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Matematické Kolokvium 99

Prague

November 22, 2016



Roth’s theorem

Theorem (Roth)

Every subset A ⊂ [N] with no three-term arithmetic progression

has |A| = o(N).

Roth: |A| = O(N/ log logN).

Improvements by Heath-Brown, Szemerédi, Bourgain.

Best known: |A| ≤ N/(logN)1−o(1) by Sanders, Bloom.

Behrend construction gives a lower bound of N
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Game of Set

81 cards corresponding to points in F4
3.

Question

How many cards can we have without a “set”?

Answer: 20
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Cap Set Problem

Question

How large can A ⊂ Fn
3 be without a 3-term arithmetic progression?

This variant of Roth’s theorem is related to several famous
problems in combinatorics and computer science, including the
matrix multiplication problem, the sunflower conjecture.

Brown-Buhler: |A| = o(N).

Meshulam: |A| = O(3n/n).

Bateman-Katz: |A| = O(3n/n1+c).



Cap Set Problem

Question

How large can A ⊂ Fn
3 be without a 3-term arithmetic progression?

This variant of Roth’s theorem is related to several famous
problems in combinatorics and computer science, including the
matrix multiplication problem, the sunflower conjecture.

Brown-Buhler: |A| = o(N).

Meshulam: |A| = O(3n/n).

Bateman-Katz: |A| = O(3n/n1+c).



Cap Set Problem

Question

How large can A ⊂ Fn
3 be without a 3-term arithmetic progression?

This variant of Roth’s theorem is related to several famous
problems in combinatorics and computer science, including the
matrix multiplication problem, the sunflower conjecture.

Brown-Buhler: |A| = o(N).

Meshulam: |A| = O(3n/n).

Bateman-Katz: |A| = O(3n/n1+c).



Cap Set Problem

Question

How large can A ⊂ Fn
3 be without a 3-term arithmetic progression?

This variant of Roth’s theorem is related to several famous
problems in combinatorics and computer science, including the
matrix multiplication problem, the sunflower conjecture.

Brown-Buhler: |A| = o(N).

Meshulam: |A| = O(3n/n).

Bateman-Katz: |A| = O(3n/n1+c).



Cap Set Problem

Question

How large can A ⊂ Fn
3 be without a 3-term arithmetic progression?

This variant of Roth’s theorem is related to several famous
problems in combinatorics and computer science, including the
matrix multiplication problem, the sunflower conjecture.

Brown-Buhler: |A| = o(N).

Meshulam: |A| = O(3n/n).

Bateman-Katz: |A| = O(3n/n1+c).



Breakthrough

Theorem (Croot, Lev, Pach)

If A ⊂ Zn
4 has no 3-AP, then |A| ≤ 4cn with c ≈ .926.

Theorem (Ellenberg, Gijswijt)

If A ⊂ Fn
p has no 3-AP, then |A| ≤ p(1−cp)n for an explicit cp > 0.

Blasiak-Church-Cohn-Grochow-Naslund-Sawin-Umans, Alon

Same conclusion for the multicolored sum-free problem: If

{xi}mi=1,{yi}mi=1,{zi}mi=1 ⊂ Fn
p with xi + yj + zk = 0⇔ i = j = k ,

then m ≤ p(1−cp)n.

Theorem

Exponent is sharp for the multicolored sum-free problem: for

F2 by construction of Fu-Kleinberg, Fp by Kleinberg-Sawin-Speyer.
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Proof sketch of the multicolored sum-free problem

Slice rank of tensors: Tao

A tensor T : [N]3 → F has slice rank 1 if there are functions
f : [N]→ F and g : [N]2 → F such that one of the following holds:

T (i , j , k) = f (i)g(j , k)

T (i , j , k) = f (i , k)g(j)

T (i , j , k) = f (i , j)g(k)

Slice rank of general tensor T : minimum number of rank one
tensors needed to sum to T .

Claim

Diagonal tensor has rank equal to number of nonzero elements.
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Proof sketch of the multicolored sum-free problem

Let Md
n be the set of monomials of total degree at most d in n

variables, and degree less than p in each variable.

Claim

Take X = {x j}mj=1, Y = {y j}mj=1, Z = {z j}mj=1 in Fn
p, as in the

multicolored sum-free problem. Then

m ≤ 3|M(p−1)n/3
n |

Take a tensor T : (Fn
p)3 → Fp:

T (x , y , z) =
n∏

i=1

(1− (xi + yi + zi )
p−1)

T is diagonal on X × Y × Z , so slice rank is at least m, and is at

most 3|M(p−1)n/3
n |.
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Szemerédi’s Regularity Lemma

Szemerédi’s regularity lemma

Roughly speaking, every large graph can be

partitioned into a bounded number of roughly

equally-sized parts so that the graph is

random-like between almost all pairs of parts.

Rough structural result for all graphs.

One of the most powerful tools in graph theory.
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Triangle Removal Lemma

Triangle Removal Lemma

For every ε > 0 there is δ > 0 such that if a n-vertex graph has at

most δn3 triangles, then we can delete at most εn2 edges and

remove all triangles.

Many applications in extremal graph theory, additive number
theory, theoretical computer science, and combinatorics.

Proof uses Szemerédi’s regularity lemma, and gives a bound on
1/δ which is a tower of two of height a power of 1/ε.

Problem (Alon, Erdős, Gowers, Tao)

Find a new proof which gives a better bound.

Theorem (F.)

We may take 1/δ to be a tower of twos of height log 1/ε.
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Arithmetic Regularity Lemma

Let A ⊂ Fn
3. The density of A in S is dA(S) = |A ∩ S |/|S |.

A translate S + x ⊂ Fn
3 of a subspace S is ε-regular if

|dA(S + x)− dA(T )| ≤ ε

for every codimension 1 affine subspace T of S + x .

A subspace S is ε-regular if all but an ε-fraction of the translates
of S are ε-regular.

Green’s arithmetic regularity lemma

For each ε > 0 there is M(ε) such that for any A ⊂ Fn
3 , there is

an ε-regular subspace S of codimension at most M(ε).

Green, Hosseini-Lovett-Moshkovitz-Shapira:
M(ε) is a tower of twos of height ε−O(1).
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Arithmetic Triangle Removal Lemma

A triangle in Fn
p is a triple (x , y , z) of points with x + y + z = 0.

Green’s Arithmetic Triangle Removal Lemma

For every ε > 0 and prime p, there is δ > 0 such that if

X ,Y ,Z ⊂ Fn
p with at most δp2n triangles in X × Y × Z , then we

can delete εpn points and remove all triangles.

Green’s proof uses the arithmetic regularity lemma and gives a
bound on 1/δ which is a tower of two of height a power of 1/ε.

Král’-Serra-Vena: new proof using graph triangle removal lemma.

Problem (Green)

Improve the bound in the arithmetic triangle removal lemma.
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w − u ∈ Z

Triangle x + y + z = 0
corresponds to N := pn triangles
in the graph, and vice versa.

Thus, there are at most δN3

triangles.

Can remove εN2 edges and get
rid of all triangles.

Remove x from X , Y , or Z if at
least N/3 edges corresponding to
it are removed.
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Arithmetic Triangle Removal Lemma

A triangle in Fn
p is a triple (x , y , z) of points with x + y + z = 0.

Green’s Arithmetic Triangle Removal Lemma

For every ε > 0 and prime p, there is δ > 0 such that if

X ,Y ,Z ∈ Fn
p with at most δp2n triangles in X × Y × Z , then we

can delete εpn points and remove all triangles.

Much further work on bounds: Hatami-Sachdeva-Tulsiani,
Bhattacharyya-Xie, Fu-Kleinberg, Haviv-Xie.

Theorem (F.-Lovász)

We can take δ = (ε/3)Cp , where Cp = 1 + 1/cp is a computable

number. The exponent Cp is sharp.

In particular, C2 = 1 + 1/(5/3− log2 3) ≈ 13.239 and
C3 = 1 + 1/c3 where c3 = 1− log b

log 3 , b = a−2/3 + a1/3 + a4/3, and

a =
√

33−1
8 , so C3 ≈ 13.901.
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Removal lemma proof sketch

Theorem (F., L. M. Lovász)

With δ = (ε/3)Cp , if X ,Y ,Z ⊂ Fn
p have at most δp2n triangles in

X ×Y ×Z , then we can delete εpn points and remove all triangles.

Goal 1

With δ = εCp , the union of any εN disjoint triangles with elements

red, yellow, blue have ≥ δN2 rainbow triangles.

Goal 2

With δ = εCp+o(1), the union of any εN disjoint triangles with

elements red, yellow, blue have ≥ δN2 rainbow triangles.

Goal 3

With δ = εCp+o(1), if we have εN disjoint rainbow triangles with

each element in ≈ βN rainbow triangles, then β ≥ δ/ε.
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Arithmetic triangle removal lemma proof idea

Goal 3

With δ = εCp+o(1), if we have εN disjoint rainbow triangles with

each element in ≈ βN rainbow triangles, then β ≥ δ/ε.

Sample a random affine subspace S with |S | ≈ 1/β elements.

A rainbow triangle is good if each of its elements are in exactly one
rainbow triangle in S .

With positive probability, the densities of X ,Y ,Z in S are ≈ ε and
a constant fraction of the elements are in good rainbow triangles.

From the multicolor sum-free theorem

ε� |S |−cp ≈ (1/β)−cp ,

which gives δ ≤ εCp+o(1).
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Progressions with popular differences

Theorem (Green)

∀ ε > 0 there is a least n(ε) such that if n ≥ n(ε), then ∀ A ⊂ Fn
3

of density α, there is a nonzero d such that the density of 3-term

arithmetic progressions with common difference d is at least α3− ε.

Quiz

How large is n(ε)?

(a) Θ(log(1/ε))

(b) ε−Θ(1)

(c) 2ε
−Θ(1)

(d) Tower (Θ (log(1/ε)))

(e) Tower
(
Θ
(
(1/ε)Θ(1)

))
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Theorem (F.-Pham)

n(ε) = Tower (Θ (log(1/ε)))

This is the first application of a regularity lemma where a
tower-type bound is shown to be needed.

Theorem* (F.-Pham-Zhao)

A similar result holds in abelian groups and in [N].
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Half the random bound

Definition

Let n′(α) be the least integer such that if n ≥ n′(α), then for every

A ⊂ Fn
29 of density α, there is a nonzero d such that the density of

3-term APs with common difference d is at least α3/2.

Quiz

How large is n′(α)?
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Multidimensional cap set problem

Inspired by an idea of David Fox on the game SET.

Definition

Let r(n, d) be the maximum |A| over all A ⊂ Fn
3 which contains no

d-dimensional afffine subspace.

Theorem:

For N = 3n, we have N1−(d+1)3−d ≤ r(n, d) ≤ N1−13.902−d
.

Hence, the largest dimension of an affine subspace guaranteed in

any subset of Fn
3 of density α is Θ
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Open Problems

Better estimate the bound on the cap set problem.

Prove good estimates for the Green-Tao analogue of Green’s
popular difference theorem for 4-term APs.

Obtain reasonable bounds on Roth’s theorem and the arithmetic
triangle removal lemma in other abelian groups.

Better estimate the bounds on higher dimensional cap sets.

Extend the new cap set theorem to longer arithmetic progressions.
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Thank you!
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