Introduction to Parameterized Algorithms — Tutorial 12 2025/01/07, 17:20

2)

Let s* be a feasible solution (assuming one exists). For every j € [n] clearly the set {s

1 .2 k o*
1 55871 87,8]
has size at most k + 1. But it is easy to see that we can replace s} by one of s} for i € [k] without
affecting whether s* is a feasible solution or not. Thus we can “rename” the alphabet in each column to

be characters {1,2,...,k} and hence we can bound ¢ < k.
b)

After the renaming above, each of the columns of the input will look of the input matrix will be a vector
of characters from an alphabet of size at most k£ and a column has length k. Thus there are at most k*
different ways a column can look. If there are duplicate columns on input, we can consolidate them into
one, since we can solve all of them using the same character. We write K = k*.

c)
Nothing to do here.
d)

For c € [{], t € [K] and j € [k] let A(c,t,j) denote whether the j-th character in column type ¢ differs
from c or not. For a zero-one variable x; . with ¢ and c defined as before, z; . will be 1 iff the output
character for columns of type t should be character ¢. Thus the first set of constraints we write is that
for every column type ¢ € [K] there is exactly one output character:

14
Zl’t’i = 1. (1)
i=1

And then there is one gigantic constraint that says whether the output string has Hamming distance at

most d from each of si’s:
Z Z Ac,t,jxt,c S d (2)
cel€] te[K]

You might now be used to the fact that there is no objective function ;) It takes time k©®) to write
down this ILP. And we can bash it with Lenstra’s algorithm to get something with running time K (K)

which is something like pOE") (double exponential in k in case it is not visible in print).

e)
Constraints (2) are the top row constraints of an n-fold integer program and constraints (1) are the local
off-diagonal constraints. Thus we in fact get a single exponential algorithm in k.

f)
Instead of all constraints (2) having the same right hand side d, it is d;.

(This is a hard exercise in the textbook but using the power of integer programming we solve it basically
for free. Hooray for integer programming.)

We solve this exercise using bidimensionality. Observe that a k x k grid has a vertex cover of size at
least Q(k?): in every row of the minor we have to take every second vertex into the vertex cover. Thus
we apply the excluded grid minor theorem and if we find a grid minor of size Q(vk) x Q(vk), then
we can immediately conclude that the answer is no (same multiplicative constant between the Q’s in
this sentence). Otherwise, the graph is treewidth at most (’)(\/E)7 then we apply the treewidth dynamic
programming procedure we all know and love.



