- 1. What is the treewidth of the following graphs? If you are struggling, try to just give an upper bound.
 - a) A complete graph K_n .
 - b) A complete bipartite graph $K_{n,m}$.
 - c) A forest.
 - d) A cycle C_n .
 - e) A cube Q_3 .
 - f) A $m \times n$ grid $\boxplus_{m,n}$.
- 2. Show that for every minor H of graph G, we have $tw(H) \leq tw(G)$.
- 3. Prove the following lemma. It says something to the effect that given a tree decomposition, we can always find a nice tree decomposition in polynomial time.

If a graph G admits a tree decomposition of width at most k, then it also admits a nice tree decomposition of width at most k. Moreover given a tree decomposition $\mathcal{T} = (T, \{X_t\}_{t \in V(T)})$ of G of width at most k, one can in time $\mathcal{O}(k^2 \cdot \max\{|V(T)|, |V(G)|\})$ compute a nice tree decomposition of G of width at most k that has at most $\mathcal{O}(k|V(G)|)$ nodes.

- 4. How can subdividing an edge of a graph G change its treewidth? Can in increase or decrease?
- 5. Show that the treewidth of a graph G is equal to the maximum treewidth of its biconnected components.
- A graph G is d-degenerate if every subgraph of G contains a vertex of degree at most d.
 Prove that graphs of treewidth t are t-degenerate.
- 7. For a graph G given together with its tree decomposition of width t, construct in time $t^{\mathcal{O}(1)}n$ a data structure such that for any two vertices $x, y \in V(G)$ it is possible to check in time $\mathcal{O}(t)$ if x and y are adjacent.

Now do it without results on hashing, hash tables, etc.

8. We define a k-tree inductively: a clique on k + 1 vertices is a k-tree. A new k-tree G can be obtained from a smaller k-tree G' by adding a new vertex and making it adjacent to k vertices of G' that form a clique in G'. Show that every k-tree is a chordal graph of treewidth k. Prove that for every graph G and integer k, G is a subgraph of a k-tree if and only if $tw(G) \le k$.