
Probabilistic techniques - tutorials
Classwork 5 – Lovász local lemma and Chernoff bound

1. Prove that, for every integer d > 1, there is a finite c(d) such that the edges of
any bipartite graph with maximum degree d in which every cycle has at least
c(d) edges can be colored by d + 1 colors so that there are no two adjacent
edges with the same color and there is no two-colored cycle.
Solution:

(a) We first prove that G has an edge-coloring α by d colors. Observe that G can be
embedded to a d-regular bipartite graph H. By Hall’s theorem, H has a perfect
matching. We can remove the perfect matching to get a d − 1-regular graph and
iterate.

(b) Observe that each edge e is at most in d − 1 two-colored cycles in α (determined by
the color α(e) and another color).

(c) We break each two-colored cycle C into disjoint paths PC
1 , . . . , PC

k of length [c(d), 2 ·
c(d)) (if |C| < 2 · c(d), we have just one path). We call these paths fragments. We fix
this partition for the rest of the proof.

(d) We uniformly select an edge from each fragment PC
i at random, independently for

each path, and color this edge with the (d+ 1)-th color. We denote the new coloring
by β.

(e) Let Be be the bad event that “β(e) = d+ 1 and either there is an edge e′ adjacent to
e with β(e′) = d+ 1 or e′′ joined by an edge to e with β(e′′) = d+ 1.” In other words
“β(e) = d+1 and the color d+1 also appears in the (open) second edge-neighborhood
of e.”

(f) Observe that if neither of the events Be occurs, the coloring β is as required. The
first part with the edge e′ implies that β is a proper edge-coloring. The part with the
edge e′′ implies that there are no two-colored cycles. That is, each two-colored cycle
in α now has an edge of color d+1 by construction. Thus, the only possible two-color
cycles has d + 1 as one of the colors. However, if an edge e gets the color d + 1 then
by the absence of d+ 1 in the second neighborhood, we cannot get a two-color cycle.

(g) We want to apply Lovász Local Lemma to show Pr[
⋂

e Be] > 0. To do so, we will
estimate Pr[Be] and compute the dependency degree among the events {Be : e ∈
E(G)}.

(h) Let us denote by N2(e) the open second edge-neighborhood of e, by Pe the set of
fragments containing the edge e. We have |Pe| ≤ d− 1 from above. Moreover, denote
by Ae,P the event that β(e) = d + 1 by the fragment P ∈ Pe, and by Ae the event
that β(e) = d+ 1. We have

Pr[Be] = Pr[
⋃

f∈N2(e)

Ae ∩Af ] = Pr[
⋃

f∈N2(e)

⋃
P∈Pe
Q∈Pf

Ae,P ∩Af,Q].

If the fragments P and Q are different, the events Ae,P and Af,Q are independent.
Otherwise, the probability of their intersection is 0 (assuming e ̸= f , which we have
here). Thus, we have Pr[Ae,P ∩Ae,Q] ≤ Pr[Ae,P ] · Pr[Ae,Q] in both cases.

Pr[Be] = Pr[
⋃

f∈N2(e)

⋃
P∈Pe
Q∈Pf

Ae,P ∩Af,Q] ≤
∑

f∈N2(e)

∑
P∈Pe
Q∈Pf

Pr[Ae,P ] · Pr[Ae,Q]

≤ 2((d− 1)2 + d− 1) · (d− 1)2 · 1

c(d)2
≤ 4d4

c(d)2
.



(i) To compute the degree, observe that the events Be and Bf are independent if there
are no two edges e′ ∈ N2(e) and f ′ ∈ N2(f) that lie in the same fragment. Thus, the
degree is at most

2((d− 1)2 + d− 1)︸ ︷︷ ︸
(i)

· d · 2c(d)︸ ︷︷ ︸
(ii)

· 2((d− 1)2 + d− 1)︸ ︷︷ ︸
(iii)

≤ 32d5c(d),

where (i) counts the choices of e′, (ii) counts the choices of f ′ sharing a fragment
with e′ (there is at most d fragments, each of which of length at most 2c(d)), and (iii)
counts the choices of f such that f ∈ N2(f

′), or equivalently f ′ ∈ N2(f).

(j) If e · 4d4

c(d)2 · 32d5c(d) = e 128d9

c(d) ≤ 1, we are done.

2. Let m and k be two positive integers satisfying

e(m(m− 1) + 1)k(1− 1

k
)m ≤ 1.

Then, for any set S of m real numbers, there is a k-coloring of R such that
each translation x+ S, for x ∈ R, is multicolored. That is c(x+ S) = [k].
Solution:

(a) We first show the claim for x in a finite subset X ⊆ R.
(b) Set Y = ∪x∈X(x + S) and let c : Y → {1, 2, . . . , k} be a random k-coloring of Y

obtained by choosing for each y ∈ Y the color c(y) uniformly and independently.
(c) For each x ∈ X, let Ax be the event in which x+ S is not multicolored (with respect

to c). Clearly, Pr[Ax] = Pr[∪i missing color i] ≤ k(1− 1/k)m, because the probability
of the event missing color i is (1− 1/k)m.

(d) Moreover, each event Ax is mutually independent of all the other events Ax� but those
for which (x+ S) ∩ (x� + S) ̸= ∅.

(e) There are at most m(m−1) such events, because there is a unique x such that for
s, s′ ∈ S, x+ s = s′. Then e(m(m− 1) + 1)k(1− 1/k)m ≤ 1 and we can apply LLL.

(f) We can now prove the existence of a coloring of the set of all reals with the desired
properties, by a standard compactness argument. Since the discrete space with k
points is (trivially) compact, Tikhonov’s Theorem implies that an arbitrary product of
such spaces is compact. In particular, the space of all functions from R to {1, 2, . . . , k},
with the usual product topology, is compact. That is, the open set are those that have
finite number of coordinates been not the whole space.

(g) In this space, for every fixed x ∈ R, the set Cx of all colorings c, such that x + S is
multicolored, is closed. Because we are specifiyng the value on a finite set of points.

(h) As we proved above, the intersection of any finite number of sets Cx is nonempty. It
thus follows, by compactness, that the intersection of all sets Cx is nonempty. Any
coloring in this intersection has the properties we want.

3. Let σ be a uniformly random permutation of [n] = {1, . . . , n}. Denote X =
|{i ∈ [n] : (∀j < i)σ(j) < σ(i)}|. Prove that for every ϵ > 0 it holds that

lim
n→∞

Pr[(1− ϵ)Hn < X < (1 + ϵ)Hn] = 1,

where Hn =
∑n

i=1
1
i
.

Solution:

(a) Set Xi = 1(∀j<i)σ(j)<σ(i) then X =
∑n

i=1 Xi.



(b) On the other hand

E[Xi] = Pr[∀j < i : σ(j) < σ(i)] = (i− 1)!
n!

i!

1

n!
=

1

i
,

we can permute all the elements greater than i first, then the position of i is com-
pletely determined as it has to be the greatest. Finally we have to permute the ele-
mentes strickly lower than i, and we have i− 1 of these. Then E[X] =

∑n
i=1 E[Xi] =∑n

i=1 1/i = Hn.
(c) Let check that Xi are independent. Consider a subset I = {i1 < · · · < ik} ⊂ [n], we

want to see that Pr[∩i∈IXi = 1] =
∏

i∈I Pr[Xi = 1]. This is similar to the previous
argument. Pr[∩i∈IXi = 1] first order all the greater elements than ik, n!/ik!, then
order all the elements between ik−1 < ik, (ik − 1)!/ik−1! and so on.

(d) Then by Chernoff Pr[|X −Hn| ≥ ϵHn] < 2e−
ϵ2Hn

3 , which goes to 0 since Hn goes to
∞.
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