Probabilistic techniques - tutorials

Classwork 4 – The second moment

- 1. Let $\omega(G)$ denote the size of the largest clique in G. Prove that the threshold function for the property " $\omega(G(n,p)) \geq 4$ " is $n^{-2/3}$.
- 2. Let $n \geq 3$ be a positive integer and x_1, \ldots, x_n with $x_i^2 \leq \frac{1}{10000} \frac{2^n}{n}$ for each $i \in [n]$. Prove that there exist two non-empty disjoint subsets $I, J \subset [n]$ such that

$$\sum_{i \in I} x_i = \sum_{j \in J} x_j.$$

3. A set of positive integers $\{x_1,\ldots,x_n\}$ is said to have distinct sums if all sums

$$\sum_{i \in S} x_i, S \subseteq \{1, \dots, n\}$$

are distinct. Let f(n) = maximal k such that there exist a set

$$\{x_1,\ldots,x_k\}\subseteq\{1,\ldots,n\}$$

with distinct sums. Show that

$$\lfloor \log_2(n) \rfloor \le f(n) \le \log_2(n) + \frac{\log_2(\log_2 n)}{2} + \mathcal{O}(1).$$

4. Show that there is a positive constant c such that the following holds: For any n real numbers a_1, \ldots, a_n satisfying $\sum_{i=1}^n a_i^2 = 1$, if $(\epsilon_1, \ldots, \epsilon_n)$ is a $\{-1, +1\}$ -random vector obtained by choosing each ϵ_i randomly and independently with uniform distribution to be either -1 or +1, then

$$\Pr\left[\left|\sum_{i=1}^{n} \epsilon_i a_i\right| \le 1\right] \ge c.$$