setting with speedup on general instances was studied by Anta et al. [AGKZ15],
who consider the objectives of minimizing the number or the total size of pending
packets. They investigate what speedup is necessary and sufficient for 1-competitiveness
with respect to either objective. Recall that 1-competitiveness for minimizing the
total size of pending packets is equivalent to 1-competitiveness for our objective of
maximizing the total size of completed packets. In particular, for either objective,
Anta et al. [AGKZ15] obtain a tight bound of 2 on speedup for 1-competitiveness for
two packet sizes. Moreover, they claim a 1-competitive algorithm with speedup 7

2 for a
constant number of sizes and pending (or completed) load, but the proof is incorrect;
see Section 3.5 for a (single-channel) counterexample.

Georgio and Kowalski [GK15] consider the same problem in a distributed setting,
distinguishing between different information models. As communication and synchro-
nization pose new challenges, they restrict their attention to jobs of unit size only and
no speedup. On top of efficiency measured by the number of pending jobs, they also
consider the standard (in distributed systems) notions of correctness and fairness.

Zavou and Anta [ZA16] studied distributed computation of tasks dynamically in-
jected to a system with a shared repository of pending tasks. Their objective was
completed load and in particular, they proved that the upper bounds by Jurdziński et
al. [JKL15] for k different sizes without speedup are possible in their distributed set-
ting, thus matching the lower bound by Anta et al. [AGK+16]. Additionally, they also
show a few negative results for particular algorithms with speedup.

Finally, Garncarek, Jurdziński, and Loryś [GJL17] consider “synchronized” parallel
channels that all suffer errors at the same time. Their work distinguishes between
“regular” jamming errors and “crashes”, which also cause the algorithm’s state to reset,
losing any information stored about the past events. They proved that for two packet
sizes the optimum competitive ratio of deterministic algorithms tends to 4

3 for the
former and to ϕ = 1

2(
√

5 + 1) ≈ 1.618 for the latter setting as the number of channels
tends to infinity.

We remark that the aforementioned works [AGK+16, KWZ17, AGKZ15, AGKZ18,
ZA16] are contained in the thesis of Zavou [Zav16].

3.3 Contributions

Our major contribution is a uniform algorithm, called PrudentGreedy (PG) and de-
scribed in Section 3.4. It works well in every setting which we show using a uni-
form analysis framework (Section 3.6). This contrasts with the results of Jurdziński et

83

al. [JKL15] where each upper bound was attained by a dedicated algorithm with in-
dependently crafted analysis; in a sense, this means that their algorithms require the
knowledge of speed they are running at. Moreover, algorithms in [JKL15] do require
the knowledge of all admissible packet sizes. Our algorithm has the advantage that it
is completely oblivious, i.e., requires no such knowledge. Furthermore, our algorithm
is more appealing as it is significantly simpler and “work-conserving” or “busy”, i.e.,
transmitting some packet whenever there is one pending, which is desirable in practice.
In contrast, algorithms in [JKL15] can be unnecessarily idle if there is a small number
of pending packets.

Our main result concerns the analysis of the general case with speedup where we
show that speed 4 is sufficient for our algorithm PG to be 1-competitive; the proof is
by a complex (non-local) charging argument described in Section 3.7.

However, we start by formulating a simpler local analysis framework in Section 3.6
which is very universal as we demonstrate by applying it to several settings. In par-
ticular, we prove that on general instances, PG achieves the optimal competitive ratio
of 3 without speedup and we also get a trade-off between the competitive ratio and the
speedup for speeds in [1, 4); see Figure 3.1 for a graph of our bounds on the competitive
ratio depending on the speedup.

To recover the 1-competitiveness at speed 2 and also 2-competitiveness at speed 1
for divisible instances, we have to modify our algorithm slightly as otherwise, we can
guarantee 1-competitiveness for divisible instances only at speed 2.5 (see Section 3.6.2).
This is to be expected as divisible instances are a very special case. The definition of
the modified algorithm for divisible instances and its analysis by our local analysis
framework is in Section 3.6.3.

On the other hand, we prove that our original algorithm is 1-competitive on far
broader class of “well-separated” instances at sufficient speed: If the ratio between two
successive packet sizes (in their sorted list) is no smaller than α ≥ 1, our algorithm is
1-competitive if its speed is at least Sα which is a non-increasing function of α such that
S1 = 6 and limα→∞ Sα = 2; see Section 3.6.2 for the precise definition of Sα. (Note
that speed 4 is sufficient for 1-competitiveness, but having S1 = 6 reflects the limits of
the local analysis.)

In Section 3.5 we demonstrate that the analyses of our algorithm are mostly tight,
i.e., that (a) on general instances, the algorithm is no better than (1+2/s)-competitive
for s < 2 and no better than 4/s-competitive for s ∈ [2, 4), (b) on divisible instances, it
is no better than 4

3 -competitive for s < 2.5, and (c) it is at least 2-competitive for s < 2,
even for two divisible packet sizes (example (c) is in Section 3.6.3). See Figure 3.1 for
a graph of our bounds. Note that we do not obtain tight bounds for s ∈ [2, 4), but
we conjecture that using an appropriately adjusted non-local analysis of Theorem 3.14
(which shows 1-competitiveness for s = 4), it is possible to show that the algorithm is
4/s-competitive for s ∈ [2, 4).

In Section 3.8 we complement these results with two lower bounds on the speed that
is sufficient to achieve 1-competitiveness by a deterministic algorithm. The first one
proves that even for two divisible packet sizes, speed 2 is required to attain 1-compe-
titiveness, establishing optimality of our modified algorithm and that of Jurdziński et
al. [JKL15] for the divisible case. The second lower bound strengthens the previous
construction by showing that for non-divisible instances with more packet sizes, speed
ϕ + 1 ≈ 2.618 is needed for 1-competitiveness. Both results hold even if all packets are
released simultaneously.

We remark that Sections 3.6, 3.7, and 3.8 are independent on each other and can be
read in any order. In particular, the reader may safely skip proofs for special instances
in Section 3.6 (e.g., the divisible instances), and proceed to Section 3.7 with the main

84

1

1.5

2

2.5

3

1 2 3 4 5 6

C
om

pe
tit

iv
e

ra
tio

Speedup

Local analysis upper bounds
Non-local analysis upper bound from Theorem 3.14

Hard instances for PG

Figure 3.1: A graph of our upper and lower bounds on the competitive ratio of Algo-
rithm PG(s), depending on the speedup s. The upper bounds are from Theorems 3.8
and 3.14 and the lower bounds are by hard instances from Section 3.5.

result, which is 1-competitiveness with speedup 4.

3.4 Algorithm PrudentGreedy (PG)

The general idea of the algorithm is that after each error, we start by transmitting
packets of small sizes, only increasing the size of packets after a sufficiently long period
of uninterrupted transmissions. It turns out that the right tradeoff is to transmit a
packet only if it would have been transmitted successfully if started just after the last
error. It is also crucial that the initial packet after each error has the right size, namely
to ignore small packet sizes if the total size of remaining packets of those sizes is small
compared to a larger packet that can be transmitted. In other words, the size of the
first transmitted packet is larger than the total size of all pending smaller packets and
we choose the largest such size. This guarantees that if no error occurs, all currently
pending packets with size equal to or larger than the size of the initial packet are
eventually transmitted before the algorithm starts a smaller packet.

We now give the description of our algorithm PrudentGreedy (PG) for general packet
sizes, noting that the other algorithm for divisible sizes differs only slightly. We divide
the run of the algorithm into phases. Each phase starts by an invocation of the initial
step in which we need to carefully select a packet to transmit as discussed above. The
phase ends by a fault, or when there is no pending packet, or when there are pending
packets only of sizes larger than the total size of packets completed in the current phase.
The periods of idle time, when no packet is pending, do not belong to any phase.

Formally, throughout the algorithm, t denotes the current time. The time tB de-
notes the start of the current phase; initially tB = 0. We set rel(t) = s · (t − tB).
Since the algorithm does not insert unnecessary idle time, rel(t) denotes the amount of
transmitted packets in the current phase. Note that we use rel(t) only when there is
no packet running at time t, so there is no partially executed packet. Thus rel(t) can
be thought of as a measure of time relative to the start of the current phase (scaled by
the speed of the algorithm). Note also that the algorithm can evaluate rel(t) without

85

knowing the speedup, as it can simply observe the total size of the transmitted packets.
Let P <i denote the set of pending packets of sizes ℓ1, . . . , ℓi−1 at any given time.

Algorithm PrudentGreedy (PG):

(1) If no packet is pending, stay idle until the next release time.
(2) Let i be the maximal i ≤ k such that there is a pending packet of size ℓi and

ℓ(P <i) < ℓi. Schedule a packet of size ℓi and set tB = t.
(3) Choose the maximum i such that

(i) there is a pending packet of size ℓi,
(ii) ℓi ≤ rel(t).

Schedule a packet of size ℓi. Repeat Step (3) as long as such i exists.
(4) If no packet satisfies the condition in Step (3), go to Step (1).

We first note that the algorithm is well-defined, i.e., that it is always able to choose
a packet in Step (2) if it has any packets pending, and that if it succeeds in sending it,
the length of thus started phase can be related to the total size of the packets completed
in it.

Lemma 3.1. In Step (2), PG always chooses some packet if it has any pending. More-
over, if PG completes the first packet in the phase, then LPG(s)((tB, tE]) > s·(tE−tB)/2,
where tB denotes the start of the phase and tE its end (by a fault or Step (4)).

Proof. For the first property, note that a pending packet of the smallest size is eligible.
For the second property, note that there is no idle time in the phase and that only
the last packet chosen by PG in the phase may not complete due to a jam. By the
condition in Step (3), the size of this jammed packet is no larger than the total size of
all the packets PG previously completed in this phase (including the first packet chosen
in Step (2)), which yields the bound.

The following lemma shows a crucial property of the algorithm, namely that if
packets of size ℓi are pending, the algorithm schedules packets of size at least ℓi most
of the time. Its proof also explains the reasons behind our choice of the first packet in
a phase in Step (2) of the algorithm.

Lemma 3.2. Let u be a start of a phase in PG(s) and t = u + ℓi/s.
(i) If a packet of size ℓi is pending at time u and no fault occurs in (u, t), then the

phase does not end before t.
(ii) Suppose that v > u is such that any time in [u, v) a packet of size ℓi is pending and

no fault occurs. Then the phase does not end in (u, v) and LPG(s)(< i, (u, v]) <
ℓi + ℓi−1. (Recall that ℓ0 = 0.)

Proof. (i) Suppose for a contradiction that the phase started at u ends at time t′ < t.
We have rel(t′) < rel(t) = ℓi. Let ℓj be the smallest packet size among the packets
pending at t′. As there is no fault, the reason for a new phase has to be that rel(t′) < ℓj ,
and thus Step (3) did not choose a packet to be scheduled. Also note that any packet
started before t′ was completed. This implies, first, that there is a pending packet of
size ℓi, as there was one at time u and there was insufficient time to complete it, so j is
well-defined and j ≤ i. Second, all packets of sizes smaller than ℓj pending at u were
completed before t′, so their total size is at most rel(t′) < ℓj . However, this contradicts
the fact that the phase started by a packet smaller than ℓj at time u, as a pending
packet of the smallest size equal to or larger than ℓj satisfied the condition in Step (2)
at time u and a packet of size ℓi is pending at u. (Note that it is possible that no packet
of size ℓj is pending at u.)

86

(ii) By (i), the phase that started at u does not end before time t if no fault happens.
A packet of size ℓi is always pending by the assumption of the lemma, and it is always
a valid choice of a packet in Step (3) from time t on. Thus, the phase that started at
u does not end in (u, v), and moreover only packets of sizes at least ℓi are started in
[t, v). It follows that packets of sizes smaller than ℓi are started only before time t and
their total size is thus less than rel(t) + ℓi−1 = ℓi + ℓi−1. The lemma follows.

3.5 Examples for PrudentGreedy

Before analyzing the algorithm, we show some hard instances and obtain lower bounds
on the performance of the algorithm, in some cases matching our upper bounds from
later sections. At the same time, the examples are instructive in understanding some
of the choices both in the analysis and in the design of the algorithm.

General Packet Sizes

Speeds below 2 We show an instance on which the performance of PG(s) matches
the bound, that we give in Theorem 3.8.

Remark. PG(s) has competitive ratio at least 1 + 2/s for s < 2.

Proof. Choose a large enough integer N . At time 0 the following packets are released:
2N packets of size 1, one packet of size 2 and N packet of size 4/s − ε for a small
enough ε > 0 such that it holds that 2 < 4/s− ε. These are all packets in the instance.

First there are N phases, each of length 4/s − ε and ending by a fault. OPT
completes a packet of size 4/s − ε in each phase, while PG(s) completes 2 packets of
size 1 and then it starts a packet of size 2 which is not finished.

Then there is a fault every 1 unit of time, so that OPT completes all packets of size
1, while the algorithm has no pending packet of size 1 and as s < 2 the length of the
phase is not sufficient to finish a longer packet.

Overall, OPT completes packets of total size 2 + 4/s − ε per phase, while the
algorithm completes packets of total size only 2 per phase. The ratio thus tends to
1 + 2/s as ε→ 0.

Speeds between 2 and 4 Now we show an instance which proves that PG(s) is
not 1-competitive for s < 4. In particular, this implies that the speed sufficient for
1-competitiveness in Theorem 3.14, which we prove later, cannot be improved.

Remark. PG(s) has competitive ratio at least 4/s > 1 for s ∈ [2, 4).

Proof. Choose a large enough integer y. There will be four packet sizes: 1, x, y and z
such that 1 < x < y < z, z = x + y− 1, and x = y · (s− 2)/2 + 2; as s ≥ 2 it holds that
x > 1 and as s < 4 we have x ≤ y − 1 for a large enough y.

We will have N phases again. At time 0 the adversary releases all N(y− 1) packets
of size 1, all N packets of size y and a single packet of size z (never completed by either
OPT or PG(s)), whereas the packets of size x are released one per phase.

In each phase PG(s) completes, in this order: y − 1 packets of size 1 and then a
packet of size x, which has arrived just after the y − 1 packets of size 1 are completed.
Next, it will start a packet of size z and fail due to a jam. We show that OPT will
complete a packet of size y. To this end, it is required that y < 2(x + y − 1)/s, or
equivalently x > y · (s− 2)/2 + 1 which holds by the choice of x.

87

After these N phases, we will have jams every 1 unit of time, so that OPT can
complete all the N(y− 1) packets of size 1, while PG(s) will be unable to complete any
packet (of size y or larger). The ratio per phase is

OPT
PG(s) = y − 1 + y

y − 1 + x
= 2y − 1

y − 1 + y·(s−2)
2 + 2

= 2y − 1
y·s
2 + 1

which tends to 4/s as y →∞.

This example also disproves the claim of Anta et al. [AGKZ15] that their (m, β)-
LAF algorithm is 1-competitive at speed 3.5, even for one channel, i.e., m = 1, where
it behaves almost exactly as PG(s) — the sole difference is that LAF starts a phase by
choosing a “random” packet. As this algorithm is deterministic, we understand this to
mean “arbitrary”, so in particular the same as chosen by PG(s).

Divisible Case

We give an example that shows that PG is not very good for divisible instances, in
particular, it is not 1-competitive for any speed s < 2.5.

Remark. PG(s) has competitive ratio at least 4
3 on divisible instances if s < 2.5.

Proof. We use packets of sizes 1, ℓ, and 2ℓ and we take ℓ sufficiently large compared to
the given speed or competitive ratio. There are many packets of size 1 and 2ℓ available
at the beginning, the packets of size ℓ arrive at specific times where PG schedules them
immediately.

The faults occur at times divisible by 2ℓ, so the optimum schedules one packet of
size 2ℓ in each phase between two faults. We have N such phases, N(2ℓ − 1) packets
of size 1 and N packets of size 2ℓ available at the beginning. In each phase, PG(s)
schedules 2ℓ− 1 packets of size 1, then a packet of size ℓ arrives and is scheduled, and
then a packet of size 2ℓ is scheduled. The algorithm would need speed 2.5− 1/(2ℓ) to
complete it. So, for ℓ large, the algorithm completes only packets of total size 3ℓ − 1
per phase. After these N phases, we have faults every 1 unit of time, so the optimum
schedules all packets of size 1, but the algorithm has no packet of size 1 pending and
it is unable to finish a longer packet. The optimum thus finishes all packets 2ℓ plus all
small packets, a total of 4ℓ− 1 per phase. Thus the ratio tends to 4

3 as ℓ→∞.

3.6 Local Analysis and Results

In this section we formulate a general method for analyzing our algorithms by comparing
locally within each phase the size of “large” packets completed by the algorithm and
by the adversary. This method simplifies a complicated induction used in [JKL15],
letting us obtain the same upper bounds of 2 and 3 on competitiveness for divisible
and unrestricted packet sizes, respectively, at no speedup, as well as several new results
for the non-divisible cases included in this section. In Section 3.7, we use a more
complex charging scheme to obtain our main result. We postpone the use of local
analysis for the divisible case to Section 3.6.3.

For the analysis, let s ≥ 1 be the speedup. We fix an instance and its schedules for
PG(s) and OPT.

88

3.6.1 Critical Times and Master Theorem

The common scheme is the following. We carefully define a sequence of critical times
Ck ≤ Ck−1 ≤ · · · ≤ C1 ≤ C0, where C0 = T is the end of the schedule, satisfying two
properties: (1) till time Ci the algorithm has completed almost all pending packets of
size ℓi released before Ci and (2) in (Ci, Ci−1], a packet of size ℓi is always pending.
Properties (1) and (2) allow us to relate LOPT(i, (0, Ci]) and LOPT(≥ i, (Ci, Ci−1]),
respectively, to their “PG counterparts”. As each packet completed by OPT belongs to
exactly one of these sets, summing the bounds gives the desired results; see Figure 3.2
for an illustration. These two facts together imply R-competitiveness of the algorithm
for appropriate R and speed s.

We first define the notion of i-good times so that they satisfy property (1), and
then choose the critical times among their suprema so that those satisfy property (2)
as well.

Definition 3.3. Let s ≥ 1 be the speedup. For i = 1, . . . k, time t is called i-good if
one of the following conditions holds:

(i) At time t, Algorithm PG(s) starts a new phase by scheduling a packet of size
larger than ℓi, or

(ii) at time t, no packet of size ℓi is pending for PG(s), or
(iii) t = 0.
We define critical times C0, C1, . . . , Ck iteratively as follows:
• C0 = T , i.e., it is the end of the schedule.
• For i = 1, . . . , k, Ci is the supremum of i-good times t such that t ≤ Ci−1.

Note that all Ci’s are defined and Ci ≥ 0, as time t = 0 is i-good for all i. The
choice of Ci implies that each Ci is of one of the three types (the types are not disjoint):
• Ci is i-good and a phase starts at Ci (this includes Ci = 0),
• Ci is i-good and Ci = Ci−1, or
• there exists a packet of size ℓi pending at Ci, however, any such packet was

released at Ci.
If the first two options do not apply, then the last one is the only remaining possibility
(as otherwise some time in the non-empty interval (Ci, Ci−1] would be i-good); in this
case, Ci is not i-good, but only the supremum of i-good times.

First we bound the total size of packets of size ℓi completed before Ci; the proof
actually only uses the fact that each Ci is the supremum of i-good times and justifies
the definition above.

Lemma 3.4. Let s ≥ 1 be the speedup. Then, for any i, it holds LOPT(i, (0, Ci]) ≤
LPG(s)(i, (0, Ci]) + ℓk.

Proof. If Ci is i-good and satisfies condition (i) in Definition 3.3, then by the description
of Step (2) of the algorithm, the total size of pending packets of size ℓi is less than the
size of the scheduled packet, which is at most ℓk and the lemma follows.

In all the remaining cases it holds that PG(s) has completed all the jobs of size
ℓi released before Ci, thus the inequality holds trivially even without the additive
term.

Our remaining goal is to bound LOPT(≥ i, (Ci, Ci−1]). We divide (Ci, Ci−1] into
i-segments by the faults. We prove the bounds separately for each i-segment. One
important fact is that for the first i-segment we use only a loose bound, as we can use
the additive constant. The critical part is then the bound for i-segments started by
a fault, this part determines the competitive ratio and is different for each case. We
summarize the general method by the following definition and master theorem.

89

ℓk

ℓi
ℓi−1

ℓ1

Ck Ci Ci−1 C2 C1 C0

LOPT(1, (0, C1])

LOPT(i− 1, (0, Ci−1])
LOPT(i, (0, Ci])

LOPT(≥ i,

(Ci, Ci−1])

Ci+1 C3

Figure 3.2: An illustration of dividing the schedule of OPT in the local analysis,
i.e., dividing the (total size of) packets completed by OPT into LOPT(i, (0, Ci]) and
LOPT (≥ i, (Ci, Ci−1]) for i = 1, . . . , k. Rows correspond to packet sizes and the X-axis
to time. Gray horizontal rectangles thus correspond to LOPT(i, (0, Ci]), i.e., these rect-
angles represent the time interval (0, Ci] and packets of size ℓi completed by OPT in
(0, Ci], whereas hatched rectangles correspond to LOPT (≥ i, (Ci, Ci−1]).

Definition 3.5. The interval (u, v] is called the initial i-segment if u = Ci and v is
either Ci−1 or the first time of a fault after u, whichever comes first.

The interval (u, v] is called a proper i-segment if u ∈ (Ci, Ci−1) is a time of a fault
and v is either Ci−1 or the first time of a fault after u, whichever comes first.

Note that there is no i-segment if Ci−1 = Ci.

Theorem 3.6 (Master Theorem). Let s ≥ 1 be the speedup. Suppose that for R ≥ 1
both of the following hold:

1. For each i = 1, . . . , k and each proper i-segment (u, v] with v − u ≥ ℓi, it holds
that

(R− 1)LPG(s)((u, v]) + LPG(s)(≥ i, (u, v]) ≥ LOPT(≥ i, (u, v]) . (3.1)

2. For the initial i-segment (u, v], it holds that

LPG(s)(≥ i, (u, v]) > s(v − u)− 4ℓk . (3.2)

Then PG(s) is R-competitive.

Proof. First note that for a proper i-segment (u, v], u is a fault time. Thus if v−u < ℓi,
then LOPT(≥ i, (u, v]) = 0 and (3.1) is trivial. It follows that (3.1) holds even without
the assumption v − u ≥ ℓi.

Now consider the initial i-segment (u, v]. We have LOPT(≥ i, (u, v]) ≤ ℓk + v−u, as
at most a single packet started before u can be completed. Combining this with (3.2)
and using s ≥ 1, we get LPG(s)(≥ i, (u, v]) > s(v−u)− 4ℓk ≥ v−u− 4ℓk ≥ LOPT(≥
i, (u, v])− 5ℓk.

Summing this with (3.1) for all proper i-segments and using R ≥ 1 we get

(R− 1)LPG(s)((Ci, Ci−1]) + LPG(s)(≥ i, (Ci, Ci−1]) + 5ℓk

≥ LOPT(≥ i, (Ci, Ci−1]) . (3.3)

Note that for Ci = Ci−1, Equation (3.3) holds trivially.

90

To complete the proof, note that each completed job in the optimum contributes
to exactly one among the 2k terms LOPT(≥ i, (Ci, Ci−1]) and LOPT(i, (0, Ci]); similarly
for LPG(s). Thus by summing both (3.3) and Lemma 3.4 for all i = 1, . . . , k we obtain

LOPT =
k∑

i=1
LOPT (≥ i, (Ci, Ci−1]) +

k∑
i=1

LOPT(i, (0, Ci])

≤
k∑

i=1

(
(R− 1)LPG(s)((Ci, Ci−1]) +

(
LPG(s)(≥ i, (Ci, Ci−1]) + 5ℓk

))

+
k∑

i=1

(
LPG(s)(i, (0, Ci]) + ℓk

)
≤ (R− 1)LPG(s) + LPG(s) + 6kℓk = R · LPG(s) + 6kℓk .

The theorem follows.

3.6.2 Local Analysis of PrudentGreedy (PG)

The first part of the following lemma implies the condition (3.2) for the initial i-
segments in all cases. The second part of the lemma is the base of the analysis of
a proper i-segment, which is different in each situation.

Lemma 3.7. (i) If (u, v] is the initial i-segment, then LPG(s)(≥ i, (u, v]) > s(v −
u)− 4ℓk.

(ii) If (u, v] is a proper i-segment and v−u ≥ ℓi then LPG(s)((u, v]) > s(v−u)/2 and
LPG(s)(≥ i, (u, v]) > s(v − u)/2− ℓi − ℓi−1. (Recall that ℓ0 = 0.)

Proof. (i) If the phase that starts at u or contains u ends before v, let u′ be its end;
otherwise let u′ = u. We have u′ ≤ u + ℓi/s, as otherwise any packet of size ℓi,
pending throughout the i-segment by definition, would be an eligible choice in Step (3)
of the algorithm, and the phase would not end before v. Using Lemma 3.2(ii), we have
LPG(s)(< i, (u′, v]) < ℓi +ℓi−1 < 2ℓk. Since at most one packet at the end of the segment
is unfinished, we have LPG(s)(≥ i, (u, v]) ≥ LPG(s)(≥ i, (u′, v]) > s(v − u′) − 3ℓk ≥
s(v − u)− 4ℓk.

(ii) Let (u, v] be a proper i-segment. Thus u is a start of a phase that contains at
least the whole interval (u, v] by Lemma 3.2(ii). By the definition of Ci, u is not i-good,
so the phase starts by a packet of size at most ℓi. If v − u ≥ ℓi then the first packet
finishes (as s ≥ 1) and thus LPG(s)((u, v]) > s(v − u)/2 by Lemma 3.1. The total size
of completed packets smaller than ℓi is less than ℓi + ℓi−1 by Lemma 3.2(ii), and thus
LPG(s)(≥ i, (u, v]) > s(v − u)/2− ℓi − ℓi−1.

General Packet Sizes

The next theorem gives a tradeoff of the competitive ratio of PG(s) and the speedup
s using our local analysis. While Theorem 3.14 shows that PG(s) is 1-competitive for
s ≥ 4, here we give a weaker result that reflects the limits of the local analysis. However,
for s = 1 our local analysis is tight as already the lower bound from [AGK+16] shows
that no algorithm is better than 3-competitive (for packet sizes 1 and 2−ε). Moreover,
the bound for s < 2 is tight for our algorithm, as shown by the first example in
Section 3.5. See Figure 3.1 for an illustration of our upper and lower bounds on the
competitive ratio of PG(s) on general instances.

Theorem 3.8. PG(s) is Rs-competitive where:
Rs = 1 + 2/s for s ∈ [1, 4),

91

Rs = 2/3 + 2/s for s ∈ [4, 6), and
Rs = 1 for s ≥ 6.

Proof. Lemma 3.7(i) implies the condition (3.2) for the initial i-segments. We now
prove (3.1) for any proper i-segment (u, v] with v − u ≥ ℓi and appropriate R. The
bound then follows by the Master Theorem.

Since there is a fault at time u, we have LOPT(≥ i, (u, v]) ≤ v − u.
For s ≥ 6, Lemma 3.7(ii) implies

LPG(s)(≥ i, (u, v]) > s(v − u)/2− 2ℓi

≥ 3(v − u)− 2(v − u) = v − u ≥ LOPT(≥ i, (u, v]) ,

which is (3.1) for R = 1.
For s ∈ [4, 6), by Lemma 3.7(ii) we have LPG(s)((u, v]) > s(v − u)/2 and by multi-

plying it by (2/s− 1/3) we obtain(2
s
− 1

3

)
· LPG(s)((u, v]) >

(
1− s

6

)
(v − u) .

Thus to prove (3.1) for R = 2/3 + 2/s, it suffices to show that

LPG(s)(≥ i, (u, v]) >
s

6(v − u) ,

as clearly v − u ≥ LOPT(≥ i, (u, v]). The remaining inequality again follows from
Lemma 3.7(ii), but we need to consider two cases:

If (v − u) ≥ 6
s ℓi, then

LPG(s)(≥ i, (u, v]) >
s

2(v − u)− 2ℓi ≥
s

2(v − u)− s

3(v − u) = s

6(v − u) .

On the other hand, if (v − u) < 6
s ℓi, then using s ≥ 4 as well,

LPG(s)(≥ i, (u, v]) >
s

2(v − u)− 2ℓi ≥ 0 ,

therefore PG(s) completes a packet of size at least ℓi which implies

LPG(s)(≥ i, (u, v]) ≥ ℓi >
s

6(v − u) ,

concluding the case of s ∈ [4, 6).
For s ∈ [1, 4), by Lemma 3.7(ii) we get (2/s) · LPG(s)((u, v]) > v − u ≥ LOPT(≥

i, (u, v]), which implies (3.1) for R = 1 + 2/s.

Well-separated Packet Sizes

We can obtain better bounds on the speedup necessary for 1-competitiveness if the
packet sizes are sufficiently different. Namely, we call the packet sizes ℓ1, . . . , ℓk α-
separated if ℓi ≥ αℓi−1 holds for i = 2, . . . , k.

Next, we show that for α-separated packet sizes, PG(Sα) is 1-competitive for the
following Sα. We define

α0 = 1
2 + 1

6
√

33 ≈ 1.46 , which is the positive root of 3α2 − 3α− 2.

α1 = 3 +
√

17
4 ≈ 1.78 , which is the positive root of 2α2 − 3α− 1.

Sα =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4α + 2

α2 for α ∈ [1, α0],

3 + 1
α for α ∈ [α0, α1), and

2 + 2
α for α ≥ α1.

92

1

2

3

4

5

1 2 3α0 α1

Sp
ee

du
p

α

(4α + 2)/α2
2 + 2/α

3 + 1/α for α < α1
Upper bound from Theorem 3.14

Speedup sufficient for 1-competitiveness

Figure 3.3: A graph of Sα and the bounds on the speedup that we use in Theorem 3.9.
Note that in the graph we also use Theorem 3.14 for 1-competitiveness with speed 4
(for any α), but in the definition of Sα we do not take it into account.

See Figure 3.3 for a graph of Sα and all the bounds on it that we use. The value of α0
is chosen as the point where (4α + 2)/α2 = 3 + 1/α. The value of α1 is chosen as the
point from which the argument in case (viii) of the proof below works, which allows
for a better result for α ≥ α1. If s ≥ Sα then s ≥ (4α + 2)/α2 and s ≥ 2 + 2/α for all
α and also s ≥ 3 + 1/α for α < α1; these facts follow from inspection of the functions
and are useful for the analysis.

Note that Sα is decreasing in α, with a single discontinuity at α1. We have S1 = 6,
matching the upper bound for 1-competitiveness using local analysis. We have S2 = 3,
i.e., PG(3) is 1-competitive for 2-separated packet sizes, which includes the case of
divisible packet sizes (however, only s ≥ 2.5 is needed in the divisible case, as we show
later). The limit of Sα for α→ +∞ is 2. For α < (1 +

√
3)/2 ≈ 1.366, we get Sα > 4,

while Theorem 3.14 shows that PG(s) is 1-competitive for s ≥ 4; the weaker result of
Theorem 3.9 below reflect the limits of the local analysis.

Theorem 3.9. Let α > 1. If the packet sizes are α-separated, then PG(s) is 1-
competitive for any s ≥ Sα.

Proof. Lemma 3.7(i) implies (3.2). We now prove for any proper i-segment (u, v] with
v − u ≥ ℓi that

LPG(s)(≥ i, (u, v]) ≥ LOPT(≥ i, (u, v]) , (3.4)

which is (3.1) for R = 1. The bound then follows by the Master Theorem.
Let X = LOPT(≥ i, (u, v]). Note that X ≤ v − u.
Lemma 3.7(ii) together with ℓi−1 ≤ ℓi/α gives LPG(s)(≥ i, (u, v]) > M for M =

sX/2− (1 + 1/α)ℓi.
We use the fact that both X and LPG(s)(≥ i, (u, v]) are sums of some packet sizes

ℓj , j ≥ i, and thus only some of the values are possible. However, the situation is
quite complicated, as for example ℓi+1, ℓi+2, 2ℓi, ℓi + ℓi+1 are possible values, but their
ordering may vary.

We distinguish several cases based on X and α. We note in advance that the first
five cases suffice for α < α1; only after completing the proof for α < α1, we analyze the

93

additional cases needed for α ≥ α1.
Case i: X = 0. Then (3.4) is trivial.
Case ii: X = ℓi. Using s ≥ 2 + 2/α, we obtain M ≥ (1 + 1/α)ℓi − (1 + 1/α)ℓi = 0.

Thus LPG(s)(≥ i, (u, v]) > M ≥ 0 which implies LPG(s)(≥ i, (u, v]) ≥ ℓi = X and (3.4)
holds.

Case iii: X = ℓi+1 and ℓi+1 ≤ 2ℓi. Using s ≥ (4α + 2)/α2 and X = ℓi+1 ≥ αℓi, we
obtain

M ≥ sℓi+1
2 −

(
1 + 1

α

)
ℓi ≥

(
2 + 1

α

)
ℓi −

(
1 + 1

α

)
ℓi = ℓi .

Thus LPG(s)(≥ i, (u, v]) > ℓi which together with ℓi+1 ≤ 2ℓi implies LPG(s)(≥ i, (u, v]) ≥
ℓi+1 = X and (3.4) holds.

Case iv: X ≥ α2ℓi. (Note that this includes all cases when a packet of size at least
ℓi+2 contributes to X.) We first show that s ≥ 2(1 + 1/α2 + 1/α3) by straightforward
calculations with the golden ratio ϕ:
• If α ≤ ϕ, we have

s ≥ 4α + 2
α2 = 2

(2
α

+ 1
α2

)
≥ 2

(
1 + 1

α2 + 1
α3

)
,

where we use 2/α ≥ 1 + 1/α3 or equivalently α3 + 1− 2α2 ≤ 0, which is true as

α3+1−2α2 = α3−α2+1−α2 = α2(α−1)−(α+1)(α−1) = (α−1)(α2−α−1) ≤ 0 ,

where the last inequality holds for α ∈ (1, ϕ).
• If on the other hand α ≥ ϕ, then s ≥ 2(1 + 1/α) ≥ 2(1 + 1/α2 + 1/α3), as

1/α ≥ 1/α2 + 1/α3 holds for α ≥ ϕ.
Now we obtain

M −X ≥
(

s

2 − 1
)

X −
(

1 + 1
α

)
ℓi

≥
(

1 + 1
α2 + 1

α3 − 1
)

X −
(

1 + 1
α

)
ℓi

≥
(1

α2 + 1
α3

)
α2ℓi −

(
1 + 1

α

)
ℓi = 0 ,

and (3.4) holds.
Case v: X ≥ 2ℓi and α < α1. (Note that this includes all cases when at least two

packets contribute to X, but we use it only if α < α1.) Using s ≥ 3 + 1/α we obtain

M −X ≥
(1

2

(
3 + 1

α

)
− 1

)
X −

(
1 + 1

α

)
ℓi ≥

1
2

(
1 + 1

α

)
2ℓi −

(
1 + 1

α

)
ℓi = 0 ,

and (3.4) holds.
Proof for α < α1: We now observe that for α < α1, we have exhausted all the possible
values of X. Indeed, if (v) does not apply, then at most a single packet contributes to
X, and one of the cases (i)-(iv) applies, as (iv) covers the case when X ≥ ℓi+2, and as
X = ℓi+1 is covered by (iii) or (v). Thus (3.4) holds and the proof is complete.
Proof for α ≥ α1: We now analyze the remaining cases for α ≥ α1.

Case vi: X ≥ (α + 1)ℓi. (Note that this includes all cases when two packets not
both of size ℓi contribute to X.) Using s ≥ 2 + 2/α we obtain

M −X ≥
(

1 + 1
α
− 1

)
X −

(
1 + 1

α

)
ℓi ≥

1
α

(α + 1)ℓi −
(

1 + 1
α

)
ℓi = 0

and (3.4) holds.

94

Case vii: X = n · ℓi < (α + 1)ℓi for some n = 2, 3, Since α > α1 > ϕ, we have
ℓi+1 > ℓi + ℓi−1. This implies that the first packet of size at least ℓi that is scheduled
in the phase has size equal to ℓi by the condition in Step (3) of the algorithm. Thus, if
also a packet of size larger than ℓi contributes to LPG(s)(≥ i, (u, v]), we have

LPG(s)(≥ i, (u, v]) ≥ ℓi+1 + ℓi ≥ (α + 1)ℓi > X

by the case condition and (3.4) holds. Otherwise LPG(s)(≥ i, (u, v]) is a multiple of ℓi.
Using s ≥ 2 + 2/α, we obtain

M ≥
(

1 + 1
α

)
n · ℓi −

(
1 + 1

α

)
ℓi ≥ (n− 1)

(
1 + 1

α

)
ℓi > (n− 1)ℓi .

This, together with divisibility by ℓi implies LPG(s)(≥ i, (u, v]) ≥ n · ℓi = X and (3.4)
holds again.

Case viii: X = ℓi+1 and ℓi+1 > 2ℓi. We distinguish two subcases depending on the
size of the unfinished packet of PG(s) in this phase.

If the unfinished packet has size at most ℓi+1, the size of the completed packets is
bounded by

LPG(s)((u, v]) > sX − ℓi+1 = (s− 1)ℓi+1 ≥
(

1 + 2
α

)
ℓi+1 ,

using s ≥ 2+2/α. Since the total size of packets smaller than ℓi is less then (1+1/α)ℓi

by Lemma 3.2(ii), we obtain

LPG(s)(≥ i, (u, v])−X >
2ℓi+1

α
−
(

1 + 1
α

)
ℓi ≥ 2ℓi −

(
1 + 1

α

)
ℓi > 0 ,

where the penultimate inequality uses ℓi+1/α ≥ ℓi. Thus (3.4) holds.
Otherwise the unfinished packet has size at least ℓi+2 and, by Step (3) of the al-

gorithm, also LPG(s)((u, v]) > ℓi+2. We have ℓi+2 ≥ αℓi+1 and by the case condition
ℓi+1 > 2ℓi we obtain

LPG(s)(≥ i, (u, v])−X > (α− 1)ℓi+1 −
(

1 + 1
α

)
ℓi > 2(α− 1)ℓi −

(
1 + 1

α

)
ℓi ≥ 0 ,

as the definition of α1 implies that 2(α− 1) ≥ 1 + 1/α for α ≥ α1. Thus (3.4) holds.
We now observe that we have exhausted all the possible values of X for α ≥ α1.

Indeed, if at least two packets contribute to X, either (vi) or (vii) applies. Otherwise,
at most a single packet contributes to X, and one of the cases (i)-(iv) or (viii) applies,
as (iv) covers the case when X ≥ ℓi+2. Thus (3.4) holds and the proof is complete.

Divisible Packet Sizes

Now, we turn briefly to even more restricted divisible instances considered by Jurdziński
et al. [JKL15], which are a special case of 2-separated instances. Namely, we improve
upon Theorem 3.9 in Theorem 3.10 presented below in the following sense: While the
former guarantees that PG(s) is 1-competitive on (more general) 2-separated instances
at speed s ≥ 3, the latter shows that speed s ≥ 2.5 is sufficient for (more restricted)
divisible instances. Moreover, we note that that by an example in Section 3.5, the
bound of Theorem 3.10 is tight, i.e., PG(s) is not 1-competitive for s < 2.5, even on
divisible instances.

Theorem 3.10. If the packet sizes are divisible, then PG(s) is 1-competitive for s ≥
2.5.

95

Proof. Lemma 3.7(i) implies (3.2). We now prove (3.1) for any proper i-segment (u, v]
with v − u ≥ ℓi and R = 1. The bound then follows by the Master Theorem. Since
there is a fault at time u, we have LOPT(≥ i, (u, v]) ≤ v − u.

By divisibility we have LOPT(≥ i, (u, v]) = nℓi for some nonnegative integer n. We
distinguish two cases based on the size of the last packet started by PG in the i-segment
(u, v], which is possibly unfinished due to a fault at v.

If the unfinished packet has size at most nℓi, then

LPG(s)(≥ i, (u, v]) > 5(v − u)/2− ℓi − ℓi−1 − nℓi ≥ 5nℓi/2− 3ℓi/2− nℓi ≥ (n− 1)ℓi

by Lemma 3.1 and Lemma 3.2(ii). Divisibility now implies LPG(s)(≥ i, (u, v]) ≥ nℓi =
LOPT(≥ i, (u, v]).

Otherwise, by divisibility the size of the unfinished packet is at least (n + 1)ℓi and
the size of the completed packets is larger by the condition in Step (3) of the algorithm;
here we also use the fact that PG(s) completes the packet started at u, as its size is at
most ℓi ≤ v − u (otherwise, u would be i-good, thus Ci ≥ u and (u, v] is not a proper
i-segment). Thus LPG(s)(≥ i, (u, v]) > (n+1)ℓi−3ℓi/2 ≥ (n−1/2)ℓi. Divisibility again
implies LPG(s)(≥ i, (u, v]) ≥ nℓi = LOPT(≥ i, (u, v]), which shows (3.1).

3.6.3 Algorithm PG-DIV and its Analysis

We introduce our other algorithm PG-DIV designed for divisible instances. Actually, it
is rather a fine-tuned version of PG, as it differs from it only in Step (3), where PG-
DIV enforces an additional divisibility condition, set apart by italics in its formalization
below. Then, using our framework of local analysis from this section, we give a simple
proof that PG-DIV matches the performance of the algorithms from [JKL15] on divisible
instances.

Algorithm PG-DIV:

(1) If no packet is pending, stay idle until the next release time.
(2) Let i be the maximal i ≤ k such that there is a pending packet of size ℓi and

ℓ(P <i) < ℓi. Schedule a packet of size ℓi and set tB = t.
(3) Choose the maximum i such that

(i) there is a pending packet of size ℓi,
(ii) ℓi ≤ rel(t) and
(iii) ℓi divides rel(t).

Schedule a packet of size ℓi. Repeat Step (3) as long as such i exists.
(4) If no packet satisfies the condition in Step (3), go to Step (1).

Throughout the section we assume that the packet sizes are divisible. We note that
Lemmas 3.1 and 3.4 and the Master Theorem apply to PG-DIV as well, since their proofs
are not influenced by the divisibility condition. In particular, the definition of critical
times Ci (Definition 3.3) remains the same. Thus, this section is devoted to leveraging
divisibility to prove stronger stronger analogues of Lemma 3.2 and Lemma 3.7 (which
are not needed to prove the Master Theorem) in this order. Once established, these
are combined with the Master Theorem to prove that PG-DIV(2) is 1-competitive and
PG-DIV(1) is 2-competitive. Recall that rel(t) = s · (t − tB) is the relative time after
the start of the current phase tB, scaled by the speed of the algorithm.

Lemma 3.11. (i) If PG-DIV starts or completes a packet of size ℓi at time t, then
ℓi divides rel(t).

96

(ii) Let t be a time with rel(t) divisible by ℓi and rel(t) > 0. If a packet of size ℓi is
pending at time t, then PG-DIV starts or continues running a packet of size at
least ℓi at time t.

(iii) If at the beginning of phase at time u a packet of size ℓi is pending and no fault
occurs before time t = u + ℓi/s, then the phase does not end before t.

Proof. (i) follows trivially from the description of the algorithm.
(ii): If PG-DIV continues running some packet at t, it cannot be a packet smaller

than ℓi by (i) and the claim follows. If PG-DIV starts a new packet, then a packet of
size ℓi is pending by the assumption. Furthermore, it satisfies all the conditions from
Step 3 of the algorithm, as rel(t) is divisible by ℓi and rel(t) ≥ ℓi (from rel(t) > 0 and
divisibility). Thus the algorithm starts a packet of size at least ℓi.

(iii): We proceed by induction on i. Assume that no fault happens before t. If the
phase starts by a packet of size at least ℓi, the claim holds trivially, as the packet is not
completed before t. This also proves the base of the induction for i = 1.

It remains to handle the case when the phase starts by a packet smaller than ℓi.
Let P <i be the set of all packets of size smaller than ℓi pending at time u. By the Step
(2) of the algorithm, ℓ(P <i) ≥ ℓi. We show that all packets of P <i are completed if no
fault happens, which implies that the phase does not end before t.

Let j be such that ℓj is the maximum size of a packet in P <i; note that j exists, as
the phase starts by a packet smaller than ℓi. By the induction assumption, the phase
does not end before time t′ = u + ℓj/s. From time t′ on, the conditions in Step (3)
guarantee that the remaining packets from P <i are processed from the largest ones,
possibly interleaved with some of the newly arriving packets of larger sizes, as rel(τ) for
the current time τ ≥ t′ such that a packet completes at τ is always divisible by the size
of the largest pending packet from P <i. This shows that the phase cannot end before
all packets from P <i are completed if no fault happens.

Now we prove a stronger analogue of Lemma 3.7.

Lemma 3.12. (i) If (u, v] is the initial i-segment, then

LPG-DIV (s)(≥ i, (u, v]) > s(v − u)− 3ℓk .

(ii) If (u, v] is a proper i-segment and v − u ≥ ℓi then

LPG-DIV (s)(≥ i, (u, v]) > s(v − u)/2− ℓi .

Furthermore, LPG-DIV (s)((u, v]) > s(v − u)/2 and LPG-DIV (s)((u, v]) is divisible by
ℓi.

Proof. Suppose that time t ∈ [u, v) satisfies that rel(t) is divisible by ℓi and rel(t) > 0.
Then observe that Lemma 3.11(ii) together with the assumption that a packet of size
ℓi is always pending in [u, v) implies that from time t on only packets of size at least ℓi

are scheduled, and thus the current phase does not end before v.
For a proper i-segment (u, v], the previous observation for t = u + ℓi/s immediately

implies (ii): Observe that t ≤ v by the assumption of (ii). Now LPG-DIV(s)(< i, (u, v])
is either equal to 0 (if the phase starts by a packet of size ℓi at time u), or equal to ℓi

(if the phase starts by a smaller packet). In both cases ℓi divides LPG-DIV(s)(< i, (u, v])
and thus also LPG-DIV(s)((u, v]). As in the analysis of PG, the total size of completed
packets is more than s(v − u)/2 and (ii) follows.

For the initial i-segment (u, v] we first observe that the claim is trivial if s(v−u) ≤
2ℓi. So we may assume that u + 2ℓi/s ≤ v. Now we distinguish two cases:

97

1. The phase of u ends at some time u′ ≤ u+ℓi/s: Then, by Lemma 3.11(iii) and the
initial observation, the phase that immediately follows the one of u does not end
in (u′, v) and from time u′ + ℓi/s on, only packets of size at least ℓi are scheduled.
Thus LPG-DIV(s)(< i, (u, v]) ≤ 2ℓi.

2. The phase of u does not end by time u + ℓi/s: Thus there exists t ∈ (u, u + ℓi/s]
such that ℓi divides rel(t) and also rel(t) > 0 as t > u. Using the initial observation
for this t we obtain that the phase does not end in (u, v) and from time t on only
packets of size at least ℓi are scheduled. Thus LPG-DIV(s)(< i, (u, v]) ≤ ℓi.

In both cases LPG-DIV(s)(< i, (u, v]) ≤ 2ℓi, furthermore only a single packet is possibly
unfinished at time v. Thus LPG-DIV(s)(≥ i, (u, v]) > s(v−u)−2ℓi−ℓk and (i) follows.

Theorem 3.13. Let the packet sizes be divisible. Then PG-DIV (1) is 2-competitive.
Also, for any speed s ≥ 2, PG-DIV (s) is 1-competitive.

Proof. Lemma 3.12(i) implies (3.2). We now prove (3.1) for any proper i-segment (u, v]
with v− u ≥ ℓi and appropriate R. The theorem then follows by the Master Theorem.

Since u is a time of a fault, we have LOPT(≥ i, (u, v]) ≤ v−u. If LOPT(≥ i, (u, v]) =
0, (3.1) is trivial. Otherwise LOPT(≥ i, (u, v]) ≥ ℓi, thus v− u ≥ ℓi and the assumption
of Lemma 3.12(ii) holds.

For s ≥ 2, Lemma 3.12(ii) implies

LPG-DIV(s)(≥ i, (u, v]) > s(v − u)/2− ℓi ≥ v − u− ℓi ≥ LOPT(≥ i, (u, v])− ℓi .

Since both LPG-DIV(s)(≥ i, (u, v]) and LOPT(≥ i, (u, v]) are divisible by ℓi, this implies
LPG-DIV(s)(≥ i, (u, v]) ≥ LOPT(≥ i, (u, v]), i.e., (3.1) holds for R = 1.

For s = 1, Lemma 3.12(ii) implies

LPG-DIV((u, v]) + LPG-DIV(≥ i, (u, v]) > (v − u)/2 + (v − u)/2− ℓi

≥ v − u− ℓi ≥ LOPT(≥ i, (u, v])− ℓi .

Since LPG-DIV((u, v]), LPG-DIV(≥ i, (u, v]), and LOPT(≥ i, (u, v]) are all divisible by ℓi,
this implies LPG-DIV((u, v])+LPG-DIV(≥ i, (u, v]) ≥ LOPT(≥ i, (u, v]), i.e., (3.1) holds for
R = 2.

Example with Two Divisible Packet Sizes

We show that for our algorithms speed 2 is necessary if we want a ratio below 2, even
if there are only two packet sizes in the instance. This matches the upper bound given
in Theorem 3.8 for PG(2) and our upper bounds for PG-DIV(s) on divisible instances,
i.e., ratio 2 for s < 2 and ratio 1 for s ≥ 2. We remark that by Theorem 3.21, no
deterministic algorithm can be 1-competitive with speed s < 2 on divisible instances,
but this example shows a stronger lower bound for our algorithms, namely that their
ratios are at least 2.
Remark. PG and PG-DIV have ratio no smaller than 2 when s < 2, even if packet sizes
are only 1 and ℓ ≥ max{s + ε, ε/(2− s)} for an arbitrarily small ε > 0.

Proof. We denote either algorithm by ALG. There will be N phases, that all look the
same: In each phase, issue one packet of size ℓ and ℓ packets of size 1, and have the
phase end by a fault at time (2ℓ − ε)/s ≥ ℓ which holds by the bounds on ℓ. Then
ALG will complete all ℓ packets of size 1 but will not complete the one of size ℓ. By the

98

previous inequality, OPT can complete the packet of size ℓ within the phase. Once all
N phases are over, the jams occur every 1 unit of time, which allows OPT completing
all Nℓ remaining packets of size 1. However, ALG is unable to complete any of the
packets of size ℓ. Thus the ratio is 2.

3.7 PrudentGreedy with Speed 4

In this section we prove that speed 4 is sufficient for PG to be 1-competitive. An
example in Section 3.5 shows that speed 4 is also necessary for our algorithm.

Theorem 3.14. PG(s) is 1-competitive for s ≥ 4.

Intuition For s ≥ 4 we have that if at the start of a phase PG(s) has a packet of
size ℓi pending and the phase has length at least ℓi, then PG(s) completes a packet of
size at least ℓi. To show this, assume that the phase starts at time t. Then the first
packet p of size at least ℓi is started before time t + 2ℓi/s by Lemma 3.2(ii) and by
the condition in Step (3) it has size smaller than 2ℓi. Thus it completes before time
t + 4ℓi/s ≤ t + ℓi, which is before the end of the phase. This property does not hold for
s < 4. It is important in our proof, as it shows that if the optimal schedule completes
a job of some size, and such job is pending for PG(s), then PG(s) completes a job of
the same size or larger. However, this is not sufficient to complete the proof by a local
(phase-by-phase) analysis similar to the previous section, as the next example shows.

Assume that at the beginning, we release N packets of size 1, N packets of size
1.5− 2ε, one packet of size 3− 2ε and a sufficient number of packets of size 1− ε, for
a small ε > 0. Our focus is on packets of size at least 1. Supposing s = 4 we have the
following phases:
• First, there are N phases of length 1. In each phase the optimum completes a

packet of size 1, while among packets of size at least 1, PG(s) completes a packet
of size 1.5− 2ε, as it starts packets of sizes 1− ε, 1− ε, 1.5− 2ε, 3− 2ε, in this
order, and the last packet is jammed.
• Then there are N phases of length 1.5−2ε where the optimum completes a packet

of size 1.5 − 2ε while among packets of size at least 1, the algorithm completes
only a single packet of size 1, as it starts packets of sizes 1 − ε, 1 − ε, 1, 3 − 2ε,
in this order. The last packet is jammed, since for s = 4 the phase must have
length at least 1.5− ε to complete it.

In phases of the second type, the algorithm does not complete more (in terms of total
size) packets of size at least 1 than the optimum. Nevertheless, in our example, packets
of size 1.5 − 2ε were already finished by the algorithm, and this is a general rule.
The novelty in our proof is a complex charging argument that exploits such subtle
interaction between phases.

Outline of the proof We define critical times C ′
i similarly as before, but without the

condition that they should be ordered (thus either C ′
i ≤ C ′

i−1 or C ′
i > C ′

i−1 may hold).
Then, since the algorithm has nearly no pending packets of size ℓi just before C ′

i, we can
charge almost all adversary’s packets of size ℓi started before C ′

i to algorithm’s packets
of size ℓi completed before C ′

i in a 1-to-1 fashion; we thus call these charges 1-to-1
charges. We account for the first few packets of each size completed at the beginning of
ADV, the schedule of the adversary, in the additive constant of the competitive ratio,
thereby shifting the targets of the 1-to-1 charges backward in time. This also resolves
what to do with the yet uncharged packets pending for the algorithm just before C ′

i.
After the critical time C ′

i, packets of size ℓi are always pending for the algorithm,
and thus (as we observed above) the algorithm schedules a packet of size at least ℓi

99

when the adversary completes a packet of size ℓi. It is actually more convenient not to
work with phases, but partition the schedule into blocks inbetween successive faults.
A block can contain several phases of the algorithm separated by an execution of Step
(4); however, in the most important and tight part of the analysis the blocks coincide
with phases.

In the crucial lemma of the proof, based on these observations and their refinements,
we show that we can assign the remaining packets in ADV to algorithm’s packets in
the same block so that for each algorithm’s packet q the total size of packets assigned
to it is at most ℓ(q). However, we cannot use this assignment directly to charge the
remaining packets, as some of the algorithm’s big packets may receive 1-to-1 charges,
and in this case the analysis needs to handle the interaction of different blocks. This
very issue can be seen even in our introductory example.

To deal with this, we process blocks in the order of time from the beginning to
the end of the schedule, simultaneously completing the charging to the packets in the
current block of the schedule of PG(s) and possibly modifying ADV in the future blocks.
In fact, in the assignment described above, we include not only the packets in ADV
without 1-to-1 charges, but also packets in ADV with a 1-to-1 charge to a later block.
After creating the assignment, if we have a packet q in PG that receives a 1-to-1 charge
from a packet p in a later block of ADV, we remove p from ADV in that later block
and replace it there by the packets assigned to q (that are guaranteed to be of smaller
total size than p). After these swaps, the 1-to-1 charges together with the assignment
form a valid charging that charges the remaining not swapped packets in ADV in this
block together with the removed packets from the later blocks in ADV to the packets
of PG(s) in the current block. This charging is now independent of the other blocks,
so we can continue with the next block.

3.7.1 Blocks, Critical Times, 1-to-1 Charges and the Additive Con-
stant

We now formally define the notions of blocks and (modified) critical times.

Definition 3.15. Let f1, f2, . . . , fN be the times of faults. Let f0 = 0 and fN+1 = T
is the end of schedule. Then the time interval (fi, fi+1], i = 0, . . . , N , is called a block.

Definition 3.16. For i = 1, . . . k, the critical time C ′
i is the supremum of i-good times

t ∈ [0, T], where T is the end of the schedule and i-good times are as defined in Defini-
tion 3.3.

All C ′
i’s are defined, as t = 0 is i-good for all i. Similarly to Section 3.6.1, each

C ′
i is of one of the following types: (i) C ′

i starts a phase and a packet larger than ℓi is
scheduled, (ii) C ′

i = 0, (iii) C ′
i = T , or (iv) just before time C ′

i no packet of size ℓi is
pending but at time C ′

i one or more packets of size ℓi are pending; in this case C ′
i is

not i-good but only the supremum of i-good times. We observe that in each case, at
time C ′

i the total size of packets p of size ℓi pending for PG(s) and released before C ′
i

is less than ℓk.
Next we define the set of packets that contribute to the additive constant.

Definition 3.17. Let the set A contain for each i = 1, . . . , k:
(i) the first ⌈4ℓk/ℓi⌉ packets of size ℓi completed by the adversary, and

(ii) the first ⌈4ℓk/ℓi⌉ packets of size ℓi completed by the adversary after C ′
i.

If there are not sufficiently many packets of size ℓi completed by the adversary in (i)
or (ii), we take all the packets in (i) or all the packets completed after C ′

i in (ii),
respectively.

100

C ′
i

. . .ALG:

ADV:

Figure 3.4: An illustration of back, up, and forward 1-to-1 charges for ℓi-sized packets
(other packets are not shown). The winding lines depict the times of jamming errors,
i.e., the beginnings and ends of blocks. Note that the packets in the algorithm’s schedule
are shorter, but wider, which illustrates that the algorithm runs the packets with a
higher speed for a shorter time (the area thus corresponds to the amount of work
done). Crossed packets are included in the set A (and thus contribute to the additive
constant).

For each i, we put into A packets of size ℓi of total size at most 10ℓk. Thus we
have ℓ(A) = O(kℓk) which implies that packets in A can be counted in the additive
constant.

We define 1-to-1 charges for packets of size ℓi as follows. Let p1, p2, . . . , pn be all
the packets of size ℓi started by the adversary before C ′

i that are not in A. We claim
that PG(s) completes at least n packets of size ℓi before C ′

i if n ≥ 1. Indeed, if n ≥ 1,
before time C ′

i at least n + ⌈4ℓk/ℓi⌉ packets of size ℓi are started by the adversary and
thus released; by the definition of C ′

i at time C ′
i fewer than ℓk/ℓi of them are pending

for PG(s), one may be running and the remaining ones must be completed. We now
charge each pm to the mth packet of size ℓi completed by PG(s). Note that each packet
started by the adversary is charged at most once and each packet completed by PG(s)
receives at most one charge.

We call a 1-to-1 charge starting and ending in the same block an up charge, a 1-to-1
charge from a block starting at u to a block ending at v′ ≤ u a back charge, and a 1-to-1
charge from a block ending at v to a block starting at u′ ≥ v a forward charge; see
Figure 3.4 for an illustration. A charged packet is a packet charged by a 1-to-1 charge.
The definition of A implies the following two important properties.

Lemma 3.18. Let p be a packet of size ℓi, started by the adversary at time t, charged
by a forward charge to a packet q started by PG(s) at time t′. Then at any time
τ ∈ [t− 3ℓk, t′), more than ℓk/ℓi packets of size ℓi are pending for PG(s).

Proof. Let m be the number of packets of size ℓi that PG(s) completes before q. Then,
by the definition of A, the adversary completes m + ⌈4ℓk/ℓi⌉ packets of size ℓi before
p. As fewer than 3ℓk/ℓi of these packets are started in (t− 3ℓk, t], the remaining more
than m + ℓk/ℓi packets have been released before or at time t−3ℓk. As only m of them
are completed by PG(s) before t′, the remaining more than ℓk/ℓi packets are pending
at any time τ ∈ [t− 3ℓk, t′).

Lemma 3.19. Let p ̸∈ A be a packet of size ℓi started by the adversary at time t that
is not charged. Then t − 4ℓk ≥ C ′

i and thus at any τ ≥ t − 4ℓk, a packet of size ℓi is
pending for PG(s).

Proof. Any packet of size ℓi started before C ′
i + 4ℓk is either charged or put in A, thus

t− 4ℓk ≥ C ′
i. After C ′

i, a packet of size ℓi is pending by the definition of C ′
i.

3.7.2 Processing Blocks

Initially, let ADV be an optimal (adversary) schedule. First, we remove all packets in A
from ADV. Then we process blocks one by one in the order of time. When we process

101

a block, we modify ADV so that we (i) remove some packets from ADV, so that the
total size of removed packets is at most the total size of packets completed by PG(s) in
this block, and (ii) reschedule any remaining packet in ADV in this block to one of the
later blocks, so that the schedule of remaining packets is still feasible. Summing over
all blocks, (i) guarantees that PG(s) is 1-competitive with an additive constant ℓ(A).

When we reschedule a packet in ADV, we keep the packet’s 1-to-1 charge (if it has
one), however, its type may change due to rescheduling. Since we are moving packets
to later times only, the release times are automatically respected. Also it follows that
we can apply Lemmas 3.18 and 3.19 even to ADV after rescheduling.

After processing of a block, there will remain no charges to or from it. For the
charges from the block, this is automatic, as ADV contains no packet in the block after
we process it. For the charges to the block, this is guaranteed as in the process we
remove from ADV all the packets in later blocks charged by back charges to the current
block.

From now on, let (u, v] be the current block that we are processing; all previous
blocks ending at v′ ≤ u are processed. As there are no charges to the previous blocks,
any packet scheduled in ADV in (u, v] is charged by an up charge or a forward charge,
or else it is not charged at all. We distinguish two main cases of the proof, depending
on whether PG(s) finishes any packet in the current block.

Main Case 1: Empty Block

The algorithm does not finish any packet in (u, v]. We claim that ADV does not finish
any packet. The processing of the block is then trivial.

For a contradiction, assume that ADV starts a packet p of size ℓi at time t and
completes it. The packet p cannot be charged by an up charge, as PG(s) completes
no packet in this block. Thus p is either charged by a forward charge or not charged.
Lemma 3.18 or 3.19 implies that at time t some packet of size ℓi is pending for PG(s).

Since PG does not idle unnecessarily, this means that some packet q of size ℓj for
some j is started in PG(s) at time τ ≤ t and running at t. As PG(s) does not complete
any packet in (u, v], the packet q is jammed by the fault at time v. This implies that
j > i, as ℓj > s(v − τ) ≥ v − t ≥ ℓi; we also have t − τ < ℓj . Moreover, q is the only
packet started by PG(s) in this block, thus it starts a phase.

As this phase is started by packet q of size ℓj > ℓi, the time τ is i-good and C ′
i ≥ τ .

All packets ADV started before time C ′
i + 4ℓk/s are charged, as the packets in A are

removed from ADV and packets in ADV are rescheduled only to later times. Packet p is
started before v < τ + ℓj/s < C ′

i + ℓk/s, thus it is charged. It follows that p is charged
by a forward charge. We now apply Lemma 3.18 again and observe that it implies that
at τ > t− ℓj there are more than ℓk/ℓi packets of size ℓi pending for PG(s). This is in
contradiction with the fact that at τ , PG(s) started a phase by q of size ℓj > ℓi.

Main Case 2: Non-empty Block

Otherwise, PG(s) completes a packet in the current block (u, v].
Let Q be the set of packets completed by PG(s) in (u, v] that do not receive an

up charge. Note that no packet in Q receives a forward charge, as the modified ADV
contains no packets before u, so packets in Q either get a back charge or no charge at
all. Let P be the set of packets completed in ADV in (u, v] that are not charged by an
up charge. Note that P includes packets charged by a forward charge and uncharged
packets, as no packets are charged to a previous block.

We first assign packets in P to packets in Q so that for each packet q ∈ Q the total
size of packets assigned to q is at most ℓ(q). Formally, we iteratively define a provisional

102

assignment f : P → Q such that ℓ(f−1(q)) ≤ ℓ(q) for each q ∈ Q.

Provisional assignment We maintain a set O ⊆ Q of occupied packets that we
do not use for a future assignment. Whenever we assign a packet p to q ∈ Q and
ℓ(q) − ℓ(f−1(q)) < ℓ(p), we add q to O. This rule guarantees that each packet q ∈ O
has ℓ(f−1(q)) > ℓ(q)/2.

We process packets in P in the order of decreasing sizes as follows. We take the
largest unassigned packet p ∈ P of size ℓ(p) (if there are more unassigned packets of
size ℓ(p), we take an arbitrary one) and choose an arbitrary packet q ∈ Q \O such that
ℓ(q) ≥ ℓ(p); we prove in Lemma 3.20 below that such a q exists. We assign p to q, that
is, we set f(p) = q. Furthermore, as described above, if ℓ(q)− ℓ(f−1(q)) < ℓ(p), we add
q to O. We continue until all packets are assigned.

If a packet p is assigned to q and q is not put in O, it follows that ℓ(q)−ℓ(f−1(q)) ≥
ℓ(p). This implies that after the next packet p′ is assigned to q, we have ℓ(q) ≥
ℓ(f−1(q)), as the packets are processed from the largest one and thus ℓ(p′) ≤ ℓ(p). If
follows that at the end we obtain a valid provisional assignment.

Lemma 3.20. The assignment process above assigns all packets in P .

Proof. For each size ℓj we show that all packets of size ℓj in P are assigned, which is
clearly sufficient. We fix the size ℓj and define a few quantities.

Let n denote the number of packets of size ℓj in P . Let o denote the total occu-
pied size, defined as o = ℓ(O) +

∑
q∈Q\O ℓ(f−1(q)) at the time just before we start

assigning the packets of size ℓj . Note that the rule for adding packets to O im-
plies that ℓ(f−1(Q)) ≥ o/2. Let a denote the current total available size defined as
a =

∑
q∈Q\O:ℓ(q)≥ℓj

(ℓ(q)− ℓ(f−1(q))). We remark that in the definition of a we restrict
attention only to packets of size ≥ ℓj , but in the definition of o we consider all packets
in Q; however, as we process in the order of decreasing sizes, so far we have assigned
packets from P only to packets of size ≥ ℓj in Q.

First, we claim that it is sufficient to show that a > (2n − 2)ℓj before we start
assigning the packets of size ℓj . As long as a > 0, there is a packet q ∈ Q \O of size at
least ℓj and thus we may assign the next packet (and, as noted before, actually a ≥ ℓj ,
as otherwise q ∈ O). Furthermore, assigning a packet p of size ℓj to q decreases a by
ℓj if q is not added to O and by less than 2ℓj if q is added to O. Altogether, after
assigning the first n− 1 packets, a decreases by less than (2n− 2)ℓj , thus we still have
a > 0, and we can assign the last packet. The claim follows.

We now split the analysis into two cases, depending on whether there is a packet
of size ℓj pending for PG(s) at all times in [u, v), or not. In either case, we prove that
the available space a is sufficiently large before assigning the packets of size ℓj .

In the first case, we suppose that a packet of size ℓj is pending for PG(s) at all times
in [u, v). Let z be the total size of packets of size at least ℓj charged by up charges in this
block. The size of packets in P already assigned is at least ℓ(f−1(Q)) ≥ o/2 and we have
n yet unassigned packets of size ℓj in P . As ADV has to schedule all these packets and
the packets with up charges in this block, its size satisfies v−u ≥ ℓ(P)+z ≥ nℓj+o/2+z.
Now consider the schedule of PG(s) in this block. By Lemma 3.2, there is no end of
phase in (u, v) and jobs smaller than ℓj scheduled by PG(s) have total size less than
2ℓj . All the other completed packets contribute to one of a, o, or z. Using Lemma 3.1,
the previous bound on v − u and s ≥ 4, the total size of completed packets is at least
s(v−u)/2 ≥ 2nℓj + o + 2z. Hence a > (2nℓj + o + 2z)− 2ℓj − o− z ≥ (2n− 2)ℓj , which
completes the proof of the lemma in this case.

Otherwise, in the second case, there is a time in [u, v) when no packet of size ℓj is
pending for PG(s). Let τ be the supremum of times τ ′ ∈ [u, v] such that PG(s) has no

103

ALG: · · ·
τ = τ0 τ1 τ2 τ3

Figure 3.5: An illustration of bounding the total size of small packets completed after
τ in the case when ℓj is not pending in the whole block. Gray packets are small, while
hatched packets have size at least ℓj . The times τ1, τ2, and τ3 are the ends of phases
after τ (thus α = 3), but τ need not be the end of a phase.

pending packet of size at least ℓj at time τ ′; if no such τ ′ exists we set τ = u. Let t be
the time when the adversary starts the first packet p of size ℓj from P .

Since p is charged using a forward charge or p is not charged, we can apply
Lemma 3.18 or 3.19, which implies that packets of size ℓj are pending for PG(s) from
time t − 3ℓk till at least v. By the case condition, there is a time in [u, v) when no
packet of size ℓj is pending, and this time is thus before t− 3ℓk, implying u < t− 3ℓk.
The definition of τ now implies that τ ≤ t− 3ℓk.

Towards bounding a, we show that (i) PG(s) runs a limited amount of small packets
after τ and thus a + o is large, and that (ii) f−1(Q) contains only packets run by ADV
from τ on, and thus o is small.

We claim that the total size of packets smaller than ℓj completed in PG(s) in (τ, v]
is less than 3ℓk. This claim is similar to Lemma 3.2 and we also argue similarly. Let
τ1 < τ2 < . . . < τα be all the ends of phases in (τ, v) (possibly there is none, then
α = 0); also let τ0 = τ . For i = 1, . . . , α, let ri denote the packet started by PG(s) at
τi; note that ri exists since after τ there is a pending packet at any time in [τ, v] by the
definition of τ . See Figure 3.5 for an illustration. First note that any packet started
at or after time τα + ℓk/s has size at least ℓj , as such a packet is pending and satisfies
the condition in Step (3) of the algorithm. Thus the total amount of the small packets
completed in (τα, v] is less than ℓk + ℓk−1 < 2ℓk. The claim now follows for α = 0.
Otherwise, as there is no fault in (u, v), at τi, i = 1, . . . , α, Step (4) of the algorithm is
reached and thus no packet of size at most s(τi − τi−1) is pending. In particular, this
implies that ℓ(ri) > s(τi − τi−1) for i = 1, . . . , α. This also implies that the amount of
the small packets completed in (τ0, τ1] is less than ℓk and the claim for α = 1 follows.
For α ≥ 2 first note that by Lemma 3.2(i), s(τi − τi−1) ≥ ℓj for all i = 2, . . . , α and
thus ri is not a small packet. Thus for i = 3, . . . , α, the amount of small packets in
(τi−1, τi] is at most s(τi− τi−1)− ℓ(ri−1) < ℓ(ri)− ℓ(ri−1). The amount of small packets
completed in (τ1, τ2] is at most s(τ2 − τ1) < ℓ(r2) and the amount of small packets
completed in (τα, v] is at most 2ℓk−ℓ(rα). Summing this together, the amount of small
packets completed in (τ1, v] is at most 2ℓk and the claim follows.

Let z be the total size of packets of size at least ℓj charged by up charges in this
block and completed by PG(s) after τ . After τ , PG(s) processes packets of total size
more than s(v − τ) − ℓk and all of these packets contribute to one of a, o, z, or the
volume of less than 3ℓk of small packets from the claim above. Thus, using s ≥ 4, we
get

a > 4(v − τ)− o− z − 4ℓk . (3.5)

Now we derive two lower bounds on v − τ using ADV schedule.
Observe that no packet contributing to z except for possibly one (the one possibly

started by PG(s) before τ) is started by ADV before τ , as otherwise, it would be pending
for PG(s) just before τ , contradicting the definition of τ .

Also, observe that in (u, τ], ADV runs no packet p ∈ P with ℓ(p) > ℓj : For a
contradiction, assume that such a p exists. As τ ≤ Cj′ for any j′ ≥ j, such a p is
charged. As p ∈ P , it is charged by a forward charge. However, then Lemma 3.18

104

2ℓi ℓj

ℓj

ℓi

ℓi

2ℓi ℓj

ℓj

ℓi

ℓi

≥ ℓj ≥ ℓj
ALG:

ADV:

Figure 3.6: An illustration of the provisional assignment on the left; note that a packet
of size ℓj with a forward charge is also assigned. Full arcs depict 1-to-1 charges and
dashed arcs depict the provisional assignment. The result of modifying the adversary
schedule on the right.

implies that at all times between the start of p in ADV and v a packet of size ℓ(p)
is pending for PG(s); in particular, such a packet is pending in the interval before τ ,
contradicting the definition of τ .

These two observations imply that in [τ, v], ADV starts and completes all the as-
signed packets from P , the n packets of size ℓj from P , and all packets except possibly
one contributing to z. This gives v− τ ≥ ℓ(f−1(Q)) + nℓj + z− ℓk ≥ o/2 + nℓj + z− ℓk.

To obtain the second bound, we observe that the n packets of size ℓj from P are
scheduled in [t, v] and together with t ≥ τ +3ℓk we obtain v−τ = v−t+t−τ ≥ nℓj +3ℓk.

Summing the two bounds on v − τ and multiplying by two we get 4(v − τ) ≥
4nℓj + 4ℓk + o + 2z. Summing with (3.5) we get a > 4nℓj + z ≥ 4nℓj . This completes
the proof of the second case.

As a remark, note that in the previous proof, the first case deals with blocks after Cj ,
it is the typical and tight case. The second case deals mainly with the block containing
Cj , and also with some blocks before Cj , which brings some technical difficulties, but
there is a lot of slack. This is similar to the situation in the local analysis using the
Master Theorem.

Modifying the adversary schedule Now all the packets from P are provisionally
assigned by f and for each q ∈ Q we have that ℓ(f−1(q)) ≤ ℓ(q).

We process each packet q completed by PG(s) in (u, v] according to one of the
following three cases; in each case we remove from ADV one or more packets with total
size at most ℓ(q).

If q ̸∈ Q, then the definition of P and Q implies that q is charged by an up charge
from some packet p ̸∈ P of the same size. We remove p from ADV.

If q ∈ Q does not receive a charge, we remove f−1(q) from ADV. Recall that
ℓ(f−1(q)) ≤ ℓ(q), so the size is as required. If any packet p ∈ f−1(q) is charged
(necessarily by a forward charge), we remove this charge.

If q ∈ Q receives a charge, it is a back charge from some packet p of the same size.
We remove p from ADV and in the interval where p was scheduled, we schedule packets
from f−1(q) in an arbitrary order. As ℓ(f−1(q)) ≤ ℓ(q), this is feasible. If any packet
p ∈ f−1(q) is charged, we keep its charge to the same packet in PG(s); the charge was
necessarily a forward charge, so it leads to some later block. See Figure 3.6 for an
illustration.

After we have processed all the packets q, we have modified ADV by removing an
allowed total size of packets and rescheduling the remaining packets in (u, v] so that
any remaining charges go to later blocks. This completes processing of the block (u, v]
and thus also the proof of 1-competitiveness.

105

3.8 Lower Bounds

3.8.1 Lower Bound with Two Packet Sizes

In this section we study lower bounds on the speed necessary to achieve 1-competi-
tiveness. We start with a lower bound of 2 which holds even for the divisible case.
It follows that our algorithm PG-DIV and the algorithm in Jurdziński et al. [JKL15]
are optimal. Note that this lower bound follows from results of Anta et al. [AGKZ15]
by a similar construction, although the packets in their construction are not released
together.

Theorem 3.21. There is no 1-competitive deterministic online algorithm running with
speed s < 2, even if packets have sizes only 1 and ℓ for ℓ > 2s/(2− s) and all of them
are released at time 0.

Proof. For a contradiction, consider an algorithm ALG running with speed s < 2 that
is claimed to be 1-competitive with an additive constant A where A may depend on
ℓ. At time 0 the adversary releases N1 = ⌈A/ℓ⌉ + 1 packets of size ℓ and N0 =⌈

2ℓ
s ·
(
N1 · (s− 1) · ℓ + A + 1

)⌉
packets of size 1. These are all packets in the instance.

The adversary’s strategy works by blocks where a block is a time interval between
two faults and the first block begins at time 0. The adversary ensures that in each such
block ALG completes no packet of size ℓ and moreover ADV either completes an ℓ-sized
packet, or completes more 1’s (packets of size 1) than ALG.

Let t be the time of the last fault; initially t = 0. Let τ ≥ t be the time when
ALG starts the first ℓ-sized packet after t (or at t) if now fault occurs after t; we set
τ = ∞ if it does not happen. Note that we use here that ALG is deterministic. In a
block beginning at time t, the adversary proceeds according to the first case below that
applies.

(D1) If ADV has less than 2ℓ/s pending packets of size 1, then the end of the schedule
is at t.

(D2) If ADV has all packets of size ℓ completed, then it stops the current process and
issues faults at times t + 1, t + 2, . . . Between every two consecutive faults after
t it completes one packet of size 1 and it continues issuing faults until it has no
pending packet of size 1. Then there is the end of the schedule. Clearly, ALG
may complete only packets of size 1 after t as ℓ > 2s/(2− s) > s for s < 2.

(D3) If τ ≥ t + ℓ/s− 2, then the next fault is at time t + ℓ. In the current block, the
adversary completes a packet ℓ. ALG completes at most s · ℓ packets of size 1 and
then it possibly starts ℓ at τ (if τ < t + ℓ) which is jammed, since it would be
completed at

τ + ℓ

s
≥ t + 2ℓ

s
− 2 = t + ℓ +

(2
s
− 1

)
ℓ− 2 > t + ℓ

where the last inequality follows from
(

2
s − 1

)
ℓ > 2 which is equivalent to ℓ >

2s/(2 − s). Thus the ℓ-sized packet would be completed after the fault. See
Figure 3.7 for an illustration.

(D4) Otherwise, if τ < t + ℓ/s− 2, then the next fault is at time τ + ℓ/s− ε for a small
enough ε > 0. In the current block, ADV completes as many packets of size 1 as
it can, that is ⌊τ + ℓ/s − ε − t⌋ packets of size 1; note that by Case (D1), ADV
has enough 1’s pending. Again, the algorithm does not complete the packet of
size ℓ started at τ , because it would be finished at τ + ℓ/s. See Figure 3.8 for an
illustration.

106

ALG:

ADV:
ℓ

τ ≥ t+ ℓ/s− 2

ℓ

t

Figure 3.7: An illustration of Case (D3).

τ < t+ ℓ/s− 2

Gain = 7

Gain = 8

ℓ

t

ALG:

ADV:

Figure 3.8: An illustration of Case (D4).

First notice that the process above ends, since in each block the adversary com-
pletes a packet. We now show LADV > LALG + A which contradicts the claimed 1-
competitiveness of ALG.

If the adversary’s strategy ends in Case (D2), then ADV has all ℓ’s completed and
then it schedules all 1’s, thus LADV = N1 · ℓ + N0 > A + N0. However, ALG does not
complete any ℓ-sized packet and hence LALG ≤ N0 which concludes this case.

Otherwise, the adversary’s strategy ends in Case (D1). We first claim that in a
block (t, t′] created in Case (D4), ADV finishes more 1’s than ALG. Indeed, let o be
the number of 1’s completed by ALG in (t, t′]. Then τ ≥ t + o/s where τ is from the
adversary’s strategy in (t, t′], and we also have o < ℓ − 2s or equivalently ℓ > o + 2s,
because τ < t + ℓ/s− 2 in Case (D4). The number of 1’s scheduled by ADV is⌊

τ + ℓ

s
− ε− t

⌋
≥
⌊
t + o

s
+ ℓ

s
− ε− t

⌋
≥
⌊

o

s
+ o + 2s

s
− ε

⌋
=
⌊2

s
o + 2− ε

⌋
≥
⌊2

s
o + 1

⌋
≥ o + 1

and we proved the claim.
Let α be the number of blocks created in Case (D3); note that α ≤ N1, since in

each such block ADV finishes one ℓ-sized packet. ALG completes at most sℓ packets of
size 1 in such a block, thus LADV((u, v]) − LALG((u, v]) ≥ (1 − s) · ℓ for a block (u, v]
created in Case (D3).

Let β be the number of blocks created in Case (D4). We have

β >
s

2ℓ
·
(

N0 −
2ℓ

s

)
= s ·N0

2ℓ
− 1 = N1 · (s− 1) · ℓ + A ,

because in each such block ADV schedules less than 2ℓ/s packets of size 1 and less
than 2ℓ/s of these packets are pending at the end. By the claim above, we have
LADV((u, v])− LALG((u, v]) ≥ 1 for a block (u, v] created in Case (D4).

Summing over all blocks and using the value of N0 we get

LADV − LALG ≥ α · (1− s) · ℓ + β > N1 · (1− s) · ℓ + N1 · (s− 1) · ℓ + A = A

where we used s ≥ 1 which we may suppose w.l.o.g. This concludes the proof.

107

3.8.2 Lower Bound for General Packet Sizes

Our main lower bound of ϕ + 1 = ϕ2 ≈ 2.618 (where ϕ = (
√

5 + 1)/2 is the golden
ratio) generalizes the construction of Theorem 3.21 for more packet sizes, which are no
longer divisible. Still, we make no use of release times.

Theorem 3.22. There is no 1-competitive deterministic online algorithm running with
speed s < ϕ + 1, even if all packets are released at time 0.

Outline of the proof We start by describing the adversary’s strategy which works
against an algorithm running at speed s < ϕ + 1, i.e., it shows that it is not 1-
competitive. It can be seen as a generalization of the strategy with two packet sizes
above, but at the end the adversary sometimes needs a new strategy how to complete
all short packets (of size less than ℓi for some i), preventing the algorithm to complete
a long packet (of size at least ℓi).

Then we show a few lemmas about the behavior of the algorithm. Finally, we
prove that the gain of the adversary, i.e., the total size of its completed packets, is
substantially larger than the gain of the algorithm.

Adversary’s strategy The adversary chooses ε > 0 small enough and k ∈ N large
enough so that s < ϕ + 1− 1/ϕk−1. For convenience, the smallest size in the instance
is ε instead of 1. There will be k + 1 packet sizes in the instance, namely ℓ0 = ε, and
ℓi = ϕi−1 for i = 1, . . . , k.

Suppose for a contradiction that there is an algorithm ALG running with speed
s < ϕ + 1 that is claimed to be 1-competitive with an additive constant A where A
may depend on ℓi’s, in particular on ε and k. The adversary issues Ni packets of size
ℓi at time 0, for i = 0, . . . , k; Ni’s are chosen so that N0 ≫ N1 ≫ · · · ≫ Nk. These are
all packets in the instance.

More precisely, Ni’s are defined inductively so that it holds that Nk > A/ℓk, Ni >
ϕsℓk

∑k
j=i+1 Nj + A/ℓi for i = k − 1, . . . , 1, and finally

N0 >
A + 1 + ϕℓk

ε2 ·
(
ϕsℓk

k∑
i=1

Ni
)

.

The adversary’s strategy works by blocks where a block is again a time interval
between two faults and the first block begins at time 0. Let t be the time of the last
fault; initially t = 0. Let τi ≥ t be the time when ALG starts the first packet of size ℓi

after t (or at t) if no fault occurs after t; we set τi =∞ if it does not happen. Again, we
use here that ALG is deterministic. Let τ≥i = minj≥i τj be the time when ALG starts
the first packet of size at least ℓi after t. Let PADV(i) be the total size of ℓi’s (packets
of size ℓi) pending for the adversary at time t.

In a block beginning at time t, the adversary proceeds according to the first case
below that applies. Each case has an intuitive explanation which we make precise later.

(B1) If there are less than ϕℓk/ε packets of size ε pending for ADV, then the end of
the schedule is at time t.
Lemma 3.23 below shows that in blocks in which ADV schedules ε’s it completes
more than ALG in terms of total size. It follows that the schedule of ADV has much
larger total completed size for N0 large enough, since the adversary scheduled
nearly all packets of size ε; see Lemma 3.28.

(B2) If there is i ≥ 1 such that PADV(i) = 0, then ADV stops the current process and
continues by Strategy Finish described below.

108

(B3) If τ1 < t + ℓ1/(ϕ · s), then the next fault occurs at time τ1 + ℓ1/s− ε, so that ALG
does not finish the first ℓ1-sized packet. ADV schedules as many ε’s as it can.
In this case, ALG schedules ℓ1 too early and in Lemma 3.23 we show that the
total size of packets completed by ADV is larger than the total size of packets
completed by ALG.

(B4) If τ≥2 < t + ℓ2/(ϕ · s), then the next fault is at time τ≥2 + ℓ2/s− ε, so that ALG
does not finish the first packet of size at least ℓ2. ADV again schedules as many
ε’s as it can. Similarly as in the previous case, ALG starts ℓ2 or a larger packet
too early and we show that ADV completes more in terms of size than ALG, again
using Lemma 3.23.

(B5) If there is 1 ≤ i < k such that τ≥i+1 < τi, then we choose the smallest such i and
the next fault is at time t + ℓi. ADV schedules a packet of size ℓi. See Figure 3.9
for an illustration.
Intuitively, this case means that ALG skips ℓi and schedules ℓi+1 (or a larger
packet) earlier. Lemma 3.25 shows that the algorithm cannot finish its first
packet of size at least ℓi+1 (thus it also does not schedule ℓi) provided that this
case is not triggered for a smaller i, or previous cases are not triggered.

1 φ φ3

φ2

εALG:

ADV:

Figure 3.9: An illustration of Case (B5).

(B6) Otherwise, the next fault occurs at t + ℓk and ADV schedules a packet of size ℓk

in this block. Lemma 3.26 shows that ALG cannot complete an ℓk-sized packet in
this block. See Figure 3.10 for an illustration.

. . .1 φ φ2 φk

φk

εALG:

ADV:

Figure 3.10: An illustration of Case (B6).

We remark that the process above eventually ends either in Case (B1), or in
Case (B2), since in each block ADV schedules a packet. Also note that the length
of each block is at most ϕℓk.

We describe Strategy Finish, started in Case (B2). Let i be the smallest index
i′ ≥ 1 such that PADV(i′) = 0. For brevity, we call a packet of size at least ℓi long,
and a packet of size ℓj with 1 ≤ j < i short; note that ε’s are not short packets. In a
nutshell, ADV tries to schedule all short packets, while preventing the algorithm from
completing any long packet. Similarly to Cases (B3) and (B4), if ALG is starting a long
packet too early, ADV schedules ε’s and gains in terms of total size.

Adversary’s Strategy Finish works again by blocks. Let t be the time of the last
fault. Let τ ≥ t be the time when ALG starts the first long packet after t; we set τ =∞

109

if it does not happen. The adversary proceeds according to the first case below that
applies:

(F1) If PADV(0) < ϕℓk, then the end of the schedule is at time t.

(F2) If ADV has no pending short packet, then the strategy Finish ends and ADV
issues faults at times t + ε, t + 2ε, . . . Between every two consecutive faults after
t it completes one packet of size ε and it continues issuing faults until it has no
pending ε. Then there is the end of the schedule. Clearly, ALG may complete
only ε’s after t if ε is small enough. Note that for i = 1 this case is immediately
triggered, as ℓ0-sized packets are not short, hence there are no short packets
whatsoever.

(F3) If τ < t + ℓi/(ϕ · s), then the next fault is at time τ + ℓi/s− ε, so that ALG does
not finish the first long packet. ADV schedules as many ε’s as it can. Note that
the length of this block is less than ℓi/(ϕ · s) + ℓi/s ≤ ϕℓk. Again, we show that
ADV completes more in terms of size using Lemma 3.23.

(F4) Otherwise, τ ≥ t + ℓi/(ϕ · s). ADV issues the next fault at time t + ℓi−1. Let j
be the largest j′ < i such that PADV(j′) > 0. ADV schedules a packet of size ℓj

which is completed as j ≤ i− 1. Lemma 3.27 shows that ALG does not complete
the long packet started at τ .

Again, in each block ADV completes a packet, thus Strategy Finish eventually ends.
Note that the length of each block is less than ϕℓk.

Properties of the adversary’s strategy We now prove the lemmas mentioned
above. In the following, t is the beginning of the considered block and t′ is the end of
the block, i.e., the time of the next fault after t. Recall that LALG((t, t′]) is the total
size of packets completed by ALG in (t, t′]. We start with a general lemma that covers
all cases in which ADV schedules many ε’s.

Lemma 3.23. In Cases (B3), (B4), and (F3), LADV ((t, t′]) ≥ LALG((t, t′]) + ε holds.

Proof. Let i and τ be as in Case (F3); we set i = 1 and τ = τ1 in Case (B3), and i = 2
and τ = τ≥2 in Case (B4). Note that the first packet of size (at least) ℓi is started at τ
with τ < t + ℓi/(ϕ · s) and that the next fault occurs at time τ + ℓi/s− ε. Furthermore,
PADV(0, t) ≥ ϕℓk by Cases (B1) and (F1). As t′−t ≤ ϕℓk it follows that ADV has enough
ε’s to fill nearly the whole block with them, so in particular LADV((t, t′]) > t′ − t− ε.

Let a = LALG((t, t′]). Since ALG does not complete the ℓi-sized packet we have
τ ≥ t + a/s and thus also a < ℓi/ϕ as τ < t + ℓi/(ϕ · s).

If a < ℓi/ϕ−3sε/ϕ which is equivalent to ℓi > ϕ ·a+3sε, then we show the required
inequality by the following calculation:

LADV((t, t′]) + ε > t′ − t = τ + ℓi

s
− ε− t ≥ a

s
+ ℓi

s
− ε >

a + ϕ · a + 3sε

s
− ε > a + 2ε ,

where the last inequality follows from s < ϕ + 1.
Otherwise, a is nearly ℓi/ϕ and thus large enough. Then we get

LADV((t, t′]) + ε > t′ − t = τ + ℓi

s
− ε− t ≥ a

s
+ ℓi

s
− ε >

a

s
+ ϕa

s
− ε > a + 2ε

where the penultimate inequality follows by ℓi > ϕa, and the last inequality holds as
(1 + ϕ)a/s > a + 3ε for ε small enough and a ≥ ℓi/ϕ− 3sε/ϕ.

110

For brevity, we inductively define S0 = ϕ − 1 and Si = Si−1 + ℓi for i = 1, . . . , k.
Thus Si =

∑i
j=1 ℓi + ϕ − 1 and a calculation shows Si = ϕi+1 − 1. We prove a useful

observation.

Lemma 3.24. Fix j ≥ 2. If Case (B3) and Case (B5) for i < j are not triggered in
the block, then τi′+1 ≥ t + Si′/s for each i′ < j.

Proof. We have τ1 ≥ t + ℓ1/(ϕ · s) = t + (ϕ − 1)/s by Case (B3) and τi+1 ≥ τi + ℓi/s
for any i < j, since Case (B5) was not triggered for i < j and the first ℓi-sized packet
needs to be finished before starting the next packet. Summing the bounds gives the
inequalities in the lemma.

Lemma 3.25. In Case (B5), the algorithm does not complete any packet of size ℓi or
larger.

Proof. Recall that we have τ≥i+1 < τi, thus the first started packet p of size at least ℓi

has size at least ℓi+1. It suffices to prove

τ≥i+1 + ℓi+1
s
− t > ℓi , (3.6)

which means that p would be completed after the next fault at time t + ℓi.
We start with the case i = 1 in which τ≥2 < τ1. Since Case (B4) was not triggered,

we have τ≥2 ≥ t + ℓ2/(ϕ · s) = t + 1/s. We show (3.6) by the following calculation:

τ≥2 + ℓ2
s
− t ≥ 1

s
+ ℓ2

s
= 1 + ϕ

s
> 1 = ℓ1 ,

where the strict inequality holds by s < ϕ + 1.
Now consider the case i ≥ 2. By the minimality of i satisfying the condition of

Case (B5), we use Lemma 3.24 for j = i and i′ = i − 2 to get τi−1 ≥ t + Si−2/s.
Since a packet ℓi−1 is started at τi−1 and must be finished by τ≥i+1, it holds τ≥i+1 ≥
t + (Si−2 + ℓi−1)/s = t + Si−1/s. Thus

τ≥i+1 + ℓi+1
s
− t ≥ Si−1 + ℓi+1

s
= ϕi − 1 + ϕi

s

= ϕi+1 + ϕi−2 − 1
s

≥ ϕi+1

s
> ϕi−1 = ℓi ,

where the penultimate inequality holds by i ≥ 2 and the last inequality by s < ϕ + 1.
(We remark that the penultimate inequality has a significant slack for i > 2.)

Lemma 3.26. In Case (B6), ALG does not complete a packet of size ℓk.

Proof. It suffices to prove
τk > t +

(
1− 1

s

)
ℓk , (3.7)

since then ALG completes the first ℓk-sized packet at

τk + ℓk

s
> t +

(
1− 1

s

)
ℓk + ℓk

s
= t + ℓk ,

i.e., after the next fault at time t + ℓk.
Recall that we choose k large enough so that s < ϕ + 1 − 1/ϕk−1 or equivalently

ϕ − 1/ϕk−1 > s − 1. We multiply the inequality by ϕk−1, divide it by s and add t to
both sides and we get

t + ϕk − 1
s

> t +
(

1− 1
s

)
ϕk−1 = t +

(
1− 1

s

)
ℓk . (3.8)

111

Since Cases (B3) and (B5) are not triggered, we use Lemma 3.24 for j = k to show
τk ≥ t + Sk−1/s = t + (ϕk − 1)/s. We combine this with (3.8) and we have

τk ≥ t + ϕk − 1
s

> t +
(

1− 1
s

)
ℓk , (3.9)

which shows (3.7) and concludes the proof of the lemma.

Lemma 3.27. In Case (F4), ALG does not complete any long packet.

Proof. Recall that the first long packet p is started at τ and it has size of at least ℓi,
thus it would be completed at τ + ℓi/s or later. We show τ + ℓi/s − t > ℓi−1 by the
following calculation:

τ + ℓi

s
− t ≥ ℓi

ϕ · s
+ ℓi

s
= ϕℓi

s
>

ℓi

ϕ
= ℓi−1 ,

where the strict inequality holds by s < ϕ + 1. This implies that the long packet p
would be completed after the next fault at time t + ℓi−1.

Analysis of the gains We are ready to prove that at the end of the schedule LADV >
LALG + A holds, which contradicts the claimed 1-competitiveness of ALG and proves
Theorem 3.22. We inspect all the cases in which the instances may end, starting with
Cases (B1) and (F1). We remark that we use only crude bounds to keep the analysis
simple.

Lemma 3.28. If the schedule ends in Case (B1) or (F1), we have LADV > LALG + A.

Proof. Recall that each block (t, t′] has length of at most ϕℓk, thus LALG((t, t′]) ≤ sϕℓk

and LADV((t, t′]) ≤ ϕℓk.
We call a block in which ADV schedules many ε’s small, other blocks are big. Recall

that ADV schedules no ε in a big block. Note that Cases (B3), (B4), and (F3) concern
small blocks, whereas Cases (B5), (B6), and (F4) concern big blocks.

By Lemma 3.23, in each small block (t, t′] it holds that LADV((t, t′]) ≥ LALG((t, t′])+
ε. Let β be the number of small blocks. We observe that

β ≥

(
N0 − ϕℓk

ε

)
ε

ϕℓk
,

because in each such block ADV schedules at most ϕℓk/ε packets of size ε and PADV(0) <
ϕℓk at the end in Cases (B1) and (F1).

The number of big blocks is at most
∑k

i=1 Ni, since in each such block ADV schedules
a packet of size at least ℓ1. For each such block we have LADV((t, t′]) − LALG((t, t′]) ≥
−sϕℓk which is only a crude bound, but it suffices for N0 large enough.

Summing over all blocks we obtain

LADV − LALG ≥ βε− ϕsℓk

k∑
i=1

Ni

≥

(
N0 − ϕℓk

ε

)
ε2

ϕℓk
− ϕsℓk

k∑
i=1

Ni

> A + ϕsℓk

k∑
i=1

Ni − ϕsℓk

k∑
i=1

Ni = A , (3.10)

where (3.10) follows from N0 > ϕℓk(A + 1 + ϕsℓk
∑k

i=1 Ni)/ε2.

112

It remains to prove the same for termination by Case (F2), since there is no other
case in which the strategy may end.

Lemma 3.29. If Strategy Finish ends in Case (F2), then LADV > LALG + A.

Proof. Note that ADV schedules all short packets and all ε’s, i.e., those of size less than
ℓi. In particular, we have LADV(< i) ≥ LALG(< i).

Call a block in which ALG completes a packet of size at least ℓi bad. As the length of
any block is at most ϕℓk we get that LALG(≥ i, (t, t′]) ≤ sϕℓk for a bad block (t, t′]. Bad
blocks are created only in Cases (B5) and (B6), but in each bad block ADV finishes a
packet strictly larger than ℓi; note that here we use Lemmas 3.25 and 3.26. Hence the
number of bad blocks is bounded by

∑k
j=i+1 Nj . As ADV completes all ℓi’s we obtain

LADV(≥ i)− LALG(≥ i) ≥ ℓiNi − ϕsℓk

k∑
j=i+1

Nj

> ℓiϕsℓk

k∑
j=i+1

Nj + A− ϕsℓk

k∑
j=i+1

Nj ≥ A ,

where the strict inequality follows from Ni > ϕsℓk
∑k

j=i+1 Nj +A/ℓi for i < k and from
Nk > A/ℓk for i = k. By summing it with LADV(< i) ≥ LALG(< i) we conclude that
LADV > LALG + A.

3.9 Conclusions and Open Problems

In this chapter, we focused on determining the minimum speedup of a 1-competitive
deterministic algorithm for Packet Scheduling under Adversarial Jamming. We designed a
natural algorithm, which needs speedup of only 4 on general instances, and we proved
a lower bound of ϕ + 1 ≈ 2.618 that holds even if all packets are released together.
While it might be possible to improve the lower bound, perhaps using release times,
we conjecture that it is actually optimal. On the other hand, a promising approach for
improving the upper bound, is to adjust our algorithm so that it sends larger packets
earlier (in the tight cases of the lower bound of ϕ + 1, larger packets are executed
earlier than in our algorithm’s schedule). However, the analysis needs to be modified
for the adjusted algorithm as in some cases it seems necessary to charge a large packet
to several smaller packets.

Open Problem 8. Design a (deterministic) algorithm for which a speed below 4 is
sufficient for 1-competitiveness.

In contrast to studying the speedup sufficient for 1-competitiveness, the previous
works [AGK+16, JKL15] resolved the optimal competitive ratio of the problem. How-
ever, the optimal lower bound of 3 by Anta et al. [AGK+16] is relatively simple as
it requires just two sizes and moreover, the optimal algorithm without speedup by
Jurdziński et al. [JKL15] is quite complicated and does not have some desirable prop-
erties. Therefore, we consider studying the speedup sufficient for 1-competitiveness to
be a better measure how to compare online algorithms in this model.

Another interesting direction is to study the tradeoff between the speedup and the
competitive ratio such as we do for our algorithm using the local analysis framework
(cf. Theorem 3.8).

113

Randomized algorithms. As far as we know, there are no results regarding random-
ized algorithms for our model. The sole exception is the claim of Anta et al. [AGK+16]
that their lower bound on the competitive ratio applies to randomized algorithms as
well, but their argument works in the adaptive adversary model only. We remark that
our lower bounds on the speedup do not hold for randomized algorithms against the
adaptive adversary.

Open Problem 9. Design a randomized algorithm for Packet Scheduling under Ad-
versarial Jamming and analyze its competitive ratio without speedup against the oblivi-
ous adversary or its speedup sufficient for 1-competitiveness (against either adversary).
Furthermore, construct lower bounds on the competitive ratio of randomized algorithms
without speedup and on the speedup of 1-competitive randomized algorithms.

General weights. In Packet Scheduling under Adversarial Jamming, packets have
weights equal to their sizes. A natural generalization is thus that each packet arrives
with a weight in addition to the size and the objective is to maximize the weighted
throughput. As in our model, one has to consider the asymptotic competitive ratio,
where the additive constant may depend on weights rather than sizes.

Open Problem 10. Show upper and lower bounds on the optimal competitive ratio
of the generalized Packet Scheduling under Adversarial Jamming problem, in which pack-
ets have weights and the goal is to maximize the total weight of transmitted packets.
Similarly, study the effect of the speedup on the competitive ratio for the generalized
model.

More channels. Some of the previous work in [AGKZ15, JKL15] studied a more
general setting in which there are f channels (or machines), where f is a constant. Nev-
ertheless, there is no algorithm for general instances which needs a moderate speedup
to be 1-competitive, perhaps with speedup depending on f .

Open Problem 11. Design a (deterministic) algorithm for a constant number of
channels which needs only a constant speed to be 1-competitive. On the other hand, is
there a lower bound better than ϕ + 1 for f > 1 channels? Does the optimal speedup
depend on f?

Stochastic models. Intuitively, the adversary is quite strong in our model as it
controls both packet arrivals and jamming errors. A natural variant of Packet Schedul-
ing under Adversarial Jamming is thus to have stochastic arrivals or stochastic faults
(or both). Stochastic arrivals were already considered by Anta et al. [AGK+16], who
obtained tight bounds on the competitive ratio without speedup for a large range of
distributions, but only when there are two packet sizes.

An interesting research direction is thus to study the required speedup for 1-
competitiveness in the case of stochastic arrivals or stochastic jamming errors.

114

Bibliography
[ABEW18] Kamal Al-Bawani, Matthias Englert, and Matthias Westermann.

Comparison-based buffer management in QoS switches. Algorithmica,
80(3):1073–1092, 2018.

[AGGP17] Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online
service with delay. In Proc. of the 49th Annual ACM SIGACT Symposium
on Theory of Computing (STOC’17), pages 551–563. ACM, 2017.

[AGK+16] Antonio Fernández Anta, Chryssis Georgiou, Dariusz R. Kowalski, Joerg
Widmer, and Elli Zavou. Measuring the impact of adversarial errors on
packet scheduling strategies. Journal of Scheduling, 19(2):135–152, 2016.
Also appeared in Proc. of SIROCCO 2013: 261–273.

[AGKZ15] Antonio Fernández Anta, Chryssis Georgiou, Dariusz R. Kowalski, and Elli
Zavou. Online parallel scheduling of non-uniform tasks: Trading failures for
energy. Theoretical Computer Science, 590:129–146, 2015. Also appeared
in Proc. of FCT 2013: 145-158.

[AGKZ18] Antonio Fernández Anta, Chryssis Georgiou, Dariusz R. Kowalski, and
Elli Zavou. Competitive analysis of fundamental scheduling algorithms on
a fault-prone machine and the impact of resource augmentation. Future
Generation Comp. Syst., 78:245–256, 2018. Also appeared in Proc. of
ARMS-CC@PODC 2015, LNCS 9438: 1–16.

[Alb97] Susanne Albers. On the influence of lookahead in competitive paging al-
gorithms. Algorithmica, 18(3):283–305, 1997.

[AM03] Nir Andelman and Yishay Mansour. Competitive management of non-
preemptive queues with multiple values. In Distributed Computing
(DISC’03), volume 2848 of LNCS, pages 166–180. Springer Berlin Hei-
delberg, 2003.

[AMZ03] Nir Andelman, Yishay Mansour, and An Zhu. Competitive queueing poli-
cies for QoS switches. In Proc. of the 14th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’03), pages 761–770. SIAM, 2003.

[BBK+94] Shai Ben-David, Allan Borodin, Richard M. Karp, Gábor Tardos, and
Avi Wigderson. On the power of randomization in on-line algorithms.
Algorithmica, 11(1):2–14, 1994. Also appeared in Proc. of STOC 1990:
379–386.

[BCD+13a] Marcin Bienkowski, Marek Chrobak, Christoph Dürr, Mathilde Hurand,
Artur Jeż, Lukasz Jeż, and Grzegorz Stachowiak. Collecting weighted
items from a dynamic queue. Algorithmica, 65(1):60–94, 2013. Also ap-
peared in Proc. of SODA 2009: 1126–1135.

[BCD+13b] Marcin Bienkowski, Marek Chrobak, Christoph Dürr, Mathilde Hurand,
Artur Jeż, Lukasz Jeż, and Grzegorz Stachowiak. A ϕ-competitive algo-
rithm for collecting items with increasing weights from a dynamic queue.
Theoretical Computer Science, 475:92–102, 2013.

115

[BCJ11] Marcin Bienkowski, Marek Chrobak, and Lukasz Jeż. Randomized compe-
titive algorithms for online buffer management in the adaptive adversary
model. Theoretical Computer Science, 412(39):5121–5131, 2011. Also ap-
peared in Proc. of WAOA 2008: 92–104.

[BCJ+16] Martin Böhm, Marek Chrobak, Lukasz Jeż, Fei Li, Jǐŕı Sgall, and Pavel
Veselý. Online packet scheduling with bounded delay and lookahead. In
Proc. of the 27th International Symposium on Algorithms and Computation
(ISAAC ’16), volume 64 of LIPIcs, pages 21:1–21:13. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2016.

[BE98] Allan Borodin and Ran El-Yaniv. Online computation and competitive
analysis. Cambridge University Press, 1998.

[BJSV18] Martin Böhm, Lukasz Jeż, Jǐŕı Sgall, and Pavel Veselý. On packet schedul-
ing with adversarial jamming and speedup. In Proc. of the 15th Workshop
on Approximation and Online Algorithms (WAOA’17), volume 10787 of
LNCS, pages 190–206, 2018.

[CCF+06] Francis Y. L. Chin, Marek Chrobak, Stanley P. Y. Fung, Wojciech Jawor,
Jǐŕı Sgall, and Tomáš Tichý. Online competitive algorithms for maximiz-
ing weighted throughput of unit jobs. Journal of Discrete Algorithms,
4(2):255–276, 2006. Also appeared in Proc. of STACS 2004: 187–198.

[CF03] Francis Y. L. Chin and Stanley P. Y. Fung. Online scheduling with par-
tial job values: Does timesharing or randomization help? Algorithmica,
37(3):149–164, 2003.

[CJST07] Marek Chrobak, Wojciech Jawor, Jǐŕı Sgall, and Tomáš Tichý. Improved
online algorithms for buffer management in QoS switches. ACM Transac-
tions on Algorithms, 3(4), November 2007. Also appeared in Proc. of ESA
2004: 204–215.

[CY03] Ee-Chien Chang and Chee Yap. Competitive on-line scheduling with level
of service. Journal of Scheduling, 6(3):251–267, May 2003. Also appeared
in Proc. of COCOON 2001: 453–462.

[ES09] Tomáš Ebenlendr and Jǐŕı Sgall. Optimal and online preemptive scheduling
on uniformly related machines. Journal of Scheduling, 12(5):517–527, Oct
2009. Also appeared in Proc. of STACS 2004: 199–210.

[EW09] Matthias Englert and Matthias Westermann. Lower and upper bounds on
FIFO buffer management in QoS switches. Algorithmica, 53(4):523–548,
2009. Also appeared in Proc. of ESA 2006: 352–363.

[EW12] Matthias Englert and Matthias Westermann. Considering suppressed pack-
ets improves buffer management in quality of service switches. SIAM Jour-
nal on Computing, 41(5):1166–1192, 2012. Also appeared in Proc. of SODA
2007: 209-218.

[FMN08] Amos Fiat, Yishay Mansour, and Uri Nadav. Competitive queue manage-
ment for latency sensitive packets. In Proc. of the 19th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’08), pages 228–237. SIAM,
2008.

116

[FN17] Moran Feldman and Joseph (Seffi) Naor. Non-preemptive buffer manage-
ment for latency sensitive packets. Journal of Scheduling, 20(4):337–353,
Aug 2017. Also appeared in Proc. of IEEE INFOCOM 2010: 1–5.

[Fun10] Stanley P.Y. Fung. Bounded delay packet scheduling in a bounded buffer.
Operations Research Letters, 38(5):396 – 398, 2010.

[GJL17] P. Garncarek, T. Jurdziński, and K. Loryś. Fault-tolerant online packet
scheduling on parallel channels. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 347–356, May 2017.

[GK15] Chryssis Georgiou and Dariusz R. Kowalski. On the competitiveness of
scheduling dynamically injected tasks on processes prone to crashes and
restarts. Journal of Parallel and Distributed Computing, 84:94–107, 2015.

[Gol10] Michael H. Goldwasser. A survey of buffer management policies for packet
switches. SIGACT News, 41(1):100–128, 2010.

[GR14] Michel X Goemans and Thomas Rothvoß. Polynomiality for bin pack-
ing with a constant number of item types. In Proc. of the 25th annual
ACM-SIAM symposium on Discrete algorithms (SODA’14), pages 830–
839. SIAM, 2014.

[Gra66] Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell
Labs Technical Journal, 45(9):1563–1581, 1966.

[Gro95] Edward F. Grove. Online bin packing with lookahead. In Proc. of the
6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’95),
pages 430–436. SIAM, 1995.

[Haj01] Bruce Hajek. On the competitiveness of on-line scheduling of unit-length
packets with hard deadlines in slotted time. In Proc. of the 35th Conference
on Information Sciences and Systems, pages 434–438, 2001.

[Jeż09] Jan Jeżabek. Increasing machine speed in on-line scheduling of weighted
unit-length jobs in slotted time. In SOFSEM 2009: Theory and Practice of
Computer Science, volume 5404 of LNCS, pages 329–340. Springer Berlin
Heidelberg, 2009.

[Jeż10] Lukasz Jeż. Randomized algorithm for agreeable deadlines packet schedul-
ing. In Proc. of the 27th International Symposium on Theoretical Aspects of
Computer Science, volume 5 of LIPIcs, pages 489–500. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2010.

[Jeż13] Lukasz Jeż. A universal randomized packet scheduling algorithm. Algo-
rithmica, 67(4):498–515, Dec 2013. Also appeared in Proc. of ESA 2011:
239–250.

[JKL15] Tomasz Jurdziński, Dariusz R. Kowalski, and Krzysztof Loryś. Online
packet scheduling under adversarial jamming. In Proc. of the 12th Work-
shop on Approximation and Online Algorithms (WAOA’14), volume 8952
of LNCS, pages 193–206, 2015. See http://arxiv.org/abs/1310.4935
for missing proofs.

[JLSS12] Lukasz Jeż, Fei Li, Jay Sethuraman, and Clifford Stein. Online scheduling
of packets with agreeable deadlines. ACM Transactions on Algorithms,
9(1):5:1–5:11, December 2012.

117

http://arxiv.org/abs/1310.4935

[Kim05] Jae-Hoon Kim. Optimal buffer management via resource augmentation.
In Algorithms and Computation (ISAAC’04), volume 3341 of LNCS, pages
618–628. Springer Berlin Heidelberg, 2005.

[KLM+04] Alexander Kesselman, Zvi Lotker, Yishay Mansour, Boaz Patt-Shamir,
Baruch Schieber, and Maxim Sviridenko. Buffer overflow management in
QoS switches. SIAM Journal on Computing, 33(3):563–583, 2004. Also
appeared in Proc. of STOC 2001: 520–529.

[KMRS88] Anna R Karlin, Mark S Manasse, Larry Rudolph, and Daniel D Sleator.
Competitive snoopy caching. Algorithmica, 3(1-4):79–119, 1988. Also ap-
peared in Proc. of FOCS 1986: 244–254.

[KMvS05] Alex Kesselman, Yishay Mansour, and Rob van Stee. Improved compe-
titive guarantees for QoS buffering. Algorithmica, 43(1):63–80, Sep 2005.
Also appeared in Proc. of ESA 2003: 361–372.

[Kob18] Koji M Kobayashi. An optimal algorithm for 2-bounded delay buffer man-
agement with lookahead. arXiv preprint arXiv:1807.00121, June 2018.

[KP00a] B. Kalyanasundaram and K. Pruhs. Fault-tolerant real-time scheduling.
Algorithmica, 28(1):125–144, Sep 2000. Also appeared in Proc. of ESA
1997: 296–307.

[KP00b] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoy-
ance. Journal of the ACM, 47(4):617–643, 2000. Also appeared in Proc.
of FOCS 1995: 214–221.

[KWZ17] Dariusz R. Kowalski, Prudence W. H. Wong, and Elli Zavou. Fault tolerant
scheduling of tasks of two sizes under resource augmentation. Journal of
Scheduling, 20(6):695–711, Dec 2017.

[Li09] Fei Li. Improved online algorithms for multiplexing weighted packets in
bounded buffers. In Algorithmic Aspects in Information and Management
(AAIM’09), volume 5564 of LNCS, pages 265–278. Springer Berlin Heidel-
berg, 2009.

[LSS05] Fei Li, Jay Sethuraman, and Clifford Stein. An optimal online algorithm for
packet scheduling with agreeable deadlines. In Proc. of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’05), pages 801–
802. SIAM, 2005.

[LSS07] Fei Li, Jay Sethuraman, and Clifford Stein. Better online buffer manage-
ment. In Proc. of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’07), pages 199–208. SIAM, 2007.

[LT99] Tak Wah Lam and Kar-Keung To. Trade-offs between speed and processor
in hard-deadline scheduling. In Proc. of the 10th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’99), pages 623–632. SIAM, 1999.

[MST98] Rajeev Motwani, Vijay Saraswat, and Eric Torng. Online scheduling
with lookahead: Multipass assembly lines. INFORMS J. on Computing,
10(3):331–340, 1998.

[PSTW02] Cynthia A. Phillips, Clifford Stein, Eric Torng, and Joel Wein. Optimal
time-critical scheduling via resource augmentation. Algorithmica, 32:163–
200, 2002. Also appeared in Proc. of STOC 1997: 140–149.

118

[RSSZ13] Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. Com-
petitive throughput in multi-hop wireless networks despite adaptive jam-
ming. Distributed Computing, 26(3):159–171, Jun 2013. Also appeared in
Proc. of DISC 2010.

[Sch16] Kevin Schewior. Handling Critical Tasks Online: Deadline Scheduling and
Convex-Body Chasing. PhD dissertation, TU Berlin, 2016.

[ST85] Daniel Sleator and Robert E. Tarjan. Amortized efficiency of list update
and paging rules. Communications of the ACM, 28:202–208, 1985. Also
appeared in Proc. of STOC 1984: 488–492.

[VCJS18] Pavel Veselý, Marek Chrobak, Lukasz Jeż, and Jǐŕı Sgall. A ϕ-competitive
algorithm for scheduling packets with deadlines. 2018. Submitted.

[ZA16] Elli Zavou and Antonio Fernández Anta. Online distributed scheduling
on a fault-prone parallel system. arXiv preprint arXiv:1603.05939, March
2016.

[Zav16] Elli Zavou. Online Scheduling in Fault-prone Systems: Performance Op-
timization and Energy Efficiency. PhD thesis, Universidad Carlos III de
Madrid, Spain, 2016.

[Zhu04] An Zhu. Analysis of queueing policies in QoS switches. Journal of Al-
gorithms, 53(2):137 – 168, 2004. Also appeared in Proc. of SODA 2003:
761–770.

119

120

List of Figures

1.1 Schematic illustrations of networks switches. 6
1.2 The Golden rectangle and the Golden spiral 12

2.1 An example of packets . 14
2.2 Special instances of Bounded-Delay Packet Scheduling 15
2.3 An example of the three realizations of the plan 24
2.4 An example of a graph of pslack(P, τ) 26
2.5 An example of a graph of minwt(P, τ) 28
2.6 Changes of segments after arrival of a packet 30
2.7 Changes of segments after scheduling a packet from the first segment . . 31
2.8 Changes of segments after scheduling a packet from a later segment . . 32
2.9 The shift of the packets h1, . . . , hk in an iterated leap step 37
2.10 Changes of the pslack values in an iterated leap step 39
2.11 The sets of packets in the competitive analysis of PlanM 41
2.12 Changes of the pairs in the positive case of packet arrival 47
2.13 An example of creating the groups . 56
2.14 Packet definition for the analysis of our algorithm with 1-lookahead . . 61
2.15 Full and split charges . 61
2.16 Chaining charges . 62
2.17 Illustration of the deterministic lower bound with lookahead 72
2.18 An illustration of the lower bound of 1.25 76

3.1 A graph of bounds on the competitive ratio of PG(s) 85
3.2 An illustration of local analysis . 90
3.3 A graph of Sα and the bounds on the speedup that we use in Theorem 3.9 93
3.4 An illustration of 1-to-1 charges . 101
3.5 Bounding the total size of small packets completed after τ in the case

when ℓj is not pending in the whole block 104
3.6 The provisional assignment and modifying the adversary schedule 105
3.7 An illustration of Case (D3) . 107
3.8 An illustration of Case (D4) . 107
3.9 An illustration of Case (B5) . 109
3.10 An illustration of Case (B6) . 109

121

122

	Introduction to Online Computation
	Competitive Analysis
	Buffer Management
	Refinements of Competitive Analysis
	Resource Augmentation
	Semi-online Algorithms

	Contributions of the Thesis
	Bounded-Delay Packet Scheduling
	Packet Scheduling under Adversarial Jamming

	Bounded-Delay Packet Scheduling
	Problem Definition and Preliminaries
	Previous Work
	Deterministic Algorithms
	Randomized Algorithms

	Contributions
	Algorithms for General Instances
	Algorithms with Lookahead

	Closely Related Models
	Plans
	Computing the Plan
	Structure of the Plan
	Plan Updates
	Plan-Based Algorithms

	φ-Competitive Algorithm
	Algorithm Description
	Competitive Analysis
	Arrival of a Packet
	Scheduling a Packet

	Algorithms with Lookahead
	An Algorithm for 2-Bounded Instances with 1-Lookahead
	A Lower Bound for 2-bounded Instances with Lookahead
	Lower Bounds for Randomized Algorithms with Lookahead

	Conclusions and Open Problems

	Packet Scheduling under Adversarial Jamming
	Problem Definition and Preliminaries
	Previous Work and Related Models
	Contributions
	Algorithm PrudentGreedy (PG)
	Examples for PrudentGreedy
	Local Analysis and Results
	Critical Times and Master Theorem
	Local Analysis of PrudentGreedy (PG)
	Algorithm PG-DIV and its Analysis

	PrudentGreedy with Speed 4
	Blocks, Critical Times, 1-to-1 Charges and the Additive Constant
	Processing Blocks

	Lower Bounds
	Lower Bound with Two Packet Sizes
	Lower Bound for General Packet Sizes

	Conclusions and Open Problems

	Bibliography
	List of Figures

