
Systems of equations, Analytic geometry

Tung Anh Vu

September 26, 2024

Contact: tung@iuuk.mff.cuni.cz

tung@iuuk.mff.cuni.cz


Systems of equations
One variable, one equation

Types of equations:

▶ Linear:
6x + 3 = 0.

▶ Quadratic:
2x2 + 3x + 1 = 0.

▶ Cubic:
x3 − 5x2 − 2x + 24 = 0.

▶ Quartic, quintic,. . .

▶ Can have 0, 1, multiple, or infinitely many solutions.
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Solving linear equations

Linear equations can have either:

▶ zero solutions
7x + 3 = 7x + 2,

▶ one solution
6x + 9 = x − 6,

▶ infinitely many solutions

5x + 3− 4x = 3 + x .



Solving quadratic equations

General form

ax2 + bx + c = 0,

where b, c ∈ R and a ∈ R \ {0}.

Example

Given 2x2 + 3x + 1 = 0, we have a = 2, b = 3, c = 1.
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Solving quadratic equations: quadratic formula

Quadratic formula

x1,2 =
−b ±

√
b2 − 4ac

2a

Task
Solve 2x2 + 3x + 1 = 0 using the quadratic formula.
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Solving polynomial equations: by factoring

Rational zero test
Each rational solution x of a polynomial equation is of the
form p

q where

▶ p is a factor of the constant term, and

▶ q is a factor of the leading term.

Tasks
Solve the following by factoring:

▶ x2 + 2x − 15 = 0,

▶ x3 − 7x + 6 = 0.
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Multivariate equations
One equation

▶ Over reals R has generally infinitely many solutions.
▶ Over integers Z may be extremely difficult to solve.

▶ E.g., Fermat’s last theorem.



Two equations, two variables
Number of solutions

▶ Can have 0, 1, multiple or infinitely many solutions.

▶ If the equation is linear, then each equation defines a line
in R2.

▶ And the solution is the intersection of those lines.
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Two equations, two variables
Method of substitution

1. Solve

x2 + 4x − y = 7

2x − y = −1

.

2. Solve

−x + y = 4

x2 + y = 3



Two equations, two variables
Method of elimination

1. Solve

5x + 3y = 9

2x − 4y = 14

2. Solve

x − 2y = 3

−2x + 4y = 1

3. Solve

2x − y = 1

4x − 2y = 2



Analytic geometry

Study of geometry using a coordinate system.



Vectors

Vector: geometric object with direction and magnitude.

Example

Suppose we are in the Euclidean plane R2. Consider
points p = (4,−7) and q = (−1, 5). Draw the vector from p to q.

Example

Consider the vector p⃗q from the previous example. What is its
angle?
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What can we do with vectors?

Suppose we have vectors u⃗, v⃗ , w⃗ ∈ Rn, and real numbers α, β ∈ R.

▶ Addition: u⃗ + v⃗ = (u1 + v1, u2 + v2 + · · ·+ un + vn).

▶ Scalar multiplication: αu⃗ = (αu1, αu2, . . . , αun).

Properties of above operations:

▶ Commutativity: u⃗ + v⃗ = v⃗ + u⃗.

▶ Associativity: (u⃗ + v⃗) + w⃗ = v⃗ + (u⃗ + w⃗).

▶ Distributivity over scalar multiplication: (α+ β)u⃗ = αu⃗ + βu⃗.

▶ Distributivity over addition: α(u⃗ + v⃗) = αu⃗ + αv⃗ .
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Length of a vector

Computing the length

∥u⃗∥ =
√
u21 + u22 + · · ·+ u2n.

Is it true that ∥αu⃗∥ = α∥u⃗∥? No, but∥αu⃗∥ = |α|∥u⃗∥.

Computing the unit vector

u⃗

∥u⃗∥
.
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An airplane is descending at 200 km/hr at an angle of 30 degrees
below the horizon. Find the component form of its velocity vector.



Dot product

Definition
Suppose we have u⃗, v⃗ , w⃗ ∈ Rn. The dot product1 of u⃗ and v⃗ is
defined as

u⃗ · v⃗ = u1v1 + u2v2 + · · ·+ unvn =
n∑

i=1

uivi .

Properties

▶ Commutativity: u⃗ · v⃗ = v⃗ · u⃗.
▶ 0⃗ · v⃗ = 0.

▶ Distributivity: u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗ .

▶ v⃗ · v⃗ = ∥v⃗∥2.
▶ Triangle inequality: ∥u⃗ + v⃗∥ ≤ ∥u⃗∥+ ∥v⃗∥.

1You will see during your studies that there are multiple types of dot
products. This one is usually known as the standard dot product.
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Dot product in the plane

Let u⃗, v⃗ ∈ R2, and θ be the angle between u⃗ and v⃗ . Then

u⃗ · v⃗ = ∥u⃗∥∥v⃗∥ cos θ.

θ in degrees θ in radians u⃗ · v⃗
90◦ π

2 rad 0

0◦ 0 rad ∥u⃗∥∥v⃗∥
180◦ π rad −∥u⃗∥∥v⃗∥
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Projection

Definition
Projection of vector u⃗ on vector v is the vector

projv (u) =
u⃗ · v⃗
∥v⃗∥

· v⃗ =
u⃗ · v⃗
v⃗ · v⃗

· v⃗ .



Circles

Definition
A circle is a set of equidistant points from a fixed point (h, k)
called the center. The distance from the center to any of the circle
points is called the radius.

Standard form of the equation of a circle

(x − h)2 + (y − k)2 = r2



Circles

Definition
A circle is a set of equidistant points from a fixed point (h, k)
called the center. The distance from the center to any of the circle
points is called the radius.

Standard form of the equation of a circle

(x − h)2 + (y − k)2 = r2



1. A circle has center (2, 3) and includes the point (1, 4). Find
its standard equation.

2. Find the center and the radius of a circle

x2 − 6x + y2 − 2y + 6 = 0.
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Ellipses

Definition
An ellipse is the set of points whose sum of distances from two
distinct points called foci is constant.

Some terminology:

▶ Center is the midpoint of the foci.

▶ Major axis is the chord through the foci.

▶ The major axis intersects the ellipse at vertices.

▶ Minor axis is the chord through the center perpendicular to
the major axis.

▶ The minor axis intersects the ellipse at co-vertices.
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Properties of ellipses

▶ Consider an ellipse with center at (h, k), foci at (h ± c , k),
vertices at (h ± a, k), and co-vertices at (h, k ± b).

▶ Sum of distance to foci is (a+ c) + (a− c) = 2a.

⇒ Distance from a focal point to a co-vertex is a.

⇒ c2 = a2 − b2.

▶ Eccentricity of an ellipse is defined as c
a .

Standard equation

(x − h)2

a2
+

(y − k)2

b2
= 1
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1. Find the equation of an ellipse with foci at (0, 1) and (4, 1)
and major axis of length 6.

2. Find the center and vertices of an ellipse
x2 + 4y2 + 6x − 8y + 9 = 0.
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Cross product

Only defined in three dimensional spaces.

Definition
The cross product of u⃗, v⃗ ∈ R3 is defined as

u⃗ × v⃗ = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).



Cross product: geometric properties

Let u⃗, v⃗ ∈ R3, and θ be the angle between them.

▶ u⃗ × v⃗ is orthogonal to both u⃗ and v⃗ .
▶ The “orthogonal direction” is determined by convention.

▶ u⃗ × v⃗ = ∥u⃗∥∥v⃗∥ sin(θ)n⃗ where n⃗ is the unit vector orthogonal
to u⃗ and v⃗ .

▶ ∥u⃗ × v⃗∥ is the area of the parallelogram between u⃗ and v⃗ .
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Lines and planes

Parametric equation of a line

Let t ∈ R be a parameter.

x = x1 + at; y = y1 + bt; z = z1 + bt

Symmetric equation of a line

x − x1
a

=
y − y1

b
=

z − z1
c

.

Exercise
Find the parametric and the symmetric equation of a line passing
through points (−2, 1, 0) and (1, 3, 5).
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Lines and planes

▶ Consider a plane that passes through the point (x1, y1, z1) and
has a normal vector (a, b, c).

▶ Then for any point (x , y , z) in the plane we have

(a, b, c) · (x − x1, y − y1, z − z1) = 0.

⇒ Standard equation of a plane

a(x − x1) + b(y − y1) + c(z − z1) = 0.

▶ General form of the equation of a plane

ax + by + cz + d = 0.
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1. Find the general equation of the plane passing
through (2, 1, 1), (0, 4, 1), and (−2, 1, 4).

2. Find the intersection of planes x − 2y + z = 0
and 2x + 3y − 2z = 0.
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