1. In the SET SPLITTING problem, we are given a family of sets \mathcal{F} over a universe \mathcal{U} and a positive integer k, and the goal is to test whether there exists a coloring of \mathcal{U} with two colors such that at least k sets in \mathcal{F} are non-monochromatic. Show that the problem admits a kernel with at most 2k sets and $\mathcal{O}(k^2)$ universe size.

We say that the coloring that witnesses a Yes instance splits at least k sets.

Hint. Use the Force probabilistic method, Luke.

- 2. In the MINIMUM MAXIMAL MATCHING problem, we are given an undirected graph G and a positive integer k, and the task is to decide whether there exists a maximal matching in G on at most k edges. Find a polynomial kernel for the problem (parameterized by k).
- 3. In the CONNECTED VERTEX COVER problem, we are given an undirected graph G and a positive k. The objective is to decide whether there exists a vertex cover C of G such that $|C| \leq k$ and G[C] is connected.
 - Show that the problem admits a kernel with at most $2^k + \mathcal{O}(k^2)$ vertices.
 - Show that if G does not contain a cycle of length 4 as a subgraph, then the problem admits a kernel of size $\mathcal{O}(k^2)$.