
Noname manuscript No.
(will be inserted by the editor)

Colored Bin Packing: Online Algorithms and Lower
Bounds

Martin Böhm · György Dósa · Leah Epstein ·
Jǐŕı Sgall · Pavel Veselý

Received: date / Accepted: date

Abstract In the Colored Bin Packing problem a sequence of items of sizes
up to 1 arrives to be packed into bins of unit capacity. Each item has one of
at least two colors and an additional constraint is that we cannot pack two
items of the same color next to each other in the same bin. The objective is
to minimize the number of bins.

In the important special case when all items have size zero, we character-
ize the optimal value to be equal to color discrepancy. As our main result,
we give an (asymptotically) 1.5-competitive algorithm which is optimal. In
fact, the algorithm always uses at most d1.5 · OPTe bins and we can force
any deterministic online algorithm to use at least d1.5 · OPTe bins while the
offline optimum is OPT for any value of OPT ≥ 2. In particular, the absolute
competitive ratio of our algorithm is 5/3 and this is optimal.

For items of arbitrary size we give a lower bound of 2.5 on the asymptotic
competitive ratio of any online algorithm and an absolutely 3.5-competitive
algorithm. When the items have sizes of at most 1/d for a real d ≥ 2 the
asymptotic competitive ratio of our algorithm is 1.5 + d/(d − 1). We also
show that classical algorithms First Fit, Best Fit and Worst Fit are not
constant competitive, which holds already for three colors and small items.

This work was supported by the project 14-10003S of GA ČR and by the GAUK project
548214. The conference versions of this paper appeared in SWAT 2014 [10] and WAOA
2014 [6].

M. Böhm · J. Sgall · P. Veselý
Computer Science Institute of Charles University, Prague, Czech Republic.
E-mail: {bohm,sgall,vesely}@iuuk.mff.cuni.cz

G. Dósa
Department of Mathematics, University of Pannonia, Veszprém, Hungary.
E-mail: dosagy@almos.vein.hu

L. Epstein
Department of Mathematics, University of Haifa, Haifa, Israel.
E-mail: lea@math.haifa.ac.il

2 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

In the case of two colors—the Black and White Bin Packing problem—we
give a lower bound of 2 on the asymptotic competitive ratio of any online
algorithm when items have arbitrary size. We also prove that all Any Fit
algorithms have the absolute competitive ratio 3. When the items have sizes
of at most 1/d for a real d ≥ 2 we show that the Worst Fit algorithm is
absolutely (1 + d/(d− 1))-competitive.

Keywords Online algorithms · Bin packing · Worst-case analysis · Colored
bin packing · Black and white bin packing

1 Introduction

In the Black and White Bin Packing problem proposed by Balogh et al. [3,2]
as a generalization of classical Bin Packing , we are given a list of items of size
in [0, 1], each item being either black, or white. The items are coming one by
one and need to be packed into bins of unit capacity. The items in a bin are
ordered by their arrival time. The additional constraint to capacity is that the
colors inside the bins are alternating, i.e., no two items of the same color can
be next to each other in the same bin. The goal is to minimize the number of
bins used.

Colored Bin Packing is a natural generalization of Black and White Bin
Packing in which items can have more than two colors. As before, the only
additional condition to unit capacity is that we cannot pack two items of the
same color next to each other in one bin.

Our visualization of bins are stacks. The first item packed into a bin is at
the bottom of the bin and the last item is on the top. We say that an item a
is on another item b in a bin if a was packed into the bin after b and no other
item was packed into the bin after b and before a; in this case a and b are next
to each other.

Observe that optimal offline packings with and without reordering the
items differ in this model. The packings even differ by a non-constant factor:
Let the input sequence have n black items and then n white items, all of size
zero. The offline optimal number of bins with reordering is 1, but an offline
packing without reordering (or an online packing) needs n bins, since the first
n black items must be packed into different bins. Hence we need to use the
offline optimum without reordering in the analysis of online colored bin packing
algorithms.

We distinguish three settings of Colored Bin Packing :
1. In the offline setting we are given the items in advance and we can pack

them in an arbitrary order.
2. In the restricted offline setting we also know sizes and colors of all items

in advance, but they are given as a sequence and they need to be packed
in that order.

3. In the online setting the items are coming one by one and we do not know
what comes next or even the total number of items. Moreover, an online
algorithm has to pack each incoming item immediately and it is not allowed

Colored Bin Packing: Online Algorithms and Lower Bounds 3

to change its decisions later. The online algorithm does not know the total
number of colors in the input.

We focus mostly on the online setting. To measure the effectiveness of
online algorithms for a particular instance L, we use the restricted offline
optimum denoted by OPT (L) or OPT when the instance L is obvious from
the context. Let ALG(L) denote the number of bins used by the algorithm
ALG . The algorithm is absolutely r-competitive if for any instance ALG(L) ≤
r · OPT (L) and asymptotically r-competitive if for any instance ALG(L) ≤
r · OPT (L) + o(OPT (L)); typically the additive term is just a constant. We
say that an algorithm has the (absolute or asymptotic) competitive ratio r if
it is (absolutely or asymptotically) r-competitive and it is not r′-competitive
for r′ < r.

There are several well-known and often used online algorithms for classical
Bin Packing . We investigate the Any Fit family of algorithms (AF). These
algorithms pack an incoming item into some already open bin whenever it is
possible with respect to the size and color constraints. The choice of the open
bin (if more are available) depends on the algorithm. AF algorithms thus
open a new bin with an incoming item only when there is no other possibility.
Among AF algorithms, First Fit (FF) packs an incoming item into the first
bin where it fits (in the order by creation time), Best Fit (BF) chooses the
bin with the highest level where the item fits and Worst Fit (WF) packs
the item into the bin with the lowest level where it fits.

Next Fit (NF) is more restrictive than Any Fit algorithms, since it
keeps only a single open bin and puts an incoming item into it whenever the
item fits, otherwise the bin is closed and a new one is opened.

Previous results. Balogh et al. [3,2] introduced the Black and White Bin
Packing problem. As the main result, they gave an algorithm Pseudo with
the absolute competitive ratio exactly 3 in the general case and 1 + d/(d− 1)
in the parametric case, where the items have sizes of at most 1/d for a real
d ≥ 2. They also proved that there is no deterministic or randomized online
algorithm whose asymptotic competitiveness is below 1 + 1

2 ln 2 ≈ 1.721.

Concerning specific algorithms, they proved that Any Fit algorithms are
at most absolutely 5-competitive and even optimal for zero-size items. They
showed input instances on which FF and BF use asymptotically 3 times more
bins than an optimal offline algorithm. For WF there are sequences of items
witnessing that it is at least asymptotically 3-competitive and (1 +d/(d− 1))-
competitive in the parametric case for an integer d ≥ 2 (for a real d ≥ 2, it is
possible to show a lower bound of (1 + d/(d− 1)) on competitiveness of WF
using a similar sequence). Furthermore, NF is not constant competitive.

The idea of the algorithm Pseudo, on which we build as well, is that it
first packs the items regardless of their size, i.e., treating their size as zero.
This can be done optimally for two colors, e.g., by First Fit. These bins are
partitioned by NF into bins of level at most 1. The algorithm can be performed
online.

4 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

In the offline setting, Balogh et al. [3] gave a 2.5-approximation algorithm
with O(n log n) time complexity and an asymptotic polynomial time approxi-
mation scheme, both when reordering is allowed.

Our results. We completely solve the case of Colored Bin Packing for
zero-size items. As we have seen, this case is important for constructing general
algorithms. The offline optimum (without reordering) is actually not only lower
bounded by the color discrepancy, but equal to it for zero-size items (see
Section 2). For online algorithms, we give an (asymptotically) 1.5-competitive
algorithm which is optimal (see Section 4.1). In fact, the algorithm always uses
at most d1.5·OPTe bins and we can force any deterministic online algorithm to
use at least d1.5 ·OPTe bins using only three colors while the offline optimum
is OPT for any value of OPT ≥ 2 (see Section 3.1). In particular this shows
that the absolute competitive ratio of our algorithm is 5/3, which is optimal.

For items of arbitrary size and three colors, we show a lower bound of
2.5 on the asymptotic competitive ratio of any deterministic online algorithm
(see Section 3.2). We use the optimal algorithm for zero-size items and the
algorithm Pseudo to design an (absolutely) 3.5-competitive algorithm which
is also (asymptotically) (1.5 + d/(d − 1))-competitive in the parametric case,
where the items have sizes of at most 1/d for a real d ≥ 2 (see Section 4.2).
(Note that for d < 2 we have d/(d− 1) > 2 and the bound for arbitrary items
is better.)

We show that algorithms BF, FF, WF and Pseudo (with FF for packing
zero-size items) are not constant competitive, in contrast to their absolute 3-
competitiveness for two colors. Their competitiveness cannot be bounded by
any function of the number of colors even for only three colors and very small
items (see Section 4.3).

For Black and White Bin Packing , we propose a lower bound of 2 on the
asymptotic competitive ratio of any online algorithm improving the previous
lower bound of 1.721 (see Section 3.2). We show that the absolute competitive
ratio of Any Fit algorithms in the general case is at most 3 which is tight
for BF, FF and WF (see Section 5.1). For WF in the parametric case, we
prove that it is absolutely (1 +d/(d− 1))-competitive for a real d ≥ 2 which is
tight (see Section 5.2). Therefore, WF has the same competitive ratio as the
algorithm Pseudo.

Related work. In the classical Bin Packing problem, we are given items
with sizes in (0, 1] and the goal is to assign them into the minimum number
of unit capacity bins. The problem was proposed by Ullman [25] and by John-
son [19] and it is known to be NP-hard. See the survey of Coffman et al. [8]
for the many results on classical Bin Packing and its many variants.

For the online problem, there is no online algorithm which is better than
248/161 ≈ 1.5403-competitive [4]. The currently best algorithm is Harmonic++
by Seiden [24], approximately asymptotically 1.589-competitive. The best pos-
sible absolute competitive ratio of 5/3 was recently achieved by an algorithm
Five-Thirds [5]. Regarding AF algorithms, NF is absolutely 2-competitive
and both FF and BF have the absolute competitive ratio exactly 1.7 [12,13].

Colored Bin Packing: Online Algorithms and Lower Bounds 5

This is similar to Black and White Bin Packing in which FF and BF have
the absolute competitive ratio of 3 and the hard instances proving tightness
of the bound are the same for both algorithms.

In the context of Colored Bin Packing , we are interested in variants that
further restrict the allowed packings. Of particular interest is Bounded Space
Bin Packing where an algorithm can have only K ≥ 1 open bins in which it is
allowed to put incoming items. When a bin is closed an algorithm cannot pack
any further item in the bin or open it again. Such algorithms are called K-
bounded-space. The champion among these algorithms is K-Bounded Best
Fit, i.e., Best Fit with at most K open bins, which is (asymptotically) 1.7-
competitive for all K ≥ 2 [9]. Lee and Lee [21] presented Harmonic(K) which
is K-bounded-space with the asymptotic competitive ratio of approximately
1.691 for sufficiently large K. Lee and Lee also proved that there is no bounded
space algorithm with a smaller asymptotic competitive ratio.

The Bounded Space Bin Packing is an especially interesting variant in our
context due to the fact that it matters whether we allow the optimum to
reorder the input instance or not. If we allow reordering for Bounded Space
Bin Packing , we get the same optimum as classical Bin Packing . In fact, all
the bounds on online algorithms in the previous paragraph hold if the optimum
with reordering is considered, which is a stronger statement than comparing
to the optimum without reordering. This is a very different situation than for
Colored Bin Packing , where no online algorithms can be competitive against
the optimum with reordering, as we have noted above.

The bounded space offline optimum without reordering was studied by
Chrobak et al. [7]. It turns out that the computational complexity is very dif-
ferent: There exists an offline (1.5+ε)-approximation algorithm for 2-Bounded
Space Bin Packing with polynomial running time for every constant ε > 0, but
exponential in ε. No polynomial time 2-bounded-space algorithm can have its
approximation ratio better than 5/4 (unless P = NP). In the online setting
it is open whether there exists a better algorithm than asymptotically 1.7-
competitive K-Bounded Best Fit when compared to the optimum without
reordering; the current lower bound is 3/2.

Other variants of bin packing where the sequence of items must remain
ordered even for offline solutions include Bin Packing with LIB (largest item
in the bottom) constraints, where an item can be packed into a bin with
sufficient space if it is no larger than any item packed into this bin [22,17,23,
16,14].

Another interesting variant with restrictions on the contents of a bin is
Bin Packing with Cardinality Constraints, which restricts the number of items
in a bin to at most k for a parameter k ≥ 2. It was introduced by Krause
et al. [20] who also showed that Cardinality Constrained FF has the
asymptotic competitive ratio of at most 2.7 − 2.4/k. Interestingly, the lower
bound for the asymptotic competitive ratio of any online algorithm for large k
is 1.5403 [4], i.e., the same as for standard Bin Packing . For k ≥ 3, there is an
asymptotically 2-competitive online algorithm [1] and the absolute competitive

6 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

ratio of any online algorithm is at least 2 for any k ≥ 4 [11]. Better algorithms
and various lower bounds are known for small k [15,1,18].

Motivation. Suppose that a television or a radio station maintains several
channels and wants to assign a set of programs to them. The programs have
types like “documentary”, “thriller”, “sport” on TV, or music genres on radio.
To have a fancy schedule of programs, the station does not want to broadcast
two programs of the same type one after the other. Colored Bin Packing can
be used to create such a schedule. Items here correspond to programs, colors
to genres and bins to channels. Moreover, the programs can appear online and
have to be scheduled immediately, e.g., when listeners send requests for music
to a radio station via the Internet.

Another application of Colored Bin Packing comes from software which
renders user-generated content (for example from the Internet) and assigns
it to columns which are to be displayed. The content is in boxes of different
colors and we do not want two boxes of the same color to be adjacent in a
column, otherwise they would not be distinguishable for the user.

Moreover, Colored Bin Packing with all items of size zero corresponds to
a situation in which we are not interested in loads of bins (lengths of the
schedule, sizes of columns, etc.), but we just want some kind of diversity or
colorfulness.

2 Preliminaries and Offline Optimum

Notation. Let C be the set of all colors in the input sequence. For c ∈ C,
the items of color c are called c-items and bins with the top (last) item of
color c are called c-bins. By a non-c-item we mean an item of color c′ 6= c and
similarly a non-c-bin is a bin with the top item of color c′ 6= c. The level of a
bin means the cumulative size of all items in the bin.

We denote a sequence of nk items consisting of n groups of k items of

colors c1, c2, . . . ck and sizes s1, s2, . . . sk by n×
(
c1
s1
, c2s2 , . . .

ck
sk

)
.

Lower Bounds on the Restricted Offline Optimum. We use two
lower bounds on the number of bins in any packing. The first bound LB1 is
the sum of sizes of all items.

The second bound LB2 is the maximal color discrepancy inside the input
sequence. In Black and White Bin Packing , the color discrepancy introduced
by Balogh et al. [2] is simply the difference of the number of black and white
items in a segment of the input sequence, maximized over all segments. It is
easy to see that it is a lower bound on the number of bins.

In the generalization of the color discrepancy for more than two colors
we count the difference between c-items and non-c-items for all colors c and
segments. It is easy to see that this is a lower bound as well. Formally, let
sc,i = 1 if the i-th item from the input sequence has color c, and sc,i = −1

Colored Bin Packing: Online Algorithms and Lower Bounds 7

otherwise. We define

LB2 = max
c∈C

max
i,j

j∑
`=i

sc,` .

For Black and White Bin Packing , equivalently LB2 = maxi,j

∣∣∣∑j
`=i s`

∣∣∣, where

si = 1 if the i-th item is white, and si = −1 otherwise; the absolute value
replaces the maximization over colors.

We prove that LB2 is a lower bound on the optimum similarly to the proof
of Lemma 5 in [2]. First we observe that the number of bins in the optimum
cannot increase by removing a prefix or a suffix from the sequence of items.

Observation 1 Let L = L1L2L3 be a sequence of items partitioned into three
subsequences (some of them can be empty). Then OPT (L) ≥ OPT (L2).

Proof It is enough to show that the removal of the first or the last item does
not increase the optimum. By iteratively removing items from the beginning
and the end of the sequence we obtain the subsequence L2 and consequently
OPT (L) ≥ OPT (L2).

The first item of the sequence is clearly the first item in a bin. By removing
the first item from the bin we do not violate any condition. Hence any packing
of L is a valid packing of L without the first item. A similar claim holds for
the last item. ut

Lemma 1 OPT (L) ≥ LB2 .

Proof We prove that for every color c, the optimum is at least LB2 ,c :=

maxi,j
∑j
`=i sc,`. Fix a color c and let i, j be arg maxi,j

∑j
`=i sc,`. Let δ =

LB2 ,c . We may assume that δ > 0, otherwise δ is trivially at most the opti-
mum. By the previous observation we may assume i = 1 and j = n.

Consider any packing of the sequence and let k be the number of bins used.
Any bin contains at most one more c-item than non-c-items, since colors are
alternating between c and other colors in the extreme case. Since we have δ
more c-items than non-c-items, we get k ≥ δ. Therefore OPT ≥ LB2 ,c . ut

In Black and White Bin Packing , when all the items are of size zero, all
Any Fit algorithms create a packing into the optimal number of bins [2].
For more than two colors this is not true and in fact no deterministic online
algorithm can have a competitive ratio below 1.5. However, in the restricted
offline setting a packing into LB2 bins is still always possible, even though this
fact is not obvious. This shows that the color discrepancy fully characterizes
the combinatorial aspect of the color restriction in Colored Bin Packing .

Theorem 2 Let all items have size equal to zero. Then a packing into LB2

bins is possible in the restricted offline setting, i.e., items can be packed into
LB2 bins without reordering.

8 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

Proof Consider a counterexample with a minimal number of items in the se-
quence. Let D = LB2 be the maximal discrepancy in the counterexample and
n ≥ D be the number of items. The minimality implies that the theorem holds
for all sequences of length n′ < n. Moreover, D > 1, since for D = 1 we can
pack the sequence trivially into a single bin as there are no two adjacent items
with the same color in the sequence.

We define an important interval as a maximal interval of discrepancy D,
more formally a subsequence from the i-th item to the j-th such that for some
color c the discrepancy on the interval is D, i.e.,

∑j
`=i sc,` = D, and we cannot

extend the interval in either direction without decreasing its discrepancy. For
an important interval, its dominant color c is the most frequent color inside it.
At first we show that important intervals are just D items of the same color.

Observation 3 Each important interval I contains D items of its dominant
color c and no other items in the minimal counterexample.

Proof Suppose there is a non-c-item in I and let a be the last such item in I.
Then a must be followed by a c-item b in I, otherwise I without a would have
discrepancy higher than D. We temporarily delete a and b from the sequence
and pack the rest into D bins by minimality.

We interrupt the packing of the rest of the sequence just after the item prior
to a is put into a bin. There must be a c-bin B, otherwise the subsequence of I
from the beginning up to a (including a) would have strictly more non-c-items
than c-items (for each c-item in the subsequence of I there is a non-c-item
packed on it and a is the extra non-c-item), and hence the rest of I after a
would have discrepancy of more than D. We put a and b into B and the bin
B is still a c-bin. Then we continue in the packing of the rest of the sequence
which yields a packing of the whole sequence into D bins, therefore it is not a
counterexample. ut

Next, we show that important intervals are disjoint in the minimal coun-
terexample. Suppose that two important intervals I1 and I2 with dominant
colors c1 and c2 intersect on an interval J . If c1 6= c2 we use the previous
observation, since I1 or I2 has to contain an item from the other interval. Oth-
erwise c1 = c2, but then their union has discrepancy of more than D which
cannot happen.

Clearly, there must be an important interval in any non-empty sequence.
Let I1, I2, . . . Ik be important intervals in the counterexample sequence and let
J1, J2, . . . Jk−1 be the intervals between the important intervals (Ji between
Ii and Ii+1), J0 be the interval before I1 and Jk be the interval after Ik.
These intervals are disjoint and form a complete partition of the sequence,
i.e., J0, I1, J1, I2, J2, . . . Jk−1, Ik, Jk is the whole sequence of items. Note that
some of J`’s can be empty.

If k > 2, we can create a packing P1 of the sequence containing only
intervals J0, I1, J1, I2 into D bins by minimality of the counterexample. Also
there exists a packing P2 of intervals I2, J2, I3, . . . Ik, Jk into D bins. Any bin
from P1 must end with an item from the important interval I2 and any bin from

Colored Bin Packing: Online Algorithms and Lower Bounds 9

P2 must start with an item from I2. Therefore we can merge both packings by
items from I2 and obtain a valid packing of the whole sequence into D bins.
Hence k ≤ 2.

In the case k = 1, there are four subcases depending on whether J0 and J1
are empty or not:

– J0 and J1 are non-empty: We create packings of J0, I1 and I1, J1 into D
bins and merge them as before.

– J0 is empty and J1 non-empty: We delete the first item from I1, pack the
rest into D−1 bins (the maximal discrepancy decreases after deleting) and
put the deleted item into a separate bin.

– J0 is non-empty and J1 empty: Similarly, we delete the last item from I1
and pack the rest into D − 1 bins.

– both are empty: I1 can be trivially packed into D bins.

For k = 2, we first show that J0 and J2 are empty and J1 is non-empty
in the counterexample. If J0 is non-empty, we merge packings of J0, I1 and
I1, J1, I2, J2, and if J2 is non-empty, we put together packings of J0, I1, J1, I2
and I2, J2. When J1 is empty, the sequence consists only of intervals I1 and
I2 which must have different dominant colors. Thus they can be easily packed
one on the other into D bins.

The last case to be settled has only I1, J1 and I2 non-empty. If the dominant
colors c1 for I1 and c2 for I2 are different, we delete the first item from I1 and
the last item from I2, so the discrepancy decreases. We pack the rest into D−1
bins and put the deleted items into a separate bin, so the whole sequence is
in D bins again.

Otherwise c1 is equal to c2 and let c be c1. Since the important intervals
are maximal, there must be at least D + 1 more non-c-items than c-items in
J1. Also any prefix of J1 contains strictly more non-c-items than c-items, thus
at least the first two items in J1 have colors different from c.

We delete the first c-item p from I1, the first non-c-item q from J1 and
the last c-item r from I2. Suppose for a contradiction that there is an interval
I of discrepancy D in the rest of the sequence. As I has lower discrepancy
in the original sequence (we deleted an item from each important interval of
the original sequence), it must contain q and thus intersect I1 and J1, hence
its dominant color is c. If I intersects also I2, we add the items p, q and r
into I (and possibly some other items from I1 or I2) to obtain an interval of
discrepancy at least D + 1 in the original sequence which is a contradiction.
Otherwise I intersects only I1 and J1, but any prefix of the rest of J1 still
contains at least as many non-c-items as c-items, so I \ J1 has discrepancy at
least D. But I \J1 is contained in the rest of I1 that has only D− 1 items and
we get a contradiction. Therefore the maximal discrepancy decreases after
deleting the three items, so we can pack the rest into D − 1 bins and the
items p, q and r are put into a separate bin. Note that important intervals of
discrepancy D − 1 may change after deleting the three items.

In all cases we can pack the sequence into D bins, therefore no such coun-
terexample exists. ut

10 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

It follows from Theorem 2 that there is a polynomial algorithm for com-
puting the restricted offline optimum in the case of zero-size items.

3 Lower Bounds on Competitiveness of Any Online Algorithm

In our proofs of lower bounds for any deterministic online algorithm, an input
is presented to an arbitrary fixed online algorithm. The next item in the input
depends on what has the algorithm done with previous items. A natural way
to describe such inputs uses a malicious adversary that chooses the next item
in the input based on the current packing of the algorithm. The adversary
tries to maximize the number of bins used by the algorithm, while keeping the
offline optimum relatively small.

3.1 Lower Bound for Zero-size Items

Theorem 4 For zero-size items of at least three colors, there is no deter-
ministic online algorithm with an asymptotic competitive ratio less than 1.5.
Precisely, for each n > 1 we can force any deterministic online algorithm to
use at least d1.5ne bins using three colors, while the optimal number of bins is
n.

Proof The adversary uses only three colors throughout the proof, denoted by
black, white and red and abbreviated by b, w and r in formulas. We show
that if an online algorithm uses less than d1.5ne bins, the adversary can send
some items and force the algorithm to increase the number of black bins or to
use at least d1.5ne bins, while the optimal number of bins stays n. This way
the algorithm is forced to open d1.5ne bins using finitely many items as the
number of black bins is increasing.

Initially the adversary sends n black items, then it continues by phases
and ends the process whenever the algorithm uses d1.5ne bins at the end of
a phase. When a phase starts, the algorithm has Nb < d1.5ne black bins and
possibly some other white or red bins. In each phase the adversary forces the
algorithm to use d1.5ne bins or to have more than Nb black bins. Note that
the number of black bins increases in all phases except possibly the last one.

The adversary also guarantees that there is an restricted offline packing of
the items into n bins at the beginning of each phase and moreover all these
bins are black after each phase in which Nb increases.

We now present how a phase works. Let new items be items from the
current phase and old items be items from previous phases. The adversary
begins the phase by sending n new items of colors alternating between white
and red, starting by white, so it sends dn/2e white items and bn/2c red items.

If the algorithm has not put some new item on an old black item, the
adversary sends n black items. Since the new items are packed into less than n
black bins (more precisely, black at the beginning of the phase), the number of
black bins increases. See Figure 1 for an example of such situation. In the offline

Colored Bin Packing: Online Algorithms and Lower Bounds 11

packing the adversary packs first n new items of colors alternating between
white and red into n bins (one item into each bin) which is allowed since all the
bins were black at the beginning of the phase. Then the adversary puts n new
black items into n bins and all the bins are black as desired. The adversary
finishes the phase and continues with the next phase if the algorithm has less
than d1.5ne black bins.

Fig. 1 An illustration of the case when the algorithm has not put some new item on an old
black item for n = 4. New items are depicted with a dot. Note that an algorithm packed
first n new items into less than n black bins, thus the adversary sent n black items and
forced an increase of the number of black bins.

Otherwise the algorithm put all new red and white items on old black
items. If n is even, the adversary sends additional n white items. After that
the algorithm has at least 1.5n white bins. The adversary packs first n new
items into a single bin which now has a red item on the top. Since all other
bins are black, the next n new white items are packed into n bins. Therefore
the adversary reaches its goal and stops the process.

If n is odd, the adversary has a white bin in the offline packing, thus it can
send only n−1 white items forcing the algorithm to have d1.5ne−1 white bins.
This suffices to prove the result in the asymptotic sense, but for the precise
lower bound of d1.5ne for an odd n we need a somewhat more complicated
construction.

Therefore if all new red and white items are put on old black items and n
is odd, the adversary sends a black item e. We split our analysis depending on
where e is packed by the algorithm:
1. If the algorithm does not pack e on a new white item, the adversary sends
n white items forcing dn/2e+ n white bins. The offline packing is created
similarly to the case of even n: Put first n new items and e into one bin
and the next n new white items into n bins. Thus the adversary is done
and stops the process.

2. The black item e is put on a new white item. There are bn/2c white and
bn/2c red new items on the top of algorithm’s bins and the adversary sends
another black item f . Since red and white are equivalent colors (considering
only new items), without loss of generality the algorithm packs f into a
red bin or into newly opened bin.
Next the adversary sends a white item g and a red item h. After packing
g there are dn/2e bins with a new white item on the top and at least one
bin with a new black item on the top. If h is not put on a new white item
(i.e., it is put into a black bin, a new bin or on an old white item), the
adversary sends n white items and the algorithm must use d1.5ne bins. In
this case the adversary packs first n− 1 new items together with e, g and

12 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

h into one bin and the n-th new white item with f into another bin. Then
all the bins are black and the last n new white items are put into them.
The adversary stops sending items again.
Otherwise the algorithm packs h on a new white item and the adversary
sends n black items. (See Figure 2.) The number of black bins increases,
because the adversary sent n + 2 new black items and at most n + 1 new
non-black items were put into a black bin (at most n items at the beginning
of the phase plus the item g). In the offline packing first n new non-black
items are packed into n bins, black items e and f into two arbitrary bins
and non-black items g and h are put on e and f . Since no bin is black, the
adversary puts the last n new black items into n bins and all the bins are
black, thus the adversary continues with the next phase. ut

e f
g
h

Fig. 2 An illustration of the packing for n = 3 in the last case of the proof of Theorem 4,
i.e., the algorithm put the black item e on a new white item, the black item f is packed
into a red bin, and the red item h is put on a new white item (note that it does not matter
where the white item g is packed). New items are depicted with a dot. Then the adversary
sends 3 black items and the algorithm must pack one of them into a newly created bin.

The lower bound has additional properties that we use later in our lower
bound for items of arbitrary size. Most importantly, we have at least d1.5 ·
OPTe of c-bins at the end (and possibly some additional bins of other colors).

Lemma 2 After packing the instance from Theorem 4 by an online algorithm
there is a color c for which we have d1.5 · OPTe of c-bins. Moreover, in each
restricted offline optimal packing of the instance all the bins have a c-item on
the top.

Proof Let n = OPT as in the previous proof. The adversary stops sending
items when it finishes the last phase. In the last phase either the number of
black bins increases to d1.5ne, or the adversary forces d1.5ne white or red bins
by sending n white or red items. In both cases we have d1.5ne bins of the same
color.

Since an optimal packing uses n bins and the last n items are of the same
color (in each case of the construction), they must be packed into different
bins. Hence each bin of a restricted offline optimal packing has a c-item on the
top. ut

3.2 Lower Bound for Items of Arbitrary Size

We show a lower bound of 2 for two colors, i.e., for Black and White Bin
Packing , and a lower bound of 2.5 for at least three colors. Both bounds follow

Colored Bin Packing: Online Algorithms and Lower Bounds 13

a similar adversarial construction that has two parts: The first part uses only
zero-size items to create a lot of bins of the same color, say white. The second
part is nearly the same for both lower bounds and it is defined in the next
lemma.

As in the lower bound for zero-size items, the lower bound for at least
three colors uses exactly three colors, denoted by black, white and red and
abbreviated by b, w and r in formulas.

The next lemma constitutes the second part of the adversarial construction.

Lemma 3 Suppose that a deterministic online algorithm A has created k ≥ n
bins of the same color, without loss of generality white, on a sequence L of
zero-size items (A may create some bins of other colors which we do not take
into account). Suppose also that:

– OPT (L) = n > 1,
– in each restricted offline optimal packing of L all the bins have a white item

on the top.

Then for the online algorithm A there exists a sequence L′ of black and white
items such that A uses k+n bins on the whole sequence LL′, while an optimal
restricted offline algorithm packs LL′ into n+ 1 bins.

Note that the preconditions of the lemma are exactly satisfied by Lemma 2
for k = d1.5ne.

Proof Let W be the set of k white bins opened by A on the sequence L.
The proof is based on the following idea: The adversary sends the instance

in phases, each starting with two small items, white and black. If the black item
is put into an already opened bin with a non-zero level, we send a huge white
item that can be put only on the small black item. Therefore the algorithm
has to put the huge white item into a bin with level zero (and not from the
set W), but an optimal offline algorithm puts the small black item into a new
bin and the huge white item on it. Otherwise, if the small black item is put
into a new bin, the phase is finished: The online algorithm opened a bin in the
phase, while an optimal offline algorithm does not need to. This way an online
algorithm is forced to behave oppositely to an optimal offline algorithm. Note
that the first option (the first black item from the phase is put into an already
opened bin) is better for the online algorithm.

We formalize this idea by the following adversarial algorithm. Let ε =
1/(4k) and δi = 1/5i · ε = 1/(5i · 4k). The adversary uses the items of the
following types:

– regular white items of size ε,
– regular black items of size δi for some i ≥ 1,
– special black items of size 3δi for some i ≥ 1,
– huge white items of size 1− 2δi for some i ≥ 1.

Note that 3δi < ε, i.e., all black items are smaller than ε, and that a huge
white item of size 1− 2δi cannot be packed with a black item of size at least
δj for any j < i.

14 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

Let i be the index of the current phase and let j be the number of huge
white items in the instance so far. The adversarial algorithm is as follows:
1. Let i = 0 and j = 0.
2. If j = n or if i = k + n, then stop.

3. Let i = i+1. Send
(

white
ε , blackδi

)
, i.e., a group consisting of a regular white

item and a regular black item.
4. If the regular black item is packed to a new bin or to a bin with level zero,

go to the step 2 (continue with the next phase).

5. Let j = j + 1. Send
(

black
3δi

, white
1−2δi ,

black
δi

)
. Then go to the step 2 (continue

with the next phase).
See Figure 3 for an example of the situation after two phases of the adver-

sarial algorithm.

Fig. 3 A situation after two phases of the algorithm (for simplicity, zero-size items are not
shown). Items from the second phase are marked with a dot. In the first phase, the second
item went into a bin of level zero, so the phase ended immediately. However, in the second
phase the second item went into a bin with a non-zero level, thus a huge white item arrived.

First we show that we can pack the whole list of items into n+ 1 bins and
then that no huge white item can be packed by an online algorithm into a bin
from the set W , i.e., one of k bins which are white after the first part with
zero-size items.

Claim OPT (LL′) = n+ 1.

Proof We create n white bins of level zero from the list L by the preconditions
of the lemma. Each of j ≤ n huge white items is packed with the two regular
black items from the same phase, thus creating j full bins with a black item
at the bottom. All these bins are combined with the bins created from L. The
remaining items, i.e., for each phase the regular white item and the special
or regular black item, have alternating colors and the total size of at most
2i · ε ≤ 2(k + n) · /(4k) ≤ 1 (recall that k ≥ n, i is the index of the current
phase and all black items are smaller than ε). Therefore all remaining items
can be put into an additional (n+ 1)-th bin.

Since all bins in each optimal packing of L are white and L′ begins by a
regular white item, we get that OPT (LL′) = n+ 1. ut

We now analyze how the online algorithm A behaves on the sequence L′.

Claim After the i-th phase the number of bins with a non-zero level is at
least i. Moreover, A packs no huge white item into a bin from the set W .

Colored Bin Packing: Online Algorithms and Lower Bounds 15

Proof We show that in each phase the number of bins with a non-zero level
increases by at least one. This holds trivially, if the second item in a phase,
denoted by s, is put into a new bin or to a bin with level zero. Otherwise,
if s is put into a bin of non-zero level, the adversary continues the phase by
sending three other items, most importantly a huge white item h. The item s
is the only one from L′ that is sent before h and that is sufficiently small to be
packed into a single bin with h, but s is in a bin with another non-zero item.
Therefore h must be packed into a new bin or into a bin with level zero. This
proves the first statement of the claim.

For the second statement, note that if the algorithm puts h into a bin with
zero-size items only, the bin cannot be white, but all the bins from the set W
that have still level zero (while packing h) are white. As we already observed,
h is not put into a bin from W that has a non-zero level. ut

We now finish the proof of Lemma 3. By the previous claim we know that
if the adversarial algorithm ends with i = k + n, there are k + n bins with a
non-zero level. Otherwise, if the instance stops by j = n, the online algorithm
has at least |W |+ n = k + n open bins, since it opens bins in W on L and it
must put n huge white items into other bins. ut

We use the lemma to prove lower bounds for Black and White Bin Packing
and for Colored Bin Packing .

Theorem 5 For items of two colors and arbitrary size, there is no determin-
istic online algorithm with an asymptotic competitive ratio of less than 2.

Proof Let n > 1 be a large integer. The adversary starts the instance by
sending n zero-size white items and the online algorithm must open n white
bins, one for each item.

Observe that the preconditions of Lemma 3 are satisfied for k = n and
L being the n zero-size white items. By the lemma the adversary forces the
algorithm to use k + n = 2n bins, while the restricted offline optimum equals
n + 1. Thus we get that the ratio between the number of bins by the online
algorithm and the optimum tends to 2 as n goes to infinity. ut

By combining our lower bound of 1.5 for zero-size items of at least three
colors and Lemma 3 we obtain a general lower bound of 2.5 for items of
arbitrary size and at least three colors.

Theorem 6 For items of at least three colors and arbitrary size, there is no
deterministic online algorithm with an asymptotic competitive ratio of less than
2.5.

Proof Let n > 1 be a large integer. The adversary starts with the hard instance
for zero-size items from the proof of Theorem 4 with the optimum equal to
n. By Lemma 2 there are at least d1.5ne bins of the same color, without loss
of generality white, and each optimal packing has all bins of the same color.

16 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

This satisfies the preconditions of Lemma 3 with k = d1.5ne and L being the
sequence of items from the lower bound for zero-size items.

We now use Lemma 3 again and get that the algorithm must use at least
k + n = d2.5ne bins. As OPT = n + 1, we get that the ratio between the
number of bins by the online algorithm and the optimum tends to 2.5 as n
goes to infinity. ut

4 Algorithms for Arbitrarily Many Colors

4.1 Optimal Algorithm for Zero-size Items

The main problem of FF, BF and WF is that they pack items regardless of
the colors of bins, only keeping the packing valid. We address the problem by
balancing the colors of top items in bins – we mostly put an incoming c-item
into a bin of the most frequent other color. When there are more most frequent
colors other than c or we have more choices of bins of the most frequent other
color where to put an item we can choose arbitrarily among these colors or
bins, e.g., by First Fit. We call this algorithm Balancing Any Fit (BAF).

We define BAF for items of size zero and show that it opens at most
d1.5LB2 e bins which is optimal in the worst case by Theorem 4. Then we com-
bine BAF with the algorithm Pseudo by Balogh et al. [2] for items of arbitrary
size and prove that the resulting algorithm is absolutely 3.5-competitive.

Let Dk be the maximal discrepancy on the subsequence of the input from
the first item up to the k-th item, i.e., Dk = maxc∈C maxi,j≤k

∑j
`=i sc,`, and

let Nc,k be the number of c-bins after packing the k-th item. We define the

current discrepancy as CDc,k = maxi≤k+1

∑k
`=i sc,`, i.e., the discrepancy of

color c on an interval which ends with the last packed item (the k-th). The
current discrepancy basically tells us how many c-items have come recently and
thus how many c-items may arrive without increasing the overall discrepancy.
Note that CDc,k ≤ Dk and that CDc,k is at least zero as we can set i = k+ 1.

Let αc,k = Nc,k − dDk/2e be the difference between the number of c-bins
and the half of the maximal discrepancy so far. Observe that dDk/2e is the
number of bins which BAF may use in addition to OPT bins, since the current
value of OPT is Dk by Theorem 2. We omit the index k in Dk, Nc,k, CDc,k

and αc,k when it is obvious from the context.
While processing the items, if D is the maximal discrepancy so far, the al-

gorithm may receive D−CDc of c-items and the maximal discrepancy remains
the same; this forces the algorithm to use Nc+D−CDc bins. Hence, to termi-
nate with at most d1.5De bins we try to keep Nc−CDc ≤ dD/2e for all colors
c. For simplicity, we use an equivalent inequality of αc = Nc − dD/2e ≤ CDc.
If we can keep the inequality valid and it occurs that there is a color c with
Nc > d1.5De, we get CDc ≥ Nc − dD/2e > d1.5De − dD/2e = D which
contradicts CDc ≤ D. Let the main invariant for a color c be

αc = Nc −
⌈
D

2

⌉
≤ CDc. (1)

Colored Bin Packing: Online Algorithms and Lower Bounds 17

As CDc ≥ 0, keeping the invariant is easy for all colors with at most dD/2e
bins. Also when there is only one color c with Nc > dD/2e, we just put a non-
c-item into a c-bin. Therefore, if a non-c-item comes, the number of c-bins Nc
decreases and the current discrepancy CDc decreases by at most one. (CDc

stays the same when it is zero.) Since both increase with an incoming c-item,
we are keeping our main invariant (1) for the color c.

Moreover, there are at most two colors with strictly more than dD/2e bins,
given that we have at most d1.5De open bins. Thus we only have to deal with
two colors having Nc > dD/2e. We state the algorithm Balancing Any Fit
for items of size zero.

Balancing Any Fit (BAF):
1. For an incoming c-item, if there are no bins or c-bins only, open a

new bin and put the item into it.
2. Otherwise, if there is at most one color with the number of bins

strictly more than dD/2e, put an incoming c-item into a bin of
color c′ = arg maxc′′ 6=cNc′′ . If more colors have the same maximal
number of bins, choose color c′ arbitrarily among them, e.g., by
First Fit. Among c′-bins, choose again arbitrarily, e.g., by First
Fit.

3. Suppose that there are two colors b and w such that Nb > dD/2e
and Nw > dD/2e. If c = w, put the item into a bin of color b. If
c = b, put the item into a bin of color w. Otherwise c 6∈ {b,w}; if
Nb − dD/2e < CDb, put the item into a bin of color w, otherwise
into a bin of color b.

As we discussed, keeping the main invariant (1) is easy in the first and the
second case of the algorithm. Therefore we can conclude the following claim.

Claim Suppose that the main invariant holds for all colors before packing the
t-th item and that there is at most one color c with Nc,t−1 > dDt−1/2e before
the t-th item, i.e., the t-th item is packed using the first or the second case of
the algorithm. Then the main invariant holds for all colors also after packing
the t-th item.

Most of the proof of 1.5-competitiveness of BAF thus deals with two colors
having more than dD/2e bins. Without loss of generality let these two colors
be black and white in the following and let us abbreviate them by b and w.

In the third case of the algorithm we have to choose either black or white
bin for items of other colors than black and white, but the current discrepancy
decreases for both black and white, while the number of bins stays the same
for the color which we do not choose. So if αb = CDb and αw = CDw, it is
possible to force the algorithm to open more than d1.5De bins. See Figure 4
for an example of such situation.

Therefore we need to prove that in the third case, i.e., when Nb > dD/2e
and Nw > dD/2e, at least one of inequalities αb ≤ CDb and αw ≤ CDw is
strict. This motivates the following secondary invariant:

2αb + 2αw ≤ CDb + CDw + 1 . (2)

18 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

?

Fig. 4 An example with D = 5 and d1.5 · De = 8 (note that only top items in bins are
shown). Suppose that CDb = 1 and CDw = 1, thus Nb = CDb + dD/2e and Nw =
CDw + dD/2e, i.e., the main invariant does not hold strictly for both black and white. If
the next incoming red item goes into a black bin, then the adversary sends five white items
and D = 5 after that, since CDw decreases to zero. Hence the adversary forces nine open
bins. The case in which the red item is packed into a white bin is symmetric.

If the secondary invariant holds, it is not hard to see that in the third case of the
algorithm the choice of the bin maintains the main invariant. The tricky part
of the proof is to prove the base case of the inductive proof of the secondary
invariant. A natural proof would show the base case whenever b and w become
the two colors with Nb, Nw > dD/2e. However, we are not able to do that.
Instead, we prove that the secondary invariant holds already at the moment
when b and w become the two strictly most frequent colors on the top of the
bins, i.e., Nb > Nc and Nw > Nc for all other colors c, which may happen
much earlier, when the number of their bins is significantly below D/2. After
that, maintaining both invariants is relatively easy.

Theorem 7 Balancing Any Fit is 1.5-competitive for items of size zero
and an arbitrary number of colors. Precisely, it uses at most d1.5 ·OPTe bins.

Proof First we show that keeping the main invariant (1) for each color c, i.e.,
αc ≤ CDc, is sufficient for the algorithm to create at most d1.5De bins. This
implies both that the algorithm is well defined since there are at most two
colors with Nc > dD/2e, and that the algorithm is 1.5-competitive, since the
maximal discrepancy equals the optimum.

Claim After packing the t-th item, if we suppose that Nc,i − dDi/2e ≤ CDc,i

for all colors c and for all i < t, the algorithm uses at most d1.5Dte bins.

Proof We prove the claim by contradiction: Suppose that BAF opens a bin
with the k-th item in the sequence (for k ≤ t) and we exceed the d1.5Dke limit,
but before the k-th item there were at most d1.5Dk−1e bins. Thus Dk = Dk−1,
since if Dk = Dk−1 + 1, then the bound also increases with the k-th item.

Let c be the color of the k-th item. Let the `-th item be the last non-c-item
before the k-th, so only c-items come after the `-th item. None of c-items from
the (`+1)-st to the k-th increase the maximal discrepancy D, otherwise if one
such item increases D, then all following such items also do. Thus D` = Dk.

The algorithm must have received d1.5D`e + 1 −Nc,` of c-items after the
`-th item to open d1.5D`e+ 1 bins, but then

CDc,k = CDc,`+d1.5D`e+1−Nc,` ≥ Nc,`−
⌈
D`

2

⌉
+d1.5D`e+1−Nc,` = D`+1

Colored Bin Packing: Online Algorithms and Lower Bounds 19

where we used the main invariant for the inequality which holds, because
` < k ≤ t. We get a contradiction, since CDc,k ≤ Dk = D`. ut

We have to deal with the case in which Nb > dD/2e and Nw > dD/2e.
We show that we can maintain the secondary invariant (2), while black and
white are the two strictly most frequent colors of bins (even if Nb ≤ dD/2e or
Nw ≤ dD/2e). Then we prove that the secondary invariant starts to hold when
black and white become the two strictly most frequent colors, i.e., Nc < Nb

and Nc < Nw for all other colors c; this step must precede the time when the
number of bins for the second color gets over the dD/2e limit. Therefore we
prove by induction that the secondary invariant holds in certain intervals of
the input sequence.

Claim Suppose that black and white are the two strictly most frequent colors
of bins before packing the t-th item and that the main invariant (1) holds for
all colors and the secondary invariant (2) also holds before packing the t-th
item, i.e., Nc,t−1−dDt−1/2e ≤ CDc,t−1 for all colors c and 2αb,t−1+2αw,t−1 ≤
CDb,t−1+CDw,t−1+1. Then the main invariant for all colors and the secondary
invariant for black and white hold also after packing the t-th item.

Proof First we suppose that the maximal discrepancy D is not changed by the
t-th item. We start with showing that the main invariant holds after packing
the t-th item. If the t-th item is packed using the second case of BAF, the
main invariant holds by Claim 4.1. (Note that the t-th item cannot be packed
using the first case of the algorithm, since Nb,t−1 > 0 and Nw,t−1 > 0.)

Otherwise, if the t-th item is packed using the third case, it holds that
αb,t−1 > 0 and αw,t−1 > 0. The main invariant holds for a color c other than
black and white, because Nc,t−1 < dDt−1/2e which implies Nc,t ≤ dDt/2e.

To prove the main invariant for black and white, we show by contradic-
tion that the secondary invariant (2) guarantees that αb,t−1 < CDb,t−1 or
αw,t−1 < CDw,t−1. Otherwise, if αb,t−1 ≥ CDb,t−1 and αw,t−1 ≥ CDw,t−1,
the secondary invariant becomes 2αb,t−1+2αw,t−1 ≤ CDb,t−1+CDw,t−1+1 ≤
αb,t−1 + αw,t−1 + 1 which is a contradiction. Note that we used that αw,t−1
and αb,t−1 are integral and positive.

We now distinguish three cases according to the color of the t-th item:

– The t-th item is black: Then it is packed into a white bin. The main in-
variant for black holds after packing the item, because both Nb and CDb

increase, and the main invariant for white holds, since Nw decreases and
CDw decreases by at most one. (CDw stays the same when it is zero.)

– The t-th item is white: The situation is symmetric to the previous case.
– The t-th item has some other color: We pack it into a white bin if Nb,t−1−
dDt−1/2e < CDb,t−1, otherwise into a black bin. If it is packed into a
white bin, Nw decreases and CDw decreases by at most one, thus the main
invariant holds for white. The main invariant holds for black too, since Nb

stays the same and CDb decreases by at most one, but the main invariant
held strictly for black before packing the t-th item.

20 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

If the t-th item is packed into a black bin, we have Nw,t−1 − dDt−1/2e <
CDw,t−1 and the situation is symmetric as if the t-th item is packed into
a white bin.
It remains to show that the t-th item does not violate the secondary in-

variant. There are again three cases according to the color of the t-th item:
– The t-th item is black: Then it is packed into a white bin in both second

and third cases of the algorithm. Thus αb increases and αw decreases, so
the left-hand side of the inequality stays the same. Also the right-hand side
does not change or even increases as CDb increases and CDw decreases by
at most one. (CDw stays the same when it is zero.)

– The t-th item is white: The situation is symmetric to the previous case.
– The t-th item has another color than black and white: Then it is packed into

a white or black bin in both second and third cases of the algorithm. Thus
one of αw and αb decreases and the other one stays the same, while both
CDb and CDw decrease by at most one. The secondary invariant holds as
the left-hand side decreases by two and the right-hand side decreases by at
most two.
Otherwise D increases with an incoming item, thus αc′ for each color c′

decreases if D becomes odd. We follow the same proof as if D stays the same,
and the eventual additional decrease of αc′ can only decrease the left-hand
sides of the main and secondary invariants. ut

Note that in the previous proof, αb or αw can be negative in the secondary
invariant. We show the base case of the secondary invariant, i.e., that it starts
to hold when two colors become the two strictly most frequent colors of bins.

Claim Suppose that after packing the k-th item it starts to hold that Nc < Nb

and Nc < Nw for all other colors c, i.e., black and white become the two strictly
most frequent colors. Suppose also that the main invariant holds all the time
before packing the k-th item. Then 2αb,k + 2αw,k ≤ CDb,k + CDw,k + 1, i.e.,
the secondary invariant holds after packing the k-th item.

Proof Assume without loss of generality that Nb,k ≥ Nw,k. If Nb,k = Nw,k,
we also suppose without loss of generality that Nb,k−1 ≥ Nw,k−1.

First we show by contradiction that always Nb,k−1 ≥ Nw,k−1. Otherwise
if Nb,k−1 < Nw,k−1, then Nb,k > Nw,k (note that Nb,k = Nw,k would imply
Nb,k−1 ≥ Nw,k−1). This can happen only when a black item is packed into a
white bin, but then the numbers of black and white bins are swapped, hence
black and white were already the two strictly most frequent colors before the
k-th item which contradicts the assumption of the claim. We conclude that
Nb,k ≥ Nw,k and Nb,k−1 ≥ Nw,k−1.

Before the k-th item the number of non-black bins is at most d1.5Dk−1e−
Nb,k−1 = Dk−1−αb,k−1, since there are at most d1.5Dk−1e bins by Claim 4.1
(we use that the main invariant holds before packing the k-th item). As we
have Nb,k−1 ≥ Nw,k−1 and black and white are not the two strictly most
frequent colors before the k-th item, there must be a color r 6∈ {b,w} such that
Nr,k−1 ≥ Nw,k−1 (let the color be red without loss of generality). Therefore

Colored Bin Packing: Online Algorithms and Lower Bounds 21

the number of white bins is at most half of the number of non-black bins, i.e.,
Nw,k−1 ≤ (Dk−1 − αb,k−1)/2.

We show by contradiction that the k-th item must be packed using the
second case of the algorithm. (Note that BAF cannot use the first case, since
otherwise all bins would have the same color after packing the k-th item.) If the
item is packed using the third case, it must hold that Nb,k−1 ≥ dDk−1/2e +
1 and Nr,k−1 ≥ dDk−1/2e + 1. Since there are at most d1.5Dk−1e bins by
Claim 4.1, we get Nw,k−1 ≤ bDk−1/2c − 2, but then the k-th item cannot
cause Nw,k > Nr,k.

Therefore BAF packs the k-th item using the second case and it follows
that the main invariant holds after packing the k-th item for all colors by
Claim 4.1.

Observe that by packing the k-th item, the number of white bins must
increase, or the number of red bins must decrease, or both. Note that the k-th
item can have any color, not only white. We distinguish two cases: The k-th
item is white and the k-th item is not white.

If the k-th item is white, we have αb,k ≤ αb,k−1, as the number of black
bins does not increase (note that there is an inequality because of a possible
increase of D or a decrease of Nb). We get

αw,k = Nw,k −
⌈
Dk

2

⌉
= Nw,k−1 + 1−

⌈
Dk

2

⌉
≤ Dk−1 − αb,k−1

2
+ 1−

⌈
Dk

2

⌉
≤ Dk − αb,k

2
+ 1−

⌈
Dk

2

⌉
≤ −αb,k

2
+ 1.

where we used Nw,k−1 ≤ (Dk−1−αb,k−1)/2 for the first inequality and Dk−1−
αb,k−1 ≤ Dk−αb,k for the second inequality which follows from αb,k ≤ αb,k−1.

We know that αw,k ≤ −αb,k/2 + 1. Therefore

2αw,k+2αb,k ≤ −αb,k+2+2αb,k = αb,k+2 ≤ CDb,k+2 ≤ CDw,k+CDb,k+1

where we use the main invariant (1) for black color for the second inequality
and CDw,k ≥ 1 for the third inequality which holds, because the k-th item is
white.

Otherwise the k-th item is not white and it is packed into a bin of another
color than black and white, otherwise Nb or Nw decreases, thus black and
white cannot become the two strictly most frequent colors. After packing the
k-th item we have αb,k ≤ αb,k−1 + 1, as the k-th item may be black, therefore
Dk−1 − αb,k−1 ≤ Dk − αb,k + 1. Since the number of white bins does not
change, we get

αw,k = Nw,k −
⌈
Dk

2

⌉
= Nw,k−1 −

⌈
Dk

2

⌉
≤ Dk−1 − αb,k−1

2
−
⌈
Dk

2

⌉
≤ Dk − αb,k + 1

2
−
⌈
Dk

2

⌉
≤ −αb,k

2
+ 0.5.

22 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

In this case we have αw,k ≤ −αb,k/2 + 0.5. Therefore

2αw,k+2αb,k ≤ −αb,k+1+2αb,k = αb,k+1 ≤ CDb,k+1 ≤ CDw,k+CDb,k+1

where we use the main invariant (1) for black color for the second inequality.
Hence the secondary invariant (2) holds. ut

Main (2.1)

Secondary (2.2)
k t

Fig. 5 An illustration of dependencies of the main and secondary invariants. The horizontal
axis represents time. An invariant at a certain time represented by point P follows from
invariants from which there is an arrow to P . After packing the k-th item (time k) black
and white become the two strictly most frequent and after the t-th item (time t) it starts
to hold that Nb > dD/2e and Nw > dD/2e. Thus in the black part of the figure, BAF uses
the first or the second case of the algorithm, while in the dashed (red) part BAF uses the
third case of the algorithm.

We now complete the proof of the theorem by putting everything together.
Precisely, we prove that the main invariant holds during the whole run of the
algorithm by induction. The main invariant for each color holds trivially at
the beginning before any item comes. When the t-th item is packed, there are
two cases:

– No two colors were the strictly most frequent before the t-th item: BAF
keeps the main invariant for all colors by Claim 4.1, since it must pack the
t-th item with the first or the second case of the algorithm. If two colors
become the two strictly most frequent after packing the t-th item, the
secondary invariant starts to hold by Claim 4.1; otherwise the secondary
invariant is irrelevant in this case.

– Two colors were the strictly most frequent: Let these two colors be black
and white without loss of generality. Then the main invariant for all colors
and the secondary invariant for black and white are kept by Claim 4.1
(even if black and white are not the two strictly most frequent after the
t-th item).
It may happen that the two strictly most frequent colors change after
packing the t-th item (e.g., to black and red). The main invariant for all
colors still follows by Claim 4.1, but the secondary invariant for the new
strictly most frequent colors follows by Claim 4.1.

See Figure 5 for an illustration of dependencies of the invariants.

Therefore we can keep the main invariant Nc−dD/2e ≤ CDc for all colors
c during the whole run of the algorithm and the theorem follows by Claim 4.1.

ut

Colored Bin Packing: Online Algorithms and Lower Bounds 23

4.2 3.5-competitive Algorithm

We now show that there is a constant competitive online algorithm even for
items of sizes between 0 and 1. We combine algorithms Pseudo from [2] and
our algorithm BAF that is 1.5-competitive for zero-size items. The algorithm
Pseudo uses pseudo bins which are bins of unbounded capacity.

Pseudo-BAF:
1. First pack an incoming item into a pseudo bin using the algorithm

BAF (treat the item as a zero-size item).
2. In each pseudo bin, items are packed into unit capacity bins using

Next Fit.

Theorem 8 The algorithm Pseudo-BAF for Colored Bin Packing is abso-
lutely 3.5-competitive. In the parametric case when items have size at most
1/d, for a real d ≥ 2, it uses at most d(1.5 + d/(d− 1))OPTe bins. Moreover,
the analysis is asymptotically tight.

Proof In the general case for items between 0 and 1 we know that two consec-
utive bins in one pseudo bin have total size strictly more than one, since no
two consecutive items of the same color are in a pseudo bin. In each pseudo
bin we match each bin with an odd index with the following bin with an even
index, therefore we match all bins except at most one in each pseudo bin.
Moreover, the total size of a pair of matched bins is more than one. There-
fore the number of matched bins is strictly less than 2 · LB1 ≤ 2 · OPT ,
i.e., at most 2 · OPT − 1. The number of not matched bins is at most the
number of pseudo bins created by the algorithm BAF which uses at most
d1.5 · LB2 e ≤ d1.5 ·OPTe ≤ 1.5 ·OPT + 0.5 bins. Summing both bounds, the
algorithm Pseudo-BAF creates at most 3.5 ·OPT bins.

For the parametric case, inside each pseudo bin all real bins except the
last one have level strictly more than (d − 1)/d, so their number is strictly
less than d/(d − 1) · OPT , i.e., at most dd/(d − 1) · OPTe − 1. The number
of pseudo bins is still bounded by d1.5 · OPTe, thus the algorithm Pseudo
opens at most d(1.5 + d/(d− 1))OPTe bins.

We show the tightness of the analysis by combining hard instances for
Pseudo by Balogh et al. [2] and for BAF from the proof of Theorem 4. More
concretely, for n (a big integer) let ε = 1/(2n). The input consists of n − 1

groups of three items, specifically (n− 1)×
(

white
ε , black1 , blackε

)
.

The algorithm creates one pseudo bin containing every first and second
item from each group and n − 1 pseudo bins, each containing only the third
item from a group. Moreover, the first pseudo bin is split into 2 · (n− 1) unit
capacity bins (each item is in a separate bin), so there are 3 · (n− 1) bins. The
optimum for n− 1 groups is n, because we can pack all tiny items together in
one bin and LB1 = n.

Then the input continues by the hard instance with zero-size items from the
proof of Theorem 4 and BAF creates additional d(n−1)/2e pseudo bins, while
the optimum on the instance is n− 1. Pseudo-BAF now have d3.5 · (n− 1)e

24 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

bins. Observe that the optimal packing for n − 1 groups does not need to be
changed to put there zero-size items, thus OPT = n.

To prove tightness of the analysis for the parametric case for an integer
d ≥ 2, we use a modification of the first part of the hard instance by Balogh et
al. [2] on which Pseudo creates at least (d− 1)n+ dn bins, while its optimal
packing needs (d−1)n+1 bins. The input continues by the hard instance with
zero-size items like in the case of items of arbitrary size and force Pseudo-
BAF to create additional d(d− 1)n/2e bins without increasing the optimum.
Therefore Pseudo-BAF ends up with asymptotically (1.5 + d/(d − 1))OPT
bins.

For a real d ≥ 2, it is possible to use a similar sequence and show a lower
bound of (1.5 + d/(d− 1)) on the competitive ratio of Pseudo. ut

4.3 Classical Any Fit Algorithms and Pseudo

We analyze algorithms First Fit, Best Fit and Worst Fit and we find that
they are not constant competitive. Their competitiveness cannot be bounded
by any function of the number of colors even for only three colors, in contrast
to their good performance for two colors.

We also show the same negative result for the algorithm Pseudo from [3,
2] which first packs items by First Fit into pseudo bins and then apply Next
Fit in each pseudo bin and which is 3-competitive for Black and White Bin
Packing .

Proposition 1 First Fit, Best Fit and Pseudo are not constant compet-
itive.

Proof The input consists of 4n items which can be packed into two bins, but
FF, BF and Pseudo create n+ 1 bins where n is an arbitrary integer.

Let ε = 1/(4n). The instance is n ×
(

black
ε , blackε , white

ε , redε

)
. An optimal

packing can be obtained by putting black items from each group into the first
and the second bin, the white item into the first bin and the red item into the
second bin.

FF and BF pack the first group into two bins, both with a black bottom
item, and white and red items are assigned to the first bin. The first black item,
the white item and the red item from each following group are packed into
the first bin, while the second black item is packed into a new bin. Therefore
these algorithms create one bin with all white and red items and all first black
items from each group and n bins with a single black item.

The packing created by Pseudo on this instance is the same as the packing
by FF, since each pseudo bin contains only a single bin (the total size of all
items is 1) and items are put into pseudo bins by FF.

Hence FF, BF and Pseudo create (n+ 1)/2 ·OPT bins. ut

Note that WF on such instance creates an optimal packing, but the in-
stance can be modified straightforwardly to obtain a bad behavior for WF.

Colored Bin Packing: Online Algorithms and Lower Bounds 25

Proposition 2 Worst Fit is not constant competitive.

Proof The instance is similar to the one in the previous proof, but sizes of
items are different in each group. Let ε = 1/(2n) and let δ = 1/(6n2 + 1). The

instance is n×
(

black
δ , blackε , white

δ , redδ

)
.

We observe that the optimal packing does not change with other sizes.
However, WF packs all δ-items into the first bin, i.e., first black items from
each group and all white and red items, since the level of the first bin stays
at most (3n)/(6n2 + 1), which is less than 1/(2n) as ε/δ > 3n. Therefore all
second black items are packed into separate bins and WF creates n+ 1 bins,
while the optimum is two. ut

5 Any Fit Algorithms for Two Colors

For Black and White Bin Packing , we improve the upper bound on the absolute
competitive ratio of Any Fit algorithms from 5 to 3. Then we show that
Worst Fit performs even better for items with size of at most 1/d (for
d ≥ 2) as it is absolutely (1 +d/(d−1))-competitive in this case. Both bounds
are tight by the results of Balogh et al. [2] (they show a lower bound on
competitiveness of WF only for an integer d, but it is possible to apply a
similar proof in the case of a real d). Therefore WF matches the performance
of Pseudo, the online algorithm with the best competitive ratio known so far.
Note that for infinitesimally small items WF is 2-competitive, while BF and
FF remain 3-competitive.

5.1 Competitiveness of Any Fit Algorithms

Theorem 9 Any algorithm in the Any Fit family is absolutely 3-competitive
for Black and White Bin Packing.

Proof We use the following notation: An item is small when its size is less
than 0.5 and big otherwise. Similarly small bins have level less than 0.5 and
big bins have level at least 0.5.

We assign bins into chains — sequences of bins in which all bins except the
last must be big. If there is only one bin in a chain, it must be big. Moreover,
it is required that the bottom item in the i-th bin of a chain cannot be added
into the (i − 1)-st bin, even if it would have the right color, i.e., it is too big
to be put into the (i− 1)-st bin. We will split chains such that our chains will
have at most two bins, so the average level of bins in each chain is clearly at
least 0.5.

A bin is contained in at most one chain. We call a bin that is not in a chain
a separated bin. We create chains such that all big bins are in a chain and only
as few small bins as possible remains separated.

Since the average level of bins in chains is at least 0.5, it follows that the
total number of bins in all chains is bounded from above by 2 · OPT . We

26 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

want to bound the number of separated bins from above by the maximal color
discrepancy LB2 which yields the 3-competitiveness of AF.

We define a process of assigning bins into chains. We simply try to put as
many bins into chains as possible, but we add a bin into a chain only when the
first item in the bin cannot be added into the last bin of the chain, regardless
the color of the item. Note that the top item in the first bin and the bottom
item in the second bin may have the same color.

Formally, when an item from the input sequence is added we do the fol-
lowing:
– The item is added into a bin in a chain: Nothing happens with chains or

separated bins.
– The item is added into a small separated bin: If the bin becomes big, we

create a new chain from the bin, otherwise the bin stays separated.
– The item is big and creates a new bin: The newly created bin forms a new

chain.
– The item is small and creates a new bin: If there is a chain such that the

incoming item cannot be packed into the last bin of the chain by capacity,
i.e., even if it would have the right color, we add the newly created bin into
the chain. (Note that the last bin in the chain must be big.) If there is no
such chain, the new bin is separated.
Moreover, whenever a chain has two big bins we split it into two chains,

each containing one big bin. Therefore each chain is either one big bin, or a
big bin and a small bin. The intuitive reason for splitting chains is that we
can put more newly created small bins into chains.

If there is no separated bin at the end (after the last item is added), we
have created at most 2 ·OPT bins. Otherwise we define k and t as indices of
incoming items and show that the color discrepancy of items between the k-th
and the t-th item is at least the number of separated bins at the end.

Let t be the index of an item that created the last bin that is separated
when it is created (the t-th item must be small). Suppose without loss of
generality that the t-th item is black. Note that a small item that comes after
the t-th item can create a bin, but we put the bin into a chain immediately,
therefore the number of separated bins can only decrease after adding the t-th
item.

Let bi be the number of small black bins, i.e., bins with a black item on
the top, and wi be the number of small white bins after adding the i-th item
from the sequence. From the definition of t we know that wt = 0.

We define k as the biggest i ≤ t such that bi = 0, i.e., there is no small
black bin (if bi > 0 for all i ≥ 1 we set k = 0). Clearly the (k+ 1)-st item must
be small and black. Note that there can be some separated white bins and
possibly some other small white bins in chains, but there is no separated black
bin when the (k + 1)-st item arrives. Let W be the set of white bins that are
separated after adding the k-th item. Before adding the t-th item and creating
the last bin, all bins in W must have a black item on the top, or become big
bins in chains (thus k ≤ t− |W |). See Figure 6 for an example of the situation
after packing the k-th item.

Colored Bin Packing: Online Algorithms and Lower Bounds 27

{

W

k

Fig. 6 An example of the situation after packing the k-th item. A chains with two bins is
depicted by an arrow (the arrow goes from the first to the second bin). The dashed line is
at height 0.5.

Let new items be items with an index i for some value of i such that
k < i ≤ t. We want to bound the number of separated bins after adding the t-
th item by the color discrepancy. Note that these bins are small by the process
of assigning bins into chains. We observe that all separated bins must have a
black item on the top before adding the t-th item and also all chains have a
black item on the top in the last bin, otherwise the bin created by the t-th
item would be added in a chain.

Hence for separated bins with a black item at the bottom the number of
black items is greater by one than the number of white items. Separated bins
created with a new item must have a black item at the bottom, since otherwise
there cannot be a small black bin and bi = 0 for k < i < t.

Separated bins from the set W can have the same number of black and
white items before adding the t-th item, but in each such bin there is one more
new black item than new white items, since the first and the last such items
are black.

Now we look at new items which are packed into bins that are in chains
after adding the t-th item. We call such an item a link. Note that some links
can be at first packed into separated bins, but these bins are put into chains
before adding the t-th item. It suffices to show the following claim.

Claim In each chain the number of black links is at least the number of white
links after adding the t-th item.

Proof When the t-th item comes and creates a new separated bin, the last
item in each chain must be black. Therefore the claim holds for the chains
with only one bin.

For the chains with two bins (the first big and the second small) we observe
that a bin created with a link (i.e., its bottom item is a link) has either a black
item, or a big white item at the bottom. If it would have a small white link
at the bottom, there cannot be a small black bin and bi = 0 for some value of
i for k < i < t which is a contradiction with the definition of k. Since a big
white item starts a new chain, the second bin in a chain cannot have a white
link at the bottom.

We observe that the first link in the second bin of a chain must be black,
because either the second bin was created after the k-th item and we use the
observation from the previous paragraph, or it was created before the k-th

28 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

item and then it must had a white item on the top when the k-th item came,
since there was no small bin with a black item on the top.

Therefore the second bin of a chain has one more black link than white
links and the first bin of the chain has at most one more white link than black
links, hence the claim holds for chains with two bins.

Since there must be a link in the second bin and the last such link is black,
the claim holds for chains with one big and one small bin. The process of
assigning bins into chains does not allow chains with more than two bins or
with two big bins. Hence in each chain the number of black links is at least
the number of white links. ut

See Figure 7 for an example of the situation after packing the t-th item.

t

Fig. 7 The situation after packing the t-th item into a new bin. New items, i.e., items with
an index i such that k < i ≤ t, are marked with a dot.

Let S be the set of separated bins at the end. We found out that when we
focus on new items, i.e., items with an index i such that k < i ≤ t, there is
one more such black item than such white items in all separated bins and at
least the same number of such items of both colors in bins in all chains, i.e.,
links. Moreover, after the t-th item comes the number of separated bins can
only decrease, since no separated bin is created. So we have bounded the size
of S from above by the color discrepancy between the (k + 1)-st and the t-th
item:

|S| ≤

∣∣∣∣∣
t∑

`=k+1

s`

∣∣∣∣∣ ≤ LB2

where si is 1 when the i-th item is white and −1 otherwise. Note that some
items after the t-th item can create a bin, but such bins are put into chains
right away by the definition of t. ut

5.2 Competitiveness of the Worst Fit Algorithm

The Worst Fit algorithm performs in fact even better when all items are
small which we prove similarly to the proof of Theorem 9.

Theorem 10 Suppose that all items in the input sequence have size of at most
1/d, for a real d ≥ 2. Then Worst Fit is absolutely (1+d/(d−1))-competitive
for Black and White Bin Packing.

Colored Bin Packing: Online Algorithms and Lower Bounds 29

Proof We divide bins created by WF into sets B (big bins) and S (small bins).
Each big bin has level at least (d − 1)/d, thus |B| ≤ d/(d − 1) · OPT . Small
bins are smaller than (d − 1)/d, thus they can receive any item of the right
color. Note that a newly created bin is always small for any d ≥ 2. We show
that |S| is bounded by the maximal color discrepancy LB2 and we obtain that
WF is (1 + d/(d− 1))-competitive.

As items are arriving, we count the number of small black bins, i.e., bins
with a black item on the top and with level less than (d−1)/d, and the number
of small white bins. Let bi and wi be the number of small black and white bins,
respectively, after adding the i-th item from the sequence.

If bn = 0 and wn = 0, i.e., there is no small bin at the end, WF created at
most d/(d− 1) ·OPT bins. Otherwise suppose without loss of generality that
the last created bin has a black item at the bottom. Let t be the index of the
black item that created the last bin. It holds that wt = 0, since otherwise the
t-th item would be packed into a small white bin.

Let k be the largest index smaller than t for which bk = 0 (if bi > 0 for all
i ∈ {1, . . . , t}, we set k = 0). The (k + 1)-st item must be black. We observe
that any bin created after this point has a black item at the bottom, otherwise
bi = 0 for some i such that k < i < t. Note that wk can be greater than 0, i.e.,
there can be some small white bins and the (k+1)-st item is packed into one of
them. Let W be the set of these bins. Before adding the t-th item and creating
the last bin, all bins in W must have a black item on the top, or become big
bins (thus k ≤ t − |W |). See Figure 8 for an example of the situation after
packing the k-th item.

{

W

k

Fig. 8 An example of the situation after packing the k-th item for d = 2. Bins under the
dashed line at height of 1/d = 0.5 are small.

Let new items be items with an index i for some value of i such that
k < i ≤ t. We want to bound the number of small bins after adding the t-th
item by the color discrepancy. We already observed that all these bins must
have a black item on the top. Hence for small bins with a black item at the
bottom the number of black items is greater by one than the number of white
items. Small bins from the set W can have the same number of black and
white items, but in each such bin there is one more new black item than new
white items, since the first such item is black.

Now we look at new items which are packed into bins that are big after the
t-th item comes. It suffices to show that the number of such new black items is
at least the number of such new white items. We observe that WF packs any

30 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

new white item into an existing small bin, otherwise b` = 0 for some ` such
that k < ` < t. Hence any new white item must be packed into a bin created
after the k-th item (therefore with a new black item at the bottom), or into
a bin from the set W . Since the first item that is assigned to a bin from W
after the k-th item is black, our claim holds. See Figure 9 for an example of
the situation after packing the t-th item.

{
W

t

Fig. 9 The situation after packing the t-th item into a new bin. New items, i.e., items with
an index i such that k < i ≤ t, are marked with a dot.

Note that this matching of black and white items in big bins would fail for
algorithms like Best Fit or First Fit, since they can put a white item into
a big bin created before the k-th item and not contained in W .

We found out that when we focus on new items, i.e., items with an index
i for some value of i such that k < i ≤ t, there is one more such black item
than such white items in all small bins and at least as many such black items
as such white items in all big bins. Moreover, after the t-th item comes the
number of small bins |S| can only decrease, since no bin is created. So we
bound |S| from above by the color discrepancy between the (k+ 1)-st and the
t-th item:

|S| ≤

∣∣∣∣∣
t∑

`=k+1

s`

∣∣∣∣∣ ≤ LB2

where si is 1 when the i-th item is white and −1 otherwise.
Note that the last bin is already counted in the color discrepancy, since its

bottom item is black and has index t. ut

Conclusions and Open Problems

The Colored Bin Packing for zero-size items is completely solved.
For items of arbitrary size, our online algorithm still leaves a gap between

our lower bound 2.5 and our upper bound of 3.5. The upper bounds are only
0.5 higher than for two colors (Black and White Bin Packing) where a gap
between 2 and 3 remains for general items.

Classical algorithms FF, BF and WF, although they maintain a constant
approximation for two colors, start to behave badly when we introduce the
third color. For two colors, we now know their exact behavior. In fact, all Any
Fit algorithms are absolutely 3-competitive which is a tight bound for FF,
BF and WF. However, for items of size up to 1/d, d ≥ 2, FF and BF remain

Colored Bin Packing: Online Algorithms and Lower Bounds 31

3-competitive, while WF has the absolute competitive ratio 1 + d/(d − 1).
Thus we now know that even the simple Worst Fit algorithm matches the
performance of Pseudo, the online algorithm with the best competitive ratio
known so far. It is also an interesting question whether it holds that Any Fit
algorithms cannot be better than 3-competitive for two colors.

References

1. L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-packing prob-
lems with cardinality constraints. Discrete Applied Mathematics, 143:238–251, 2004.

2. J. Balogh, J. Békési, G. Dósa, L. Epstein, H. Kellerer, and Z. Tuza. Online results for
black and white bin packing. Theory of Computing Systems, volume 56, issue 1, pages
137–155, 2015.

3. J. Balogh, J. Békési, G. Dósa, H. Kellerer, and Z. Tuza. Black and white bin packing.
In Approximation and Online Algorithms, LNCS 7846, pages 131–144. Springer, 2013.

4. J. Balogh, J. Békési, and G. Galambos. New lower bounds for certain classes of bin
packing algorithms. Theoretical Computer Science, 440-441:1–13, 2012.

5. J. Balogh, J. Békési, G. Dósa, J. Sgall, and R. van Stee. The optimal absolute ratio for
online bin packing. In Proc. of the 26th Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 1425–1438. ACM-SIAM, 2015.

6. M. Böhm, J. Sgall, and P. Veselý. Online Colored Bin Packing. In Approximation and
Online Algorithms, LNCS 8952, pages 35–46. Springer, 2015.

7. M. Chrobak, J. Sgall, and G. J. Woeginger. Two-bounded-space bin packing revisited.
In European Symposium on Algorithms (ESA), LNCS 6942, pages 263–274. Springer,
2011.

8. E. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo. Bin packing approx-
imation algorithms: Survey and classification. In P. M. Pardalos, D.-Z. Du, and R. L.
Graham, editors, Handbook of Combinatorial Optimization, pages 455–531. Springer,
2013.

9. J. Csirik and D. S. Johnson. Bounded space on-line bin packing: Best is better than
first. Algorithmica, 31(2):115–138, 2001.

10. G. Dósa and L. Epstein. Colorful bin packing. In Algorithm Theory SWAT, LNCS
8503, pages 170–181. Springer, 2014.

11. G. Dósa and L. Epstein. Online bin packing with cardinality constraints revisited.
ArXiv e-prints 1404.1056, Apr. 2014.

12. G. Dósa and J. Sgall. First Fit bin packing: A tight analysis. In 30th International
Symposium on Theoretical Aspects of Computer Science (STACS), volume 20 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 538–549, Dagstuhl, Germany,
2013.

13. G. Dósa and J. Sgall. Optimal analysis of Best Fit bin packing. In Automata, Languages,
and Programming (ICALP), LNCS 8572, pages 429–441. Springer, 2014.

14. G. Dósa, Z. Tuza, and D. Ye. Bin packing with “largest in bottom” constraint: tighter
bounds and generalizations. Journal of Combinatorial Optimization, 26(3):416–436,
2013.

15. L. Epstein. Online bin packing with cardinality constraints. SIAM Journal on Discrete
Mathematics, 20, 2006.

16. L. Epstein. On online bin packing with LIB constraints. Naval Research Logistics,
56(8):780–786, 2009.

17. L. Finlay and P. Manyem. Online LIB problems: Heuristics for bin covering and lower
bounds for bin packing. RAIRO Operetions Research, 39(3):163–183, 2005.

18. H. Fujiwara and K. Kobayashi. Improved Lower Bounds for the Online Bin Packing
Problem with Cardinality Constraints In Computing and Combinatorics, LNCS 7936,
pages 518–530. Springer, 2013.

19. D. Johnson. Near-optimal Bin Packing Algorithms. Massachusetts Institute of Tech-
nology, project MAC. Massachusetts Institute of Technology, 1973.

32 Martin Böhm, György Dósa, Leah Epstein, Jǐŕı Sgall, Pavel Veselý

20. K. L. Krause, V. Y. Shen, and H. D. Schwetman. Analysis of several task-scheduling
algorithms for a model of multiprogramming computer systems. J. ACM, 22:522–550,
1975.

21. C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. J. ACM, 32:562–572,
1985.

22. P. Manyem. Bin packing and covering with longest items at the bottom: Online version.
The ANZIAM Journal, 43(E):E186–E232, 2002.

23. P. Manyem, R. L. Salt, and M. S.Visser. Approximation lower bounds in online LIB bin
packing and covering. Journal of Automata, Languages and Combinatorics, 8(4):663–
674, 2003.

24. S. S. Seiden. On the online bin packing problem. J. ACM, 49:640–671, 2002.
25. J. Ullman. The Performance of a Memory Allocation Algorithm. Technical Report 100,

1971.

	Introduction
	Preliminaries and Offline Optimum
	Lower Bounds on Competitiveness of Any Online Algorithm
	Algorithms for Arbitrarily Many Colors
	Any Fit Algorithms for Two Colors

