
Introduction to Parameterized Algorithms – Tutorial 11 2024/12/17, 17:20 (wtf)

1. In the Scheduling on Uniform Machines problem, known as P ||Cmax in the scheduling community,
we are given m machines, τ job types, processing times {pj}τj=1 which says how long does a job of type j
run on any of the m machines, and job counts {nj}τj=1 that says how many jobs with processing time pj
there are. A schedule of an input is the assignment of each job to a machine. The duration of a machine
is the sum of processing time of jobs assigned to it. The makespan of a schedule is the maximum duration
of the machines. The goal is to find a schedule of minimum makespan.

2. We will model P ||Cmax as an ILP. We guess the optimum makespan C and then write an integer program
that finds whether there exists a schedule with makespan C or not. We will find C using binary search
on the range [0,

∑τ
j=1 njpj].

Now let us write an ILP for P ||Cmax with makespan C. We shall have variables xij ≥ 0 for i ∈ [m]
and j ∈ [τ] which says how many jobs of type j run on machine i. First we write a constraint that each
machine runs finishes at time C, that is for every i ∈ [m]:

τ∑
j=1

xijpj ≤ C .

We also need a constraint that every job runs on some machine, that is for every j ∈ [τ] we have:
m∑
i=1

xij = nj . (1)

We do not need an objective function, so we can set it to, e.g. max 0.
Now we should observe that the ILP we wrote is actually an n-fold integer program as constraints (1)
are independent between distinct j’s. So that running time we get is FPT(τ, m).

3. If si’s and ti’s are not all different, then we can immediately answer with a no.
First we observe that a solution exists if and only if there exists a solution that contains at most one
non-endpoint vertex of every type. Since the paths are only needed to be vertex disjoint, then we can
shortcut vertex repetitions within the same type. This is not true for edge-disjoint paths because there
the shortcutting might cut through a different path.
Let d be the neighborhood diversity of the input graph. The previous observation tells us that the vertex
disjoint paths we are looking for can look in at most 2dd2 ways depending on which vertices of the type
graph it visits and which are the first and last vertices.
We will write the following ILP: variables xa,b,i for a, b ∈ [d] and i ∈ [0, 2d − 1] tells us how many paths
there are in the solution that start in a vertex of type a, ends in a vertex of type b and only visits
vertices of types that are 1 in the binary expansion of the number i. Let ca,b for a, b ∈ [d] be the number
of si, ti pairs where si is of type a and ti is of type b. For every a, b ∈ [d] we need that the number of
paths in the solution that start in a vertex of type a, ends in a vertex of type b is exactly equal to ca,b,
that is:

ca,b =

2d−1∑
i=0

xa,b,i .

If there is no way for a path to start in type a, end in type b and visit only vertices of type i, then also
add a constraint xa,b,i ≤ 0 to force this selection to be unusable.
Also the number of paths that use a vertex of type j must be at most the number of vertices of type j.
Thus if nj is the number of vertices of type j, then∑

a,b∈[d],i∈[0,2d−1] such that the j-th bit of i is 1
xa,b,i ≤ nj .

Again, we do not care about the objective function. If this ILP is feasible, then there exists a solution
which can be reconstructed greedily: for each path Pi with si of type a and ti of type b, just look at an
arbitrary xa,b,i that non-zero, greedily reconstruct the path so that it only uses vertices of whose type is
1 in the bit expansion of i, and decrement xa,b,i.

Introduction to Parameterized Algorithms – Tutorial 11 2024/12/17, 17:20 (wtf)

Since there are d22d variables, then we can use Lenstra’s algorithm (running time nO(n) for an n-variable
integer linear program).

4. First observe that we can contract vertices of a type that forms an independent set into one as they can
all share the same color.
A color category is the set of colors which appears pre-colored in the same type. So for an example if we
are doing 3-coloring, and we pre-color some vertices of a clique that defines a type with colors 1 and 2,
then {1, 2} is a color category. Categories are fixed by the input.
A color subcategory further divides a color category: two colors in the same category are also in the same
subcategory if they appear pre-colored in the same types. Note that a subcategory talks about colors,
while categories only talks about colors used for pre-coloring.
If a pre-coloring can be extended into a coloring, then we can divide all colors into subcategories.
There are at most 22d subcategories. We can write an ILP with the following constraints.

a) The number of colors of a category equals the sum of all subcategories in that category.
b) The number of vertices of each type equals the sum of all subcategories which color a vertex of that

type.

Again we can solve it by Lenstra’s algorithm.

