Probabilistic techniques - tutorials

Classwork 3 – The method of alternation

- 1. Denote by $R(\cdot, \cdot)$ the Ramsey numbers. Fix $k \in \mathbb{N}$. Prove that for any integer n, it holds that $R(k, k) > n \binom{n}{k} 2^{1 \binom{k}{2}}$. Can you write the expression on the right hand side in terms of k?
- 2. Fix a graph F and define ex(n, F) to be the maximal number of edges of an n-vertex graph that does not contain F as a subgraph. Show that for any F on k > 2 vertices with at least 2k 3 edges it holds $ex(n, F) = \Omega(n^{3/2})$.
- 3. A dominating set of an undirected graph G = (V, E) is a set $U \subseteq V$ such that every vertex $v \in V \setminus U$ has at least one neighbor in U. Let G = (V, E) be a graph on n vertices, with minimum degree $\delta > 1$. Then G has a dominating set of at most $n \frac{1+\ln(\delta+1)}{\delta+1}$ vertices.
- 4. Let G = (V, E) be a graph on *n* vertices with minimum degree $\delta > 1$. Prove that there is a partition of *V* into two disjoint sets *A* and *B* such that $|A| \leq \mathcal{O}(n\frac{\ln(\delta)}{\delta})$ and each vertex in *B* has at least one neighbor in *A* and at least one neighbor in *B*.
- 5. Define the number m(n) as follows: given any *n*-uniform hypergraph H = (V, E) less than m(n) edges, there exists a two-coloring of V such that no edge is monochromatic. Show that $m(n) = \Omega(2^n(n/\ln(n))^{1/2})$.