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Basics

Probabilisty space Ω

▶ finite set (Or at most countable for us.)
▶ with a measure Pr : Ω → R+ satisfying:

▶ ∀ω ∈ Ω: Pr[ω] ≥ 0
▶

∑
ω∈Ω Pr[ω] = 1.

Event A ⊆ Ω has Pr[A] =
∑

ω∈A Pr[ω].
Union bound. Let A1, . . . ,Am be events. Then

Pr[
m⋃
i=1

Ai ] ≤
m∑
i=1

Pr[Ai ].
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Exercise

Let S ⊆ 2{1,2,...,n} (i.e. subsets of {1, 2, . . . , n}). A 2-coloring
of {1, 2, . . . , n} is any function f : {1, 2, . . . , n} → {red,blue}.
Show that if ∀S ∈ S:
▶ ∀S ∈ S : |S | = k (assume n > k), and

▶ |S| < 2k−1,

then there exists a 2-coloring of {1, 2, . . . , n} such that no S ∈ S is
monochromatic.



Conditional probability

The probability of event A conditioned on event B,
denoted Pr[A|B] is

Pr[A|B] = Pr[A ∩ B]

Pr[B]
.

Event A is independent from event B if Pr[A|B] = Pr[A].

▶ This implies Pr[A ∩ B] = Pr[A] Pr[B].
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Exercise

Alice and Bob are throwing darts at a target. Alice has a
chance 1/3 of hitting the target, and Bob has chance 1/4 of doing
the same. What is the chance Alice hits the target given that at
least one of them hit it?



Events A1, . . . ,Am are mutually independent if for
all I ⊆ {1, 2, . . . ,m}:

Pr[∩i∈IAi ] = Πi∈I Pr[Ai ].

Chain rule

Pr[∩m
i=1Ai ] = Πm

i=1 Pr[Ai |Ai−1 ∩ Ai−2 ∩ · · · ∩ A1].
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Random variables

▶ A random variable X is a measurable function X : Ω → R.

▶ Example. For a t ∈ R, “X ≥ t” is the
event {ω ∈ Ω: X (ω) ≥ t}.

▶ A random variable X is independent of event A
if ∀S ⊆ R : Pr[X ∈ S |A] = Pr[X ∈ S ].

▶ Random variables X ,Y are independent if ∀S ,T ⊆ R,
“X ∈ S” and “Y ∈ T” are independent events.
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Expectation

▶ Expectation of a random variable X
is E[X ] =

∑
ω∈Ω X (ω) Pr[ω].

▶ Linearity of expectation. For random variables (not necessarily
independent!!!!) X1, . . . ,Xm and λ1, . . . , λm ∈ R we have

E[λ1X1 + · · ·+ λmXm] =
m∑
i=1

λiE[X ].

▶ If X ,Y are independent random variables
then [E ]XY = [E ]X [E ]Y .
▶ Homework. Is the converse true?

▶ For an integer random variable X : Ω → N0, we
have E[X ] =

∑∞
k=0 Pr[X ≥ k].
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Exercise

Exercise
Suppose we keep tossing a biased coin where a heads lands with
probability p and tails land with probability 1− p. What is the
expected number of tosses until we get the first heads.

Exercise
Shuffle a deck of cards and start revealing cards one by one. What
is the expected number of cards until we reveal the first ace?

Exercise
Suppose that we are looking with our perfect vision at the
Pentagon at from an angle which is uniformly random. What is the
expected number of sides of the Pentagon that we see?
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Markov’s and Chebyshev’s inequality

Markov’s inequality

Let X : Ω → R+ be a positive random variable. Then for any t > 0
we have

Pr[X ≥ t] ≤ E[X ]/t.

Variance
Variance of a random variable X is Var[X ] = E[(X − E[X ])2].

▶ Can be computed as E[X 2]− E[X ]2.

▶ c ∈ R, Var[cX ] = c2Var[X ].

▶ For mutually independent X1, . . . ,Xm,
Var[X1 + · · ·+ Xm] =

∑m
k=1 Var[Xk ].

Chebyshev’s inequality

Let X be a random variable. For any t ∈ R+

Pr[|X − E[X ]| ≥ t] ≤ Var[X ]/t2.



Markov’s and Chebyshev’s inequality

Markov’s inequality

Let X : Ω → R+ be a positive random variable. Then for any t > 0
we have

Pr[X ≥ t] ≤ E[X ]/t.

Variance
Variance of a random variable X is Var[X ] = E[(X − E[X ])2].

▶ Can be computed as E[X 2]− E[X ]2.

▶ c ∈ R, Var[cX ] = c2Var[X ].

▶ For mutually independent X1, . . . ,Xm,
Var[X1 + · · ·+ Xm] =

∑m
k=1 Var[Xk ].

Chebyshev’s inequality

Let X be a random variable. For any t ∈ R+

Pr[|X − E[X ]| ≥ t] ≤ Var[X ]/t2.



Markov’s and Chebyshev’s inequality

Markov’s inequality

Let X : Ω → R+ be a positive random variable. Then for any t > 0
we have

Pr[X ≥ t] ≤ E[X ]/t.

Variance
Variance of a random variable X is Var[X ] = E[(X − E[X ])2].

▶ Can be computed as E[X 2]− E[X ]2.

▶ c ∈ R, Var[cX ] = c2Var[X ].

▶ For mutually independent X1, . . . ,Xm,
Var[X1 + · · ·+ Xm] =

∑m
k=1 Var[Xk ].

Chebyshev’s inequality

Let X be a random variable. For any t ∈ R+

Pr[|X − E[X ]| ≥ t] ≤ Var[X ]/t2.



Markov’s and Chebyshev’s inequality

Markov’s inequality

Let X : Ω → R+ be a positive random variable. Then for any t > 0
we have

Pr[X ≥ t] ≤ E[X ]/t.

Variance
Variance of a random variable X is Var[X ] = E[(X − E[X ])2].

▶ Can be computed as E[X 2]− E[X ]2.

▶ c ∈ R, Var[cX ] = c2Var[X ].

▶ For mutually independent X1, . . . ,Xm,
Var[X1 + · · ·+ Xm] =

∑m
k=1 Var[Xk ].

Chebyshev’s inequality

Let X be a random variable. For any t ∈ R+

Pr[|X − E[X ]| ≥ t] ≤ Var[X ]/t2.



Markov’s and Chebyshev’s inequality

Markov’s inequality

Let X : Ω → R+ be a positive random variable. Then for any t > 0
we have

Pr[X ≥ t] ≤ E[X ]/t.

Variance
Variance of a random variable X is Var[X ] = E[(X − E[X ])2].

▶ Can be computed as E[X 2]− E[X ]2.

▶ c ∈ R, Var[cX ] = c2Var[X ].

▶ For mutually independent X1, . . . ,Xm,
Var[X1 + · · ·+ Xm] =

∑m
k=1 Var[Xk ].

Chebyshev’s inequality

Let X be a random variable. For any t ∈ R+

Pr[|X − E[X ]| ≥ t] ≤ Var[X ]/t2.



Markov’s and Chebyshev’s inequality

Markov’s inequality

Let X : Ω → R+ be a positive random variable. Then for any t > 0
we have

Pr[X ≥ t] ≤ E[X ]/t.

Variance
Variance of a random variable X is Var[X ] = E[(X − E[X ])2].

▶ Can be computed as E[X 2]− E[X ]2.

▶ c ∈ R, Var[cX ] = c2Var[X ].

▶ For mutually independent X1, . . . ,Xm,
Var[X1 + · · ·+ Xm] =

∑m
k=1 Var[Xk ].

Chebyshev’s inequality

Let X be a random variable. For any t ∈ R+

Pr[|X − E[X ]| ≥ t] ≤ Var[X ]/t2.



Chernoff bounds

Let X1, . . . ,Xn be independent 0/1 random variables
satisfying Pr[Xi = 1] = p for some p ≤ 1/2. Let X =

∑n
i=1 Xi

and µ = E[X ] = np.

▶ Small-deviation bound. Pr[X ≥ µ+ k
√
µ] = 2−Θ(k2) for

any k = O(
√
µ) satisfying k

√
µ ≤ n.

▶ Large-deviation bound. Pr[X ≥ µ+ rµ] = Θ(r)−Θ(rµ) for
any r ≥ 1 satisfying µ+ rµ ≤ n.

Proof
On the board.
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