1. Listen to me explain what scheduling problems are.

Glossary:

- There are $n \ jobs$ and $m \ machnes$.
- Jobs are defined by their *processing times* p_{ij} for $i \in [1, m]$ and $j \in [1, n]$ which indicates how long does job j run on machine i.
- A *schedule* is an assignment of jobs to machines.
- The *makespan* of a schedule is the last completion time over all machines.
- 2. In SCHEDULING ON IDENTICAL PARALLEL MACHINES, commonly known as $P||C_{\max}$, we have τ different job types which are only distinguished by their running times p_1, \ldots, p_{τ} where p_i is the processing type of job of type *i* on any of the *m* machines, and their multiplicities n_1, \ldots, n_{τ} . Meaning that there are n_i jobs of type *i*, and $\sum_{k=1}^{\tau} n_k = n$ jobs in total. The goal is to find a schedule of minimum makespan.

Give an integer programming formulation of $P||C_{\max}$ which has size bounded by τ and m. So the number of variables and constraints in the program should be bounded by a function τ and m. (And numbers in the program should be polynomial in the input size and a function of τ and m. This is to prevent you from somehow encoding the entire problem into a one variable of the program.) How small of a formulation can you find?

From your knowledge of parameterized algorithms for INTEGER PROGRAMMING, what is the running time of the algorithm you obtained?

3. In the k-VERTEX-DISJOINT PATHS problem, we are given a graph G, and a set $P = \{(s_i, t_i)\}_{i=1}^k, s_i, t_i \in V(G)$, and the goal is to find k vertex disjoint paths between s_i 's and t_i 's. Meaning that the solutions is k paths P_1, \ldots, P_k such that the endpoints of P_i are s_i and t_i and P_i 's should be vertex disjoint.

Give an FPT algorithm for parameter neighbourhood diversity for k-VERTEX-DISJOINT PATHS.

4. In the PRECOLORING EXTENSION problem, we are given a graph G where some vertices are precolored, and an integer c. The goal is to find a c-coloring of graph G which respects the precoloring which you can assume is a proper coloring.

Give an FPT algorithm for parameter neighbourhood diversity for PRECOLORING EXTENSION.