
(Near-)Optimal Algorithms for Sparse Separable
Convex Integer Programs

Christoph Hunkenschröder1, Martin Koutecký3, Asaf Levin2,
Tung Anh Vu3

1TU Berlin

2Technion – Israel Institute of Technology

3Charles University



IP and ILP

Integer (Linear) Programming problem in standard form:

min
{
w

⊺
x | Ax = b, l ≤ x ≤ u, x ∈ Zn

}
, and (ILP)

min {f (x) | Ax = b, l ≤ x ≤ u, x ∈ Zn} (IP)

with

▶ A ∈ Zm×n,

▶ l,u,w ∈ Zn, and

▶ f : Rn → R a separable convex function, i.e. f is expressible
as f (x) =

∑n
i=1 fi (xi ) with each fi : R → R convex.

ILP is already NP-hard ⇒ focus on tractable subclasses
corresponding to block-structured matrices.



IP and ILP

Integer (Linear) Programming problem in standard form:

min
{
w

⊺
x | Ax = b, l ≤ x ≤ u, x ∈ Zn

}
, and (ILP)

min {f (x) | Ax = b, l ≤ x ≤ u, x ∈ Zn} (IP)

with

▶ A ∈ Zm×n,

▶ l,u,w ∈ Zn, and

▶ f : Rn → R a separable convex function, i.e. f is expressible
as f (x) =

∑n
i=1 fi (xi ) with each fi : R → R convex.

ILP is already NP-hard

⇒ focus on tractable subclasses
corresponding to block-structured matrices.



IP and ILP

Integer (Linear) Programming problem in standard form:

min
{
w

⊺
x | Ax = b, l ≤ x ≤ u, x ∈ Zn

}
, and (ILP)

min {f (x) | Ax = b, l ≤ x ≤ u, x ∈ Zn} (IP)

with

▶ A ∈ Zm×n,

▶ l,u,w ∈ Zn, and

▶ f : Rn → R a separable convex function, i.e. f is expressible
as f (x) =

∑n
i=1 fi (xi ) with each fi : R → R convex.

ILP is already NP-hard ⇒ focus on tractable subclasses
corresponding to block-structured matrices.



Block Structured Matrices

Multistage-stochastic matrix.

⇕
Small primal treedepth tdP(A).

Tree-fold matrix.

⇕
Small dual treedepth tdD(A).

▶ Treedepth measures the similarity of a graph to a star.

▶ tdP(A): treedepth of the primal graph of A.

▶ tdD(A): treedepth of the primal graph of A
⊺
.

Main point. Block structure-ness of A ≈ treedepth.



Block Structured Matrices

Multistage-stochastic matrix.

⇕
Small primal treedepth tdP(A).

Tree-fold matrix.

⇕
Small dual treedepth tdD(A).

▶ Treedepth measures the similarity of a graph to a star.

▶ tdP(A): treedepth of the primal graph of A.

▶ tdD(A): treedepth of the primal graph of A
⊺
.

Main point. Block structure-ness of A ≈ treedepth.



Block Structured Matrices

0

0

Multistage-stochastic matrix.

⇕
Small primal treedepth tdP(A).

Tree-fold matrix.

⇕
Small dual treedepth tdD(A).

▶ Treedepth measures the similarity of a graph to a star.

▶ tdP(A): treedepth of the primal graph of A.

▶ tdD(A): treedepth of the primal graph of A
⊺
.

Main point. Block structure-ness of A ≈ treedepth.



Block Structured Matrices

0

0

Multistage-stochastic matrix.

⇕
Small primal treedepth tdP(A).

Tree-fold matrix.

⇕
Small dual treedepth tdD(A).

▶ Treedepth measures the similarity of a graph to a star.

▶ tdP(A): treedepth of the primal graph of A.

▶ tdD(A): treedepth of the primal graph of A
⊺
.

Main point. Block structure-ness of A ≈ treedepth.



Block Structured Matrices

0

0

Multistage-stochastic matrix.

⇕
Small primal treedepth tdP(A).

Tree-fold matrix.

⇕
Small dual treedepth tdD(A).

▶ Treedepth measures the similarity of a graph to a star.

▶ tdP(A): treedepth of the primal graph of A.

▶ tdD(A): treedepth of the primal graph of A
⊺
.

Main point. Block structure-ness of A ≈ treedepth.



Block Structured Matrices

0

0

Multistage-stochastic matrix.
⇕

Small primal treedepth tdP(A).

Tree-fold matrix.
⇕

Small dual treedepth tdD(A).
▶ Treedepth measures the similarity of a graph to a star.

▶ tdP(A): treedepth of the primal graph of A.

▶ tdD(A): treedepth of the primal graph of A
⊺
.

Main point. Block structure-ness of A ≈ treedepth.



Block Structured Matrices

0

0

Multistage-stochastic matrix.
⇕

Small primal treedepth tdP(A).

Tree-fold matrix.
⇕

Small dual treedepth tdD(A).
▶ Treedepth measures the similarity of a graph to a star.

▶ tdP(A): treedepth of the primal graph of A.

▶ tdD(A): treedepth of the primal graph of A
⊺
.

Main point. Block structure-ness of A ≈ treedepth.



Block Structured Matrices

0

0

Multistage-stochastic matrix.
⇕

Small primal treedepth tdP(A).

Tree-fold matrix.
⇕

Small dual treedepth tdD(A).
▶ Treedepth measures the similarity of a graph to a star.

▶ tdP(A): treedepth of the primal graph of A.

▶ tdD(A): treedepth of the primal graph of A
⊺
.

Main point. Block structure-ness of A ≈ treedepth.



Block Structured Matrices

0

0

Multistage-stochastic matrix.
⇕

Small primal treedepth tdP(A).

Tree-fold matrix.
⇕

Small dual treedepth tdD(A).
▶ Treedepth measures the similarity of a graph to a star.

▶ tdP(A): treedepth of the primal graph of A.

▶ tdD(A): treedepth of the primal graph of A
⊺
.

Main point. Block structure-ness of A ≈ treedepth.



State of the Art

g , g ′, g ′′, . . .: some computable function.

[Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, Onn; MOR 2024]

IP can be solved in time

g(∥A∥∞, d) (nω +min(m, n)nm) log ∥u− l∥∞ log fgap ,

where d = min{tdP(A), tdD(A)}, fgap = maxx,y : l≤x,y≤u f (x)− f (y).

[Cslovjecsek, Eisenbrand, Hunkenschröder, Rohwedder, Weismantel; SODA 2021] [Cslovjecsek, Eisenbrand,
Pilipczuk, Venzin, Weismantel; ESA 2021]

ILP can be solved in strongly near-linear time of

g(∥A∥∞, d) n log2
O(d)

n .

Our motivation
Is there a strongly near-linear time algorithm for IP? No!
min f =

∑
fi ⇔ min fi separately ⇐ Ω(log(ui − li )) comparisons

by information theory.



State of the Art

g , g ′, g ′′, . . .: some computable function.

[Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, Onn; MOR 2024]

IP can be solved in time

g(∥A∥∞, d) (nω +min(m, n)nm) log ∥u− l∥∞ log fgap ,

where d = min{tdP(A), tdD(A)}, fgap = maxx,y : l≤x,y≤u f (x)− f (y).

[Cslovjecsek, Eisenbrand, Hunkenschröder, Rohwedder, Weismantel; SODA 2021] [Cslovjecsek, Eisenbrand,
Pilipczuk, Venzin, Weismantel; ESA 2021]

ILP can be solved in strongly near-linear time of

g(∥A∥∞, d) n log2
O(d)

n .

Our motivation
Is there a strongly near-linear time algorithm for IP? No!
min f =

∑
fi ⇔ min fi separately ⇐ Ω(log(ui − li )) comparisons

by information theory.



State of the Art

g , g ′, g ′′, . . .: some computable function.

[Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, Onn; MOR 2024]

IP can be solved in time

g(∥A∥∞, d) (nω +min(m, n)nm) log ∥u− l∥∞ log fgap ,

where d = min{tdP(A), tdD(A)}, fgap = maxx,y : l≤x,y≤u f (x)− f (y).

[Cslovjecsek, Eisenbrand, Hunkenschröder, Rohwedder, Weismantel; SODA 2021] [Cslovjecsek, Eisenbrand,
Pilipczuk, Venzin, Weismantel; ESA 2021]

ILP can be solved in strongly near-linear time of

g(∥A∥∞, d) n log2
O(d)

n .

Our motivation
Is there a strongly near-linear time algorithm for IP? No!
min f =

∑
fi ⇔ min fi separately ⇐ Ω(log(ui − li )) comparisons

by information theory.



State of the Art

g , g ′, g ′′, . . .: some computable function.

[Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, Onn; MOR 2024]

IP can be solved in time

g(∥A∥∞, d) (nω +min(m, n)nm) log ∥u− l∥∞ log fgap ,

where d = min{tdP(A), tdD(A)}, fgap = maxx,y : l≤x,y≤u f (x)− f (y).

[Cslovjecsek, Eisenbrand, Hunkenschröder, Rohwedder, Weismantel; SODA 2021] [Cslovjecsek, Eisenbrand,
Pilipczuk, Venzin, Weismantel; ESA 2021]

ILP can be solved in strongly near-linear time of

g(∥A∥∞, d) n log2
O(d)

n .

Our motivation
Is there a strongly near-linear time algorithm for IP?

No!
min f =

∑
fi ⇔ min fi separately ⇐ Ω(log(ui − li )) comparisons

by information theory.



State of the Art

g , g ′, g ′′, . . .: some computable function.

[Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, Onn; MOR 2024]

IP can be solved in time

g(∥A∥∞, d) (nω +min(m, n)nm) log ∥u− l∥∞ log fgap ,

where d = min{tdP(A), tdD(A)}, fgap = maxx,y : l≤x,y≤u f (x)− f (y).

[Cslovjecsek, Eisenbrand, Hunkenschröder, Rohwedder, Weismantel; SODA 2021] [Cslovjecsek, Eisenbrand,
Pilipczuk, Venzin, Weismantel; ESA 2021]

ILP can be solved in strongly near-linear time of

g(∥A∥∞, d) n log2
O(d)

n .

Our motivation
Is there a strongly near-linear time algorithm for IP? No!
min f =

∑
fi ⇔ min fi separately ⇐ Ω(log(ui − li )) comparisons

by information theory.



Our Results: Matching the Lower Bound

Theorem 1
There is an algorithm which solves IP in time

g(tdP(A), ∥A∥∞) n log ∥u− l, b ∥∞ .

Theorem 2
There is an algorithm which solves IP in time

g(tdD(A), ∥A∥∞) n log ∥u− l, b ∥∞ log n .

▶ log ∥b∥∞ ⇐ finding an initial feasible solution.

▶ Conjecture: The dependence on n in Theorem 2 is optimal.

▶ Remark: optimizing dependence on
parameters ∥A∥∞, tdP(A), tdD(A): NOT focus of this work.



Our Results: Matching the Lower Bound

Theorem 1
There is an algorithm which solves IP in time

g(tdP(A), ∥A∥∞) n log ∥u− l, b ∥∞ .

Theorem 2
There is an algorithm which solves IP in time

g(tdD(A), ∥A∥∞) n log ∥u− l, b ∥∞ log n .

▶ log ∥b∥∞ ⇐ finding an initial feasible solution.

▶ Conjecture: The dependence on n in Theorem 2 is optimal.

▶ Remark: optimizing dependence on
parameters ∥A∥∞, tdP(A), tdD(A): NOT focus of this work.



Our Results: Matching the Lower Bound

Theorem 1
There is an algorithm which solves IP in time

g(tdP(A), ∥A∥∞) n log ∥u− l, b ∥∞ .

Theorem 2
There is an algorithm which solves IP in time

g(tdD(A), ∥A∥∞) n log ∥u− l, b ∥∞ log n .

▶ log ∥b∥∞ ⇐ finding an initial feasible solution.

▶ Conjecture: The dependence on n in Theorem 2 is optimal.

▶ Remark: optimizing dependence on
parameters ∥A∥∞, tdP(A), tdD(A): NOT focus of this work.



Our Results: Matching the Lower Bound

Theorem 1
There is an algorithm which solves IP in time

g(tdP(A), ∥A∥∞) n log ∥u− l, b ∥∞ .

Theorem 2
There is an algorithm which solves IP in time

g(tdD(A), ∥A∥∞) n log ∥u− l, b ∥∞ log n .

▶ log ∥b∥∞ ⇐ finding an initial feasible solution.

▶ Conjecture: The dependence on n in Theorem 2 is optimal.

▶ Remark: optimizing dependence on
parameters ∥A∥∞, tdP(A), tdD(A): NOT focus of this work.



Our Results: Matching the Lower Bound

Theorem 1
There is an algorithm which solves IP in time

g(tdP(A), ∥A∥∞) n log ∥u− l, b ∥∞ .

Theorem 2
There is an algorithm which solves IP in time

g(tdD(A), ∥A∥∞) n log ∥u− l, b ∥∞ log n .

▶ log ∥b∥∞ ⇐ finding an initial feasible solution.

▶ Conjecture: The dependence on n in Theorem 2 is optimal.

▶ Remark: optimizing dependence on
parameters ∥A∥∞, tdP(A), tdD(A): NOT focus of this work.



Main Idea: Scaling Algorithm
sZ2



Main Idea: Scaling Algorithm
sZ2

x0



Main Idea: Scaling Algorithm
sZ2

x0

(s/2)Z2



Main Idea: Scaling Algorithm
sZ2

x0

scaling proximity

(s/2)Z2



Main Idea: Scaling Algorithm
sZ2

x0

scaling proximity

x1

find nearby optimum in (s/2)Z2

(s/2)Z2



Scaling Algorithm Informally (Theorem 3)

(Given an initial feasible solution), we can solve IP by solving

▶ ⌈log ∥l,u∥∞⌉+ 1 instances of IP

▶ with small bounds ∥ui − li∥∞ ≤ 3ρ where

▶ ρ only depends on A.

Question. What is ρ?



Scaling Algorithm Informally (Theorem 3)

(Given an initial feasible solution), we can solve IP by solving

▶ ⌈log ∥l,u∥∞⌉+ 1 instances of IP

▶ with small bounds ∥ui − li∥∞ ≤ 3ρ where

▶ ρ only depends on A.

Question. What is ρ?



Scaling Algorithm Informally (Theorem 3)

(Given an initial feasible solution), we can solve IP by solving

▶ ⌈log ∥l,u∥∞⌉+ 1 instances of IP

▶ with small bounds ∥ui − li∥∞ ≤ 3ρ where

▶ ρ only depends on A.

Question. What is ρ?



Scaling Algorithm Informally (Theorem 3)

(Given an initial feasible solution), we can solve IP by solving

▶ ⌈log ∥l,u∥∞⌉+ 1 instances of IP

▶ with small bounds ∥ui − li∥∞ ≤ 3ρ where

▶ ρ only depends on A.

Question. What is ρ?



Scaling Algorithm Informally (Theorem 3)

(Given an initial feasible solution), we can solve IP by solving

▶ ⌈log ∥l,u∥∞⌉+ 1 instances of IP

▶ with small bounds ∥ui − li∥∞ ≤ 3ρ where

▶ ρ only depends on A.

Question. What is ρ?



Conformal Proximity Bound (CPB) (very informally)

Pp(A): given A, smallest real r ∈ R such that

▶ for every relaxation optimum x⋆

▶ there exists an integer optimum z⋆

▶ with ∥x⋆ − z⋆∥p ≤ r .

x⋆1

x⋆2

x⋆3
w

x⋆1,2,3: relaxation optima



Conformal Proximity Bound (CPB) (very informally)

Pp(A): given A, smallest real r ∈ R such that

▶ for every relaxation optimum x⋆

▶ there exists an integer optimum z⋆

▶ with ∥x⋆ − z⋆∥p ≤ r .

x⋆1

x⋆2

x⋆3
w

z⋆1

z⋆2

z⋆3

x⋆1,2,3: relaxation optima

z⋆1,2,3: integer optima



Conformal Proximity Bound (CPB) (very informally)

Pp(A): given A, smallest real r ∈ R such that

▶ for every relaxation optimum x⋆

▶ there exists an integer optimum z⋆

▶ with ∥x⋆ − z⋆∥p ≤ r .

x⋆1

x⋆2

x⋆3
w

z⋆1

z⋆2

z⋆3

x⋆1,2,3: relaxation optima

z⋆1,2,3: integer optima

Pp(A)



Scaling Proximity Theorem

Theorem (Theorem 4)

▶ 1 ≤ p ≤ +∞
▶ I: IP instance with optimum z⋆

▶ I ′: copy of I but require that solutions be in sZn

▶ then there exists a solution z′ of I ′ with

∥z⋆ − ẑ∥p ≤ (s + 1)Pp(A),



Scaling Proximity Theorem

Theorem (Theorem 4)

▶ 1 ≤ p ≤ +∞
▶ I: IP instance with optimum z⋆

▶ I ′: copy of I but require that solutions be in sZn

▶ then there exists a solution z′ of I ′ with

∥z⋆ − ẑ∥p ≤ (s + 1)Pp(A),



Scaling Proximity Theorem

Theorem (Theorem 4)

▶ 1 ≤ p ≤ +∞
▶ I: IP instance with optimum z⋆

▶ I ′: copy of I but require that solutions be in sZn

▶ then there exists a solution z′ of I ′ with

∥z⋆ − ẑ∥p ≤ (s + 1)Pp(A),



Scaling Proximity Theorem: Proof Idea

Goal: bound distance between IP optimum and optimum
restricted to sZn

sZn

IP optimum



Scaling Proximity Theorem: Proof Idea

Goal: bound distance between IP optimum and optimum
restricted to sZn

sZn

IP optimum relaxation optimum

≤ Pp(A) (”reverse” CPB)



Scaling Proximity Theorem: Proof Idea

Goal: bound distance between IP optimum and optimum
restricted to sZn

sZn

IP optimum relaxation optimum

≤ Pp(A) (”reverse” CPB)

s-IP optimum

≤ sPp(A) (”s-CPB”)



Scaling Proximity Theorem: Proof Idea

Goal: bound distance between IP optimum and optimum
restricted to sZn

sZn

IP optimum relaxation optimum

≤ Pp(A) (”reverse” CPB)

s-IP optimum

≤ sPp(A) (”s-CPB”)
(s + 1)Pp(A)
(∆ inequality)



Scaling Algorithm: Practical takeaway

Suppose you have some class of IP’s.

1. Find an upper bound ρ on P∞(A).

2. Find a way to solve IP with small bounds.

3. Plug these into scaling algorithm.

4. Profit (=get to solve ⌈log ∥l,u∥∞⌉+ 1 simple instances
instead of one complicated one).

Remark: Number of IP instances can be reduced
to log⌈∥l,u∥∞/ρ⌉+ 1.



Scaling Algorithm: Practical takeaway

Suppose you have some class of IP’s.

1. Find an upper bound ρ on P∞(A).

2. Find a way to solve IP with small bounds.

3. Plug these into scaling algorithm.

4. Profit (=get to solve ⌈log ∥l,u∥∞⌉+ 1 simple instances
instead of one complicated one).

Remark: Number of IP instances can be reduced
to log⌈∥l,u∥∞/ρ⌉+ 1.



Scaling Algorithm: Practical takeaway

Suppose you have some class of IP’s.

1. Find an upper bound ρ on P∞(A).

2. Find a way to solve IP with small bounds.

3. Plug these into scaling algorithm.

4. Profit (=get to solve ⌈log ∥l,u∥∞⌉+ 1 simple instances
instead of one complicated one).

Remark: Number of IP instances can be reduced
to log⌈∥l,u∥∞/ρ⌉+ 1.



Scaling Algorithm: Practical takeaway

Suppose you have some class of IP’s.

1. Find an upper bound ρ on P∞(A).

2. Find a way to solve IP with small bounds.

3. Plug these into scaling algorithm.

4. Profit (=get to solve ⌈log ∥l,u∥∞⌉+ 1 simple instances
instead of one complicated one).

Remark: Number of IP instances can be reduced
to log⌈∥l,u∥∞/ρ⌉+ 1.



Scaling Algorithm: Practical takeaway

Suppose you have some class of IP’s.

1. Find an upper bound ρ on P∞(A).

2. Find a way to solve IP with small bounds.

3. Plug these into scaling algorithm.

4. Profit (=get to solve ⌈log ∥l,u∥∞⌉+ 1 simple instances
instead of one complicated one).

Remark: Number of IP instances can be reduced
to log⌈∥l,u∥∞/ρ⌉+ 1.



Scaling Algorithm: Practical takeaway

Suppose you have some class of IP’s.

1. Find an upper bound ρ on P∞(A).

2. Find a way to solve IP with small bounds.

3. Plug these into scaling algorithm.

4. Profit (=get to solve ⌈log ∥l,u∥∞⌉+ 1 simple instances
instead of one complicated one).

Remark: Number of IP instances can be reduced
to log⌈∥l,u∥∞/ρ⌉+ 1.



Primal Algorithm (Theorem 1) (O(g(∥A∥∞, tdP (A))n∥u − l, b∥∞)-time algorithm)

▶ g ′ is triple exponential in tdP(A).

▶ Seems optimal [Hunkenschröder, Klein, Koutecký, Lassota, Levin; IPCO 2024, Theorem 1]



Primal Algorithm (Theorem 1) (O(g(∥A∥∞, tdP (A))n∥u − l, b∥∞)-time algorithm)

[Klein, Reuter; SODA 2022]

There is a computable func-
tion g ′ such that

P∞(A) ≤ g ′(tdP(A), ∥A∥∞)

▶ g ′ is triple exponential in tdP(A).

▶ Seems optimal [Hunkenschröder, Klein, Koutecký, Lassota, Levin; IPCO 2024, Theorem 1]



Primal Algorithm (Theorem 1) (O(g(∥A∥∞, tdP (A))n∥u − l, b∥∞)-time algorithm)

[Klein, Reuter; SODA 2022]

There is a computable func-
tion g ′ such that

P∞(A) ≤ g ′(tdP(A), ∥A∥∞)

[Eisenbrand, Hunkenschröder, Klein, Koutecký,
Levin, Onn; MOR 2024, Lemma 8]

Each IP instance in the scaling al-
gorithm can be solved in time

O(tdP(A)
2(2Pp(A) + 1)tdP (A)n)

▶ g ′ is triple exponential in tdP(A).

▶ Seems optimal [Hunkenschröder, Klein, Koutecký, Lassota, Levin; IPCO 2024, Theorem 1]



Primal Algorithm (Theorem 1) (O(g(∥A∥∞, tdP (A))n∥u − l, b∥∞)-time algorithm)

[Klein, Reuter; SODA 2022]

There is a computable func-
tion g ′ such that

P∞(A) ≤ g ′(tdP(A), ∥A∥∞)

[Eisenbrand, Hunkenschröder, Klein, Koutecký,
Levin, Onn; MOR 2024, Lemma 8]

Each IP instance in the scaling al-
gorithm can be solved in time

O(tdP(A)
2(2Pp(A) + 1)tdP (A)n)

O(g ′′(tdP(A), ∥A∥∞)n)-time algorithm IP with small bounds

▶ g ′ is triple exponential in tdP(A).

▶ Seems optimal [Hunkenschröder, Klein, Koutecký, Lassota, Levin; IPCO 2024, Theorem 1]



Primal Algorithm (Theorem 1) (O(g(∥A∥∞, tdP (A))n∥u − l, b∥∞)-time algorithm)

[Klein, Reuter; SODA 2022]

There is a computable func-
tion g ′ such that

P∞(A) ≤ g ′(tdP(A), ∥A∥∞)

[Eisenbrand, Hunkenschröder, Klein, Koutecký,
Levin, Onn; MOR 2024, Lemma 8]

Each IP instance in the scaling al-
gorithm can be solved in time

O(tdP(A)
2(2Pp(A) + 1)tdP (A)n)

O(g ′′(tdP(A), ∥A∥∞)n log ∥u− l,b∥∞)-time algorithm for IP

O(g ′′(tdP(A), ∥A∥∞)n)-time algorithm IP with small bounds

▶ g ′ is triple exponential in tdP(A).

▶ Seems optimal [Hunkenschröder, Klein, Koutecký, Lassota, Levin; IPCO 2024, Theorem 1]



Primal Algorithm (Theorem 1) (O(g(∥A∥∞, tdP (A))n∥u − l, b∥∞)-time algorithm)

[Klein, Reuter; SODA 2022]

There is a computable func-
tion g ′ such that

P∞(A) ≤ g ′(tdP(A), ∥A∥∞)

[Eisenbrand, Hunkenschröder, Klein, Koutecký,
Levin, Onn; MOR 2024, Lemma 8]

Each IP instance in the scaling al-
gorithm can be solved in time

O(tdP(A)
2(2Pp(A) + 1)tdP (A)n)

O(g ′′(tdP(A), ∥A∥∞)n log ∥u− l,b∥∞)-time algorithm for IP

O(g ′′(tdP(A), ∥A∥∞)n)-time algorithm IP with small bounds

▶ g ′ is triple exponential in tdP(A).

▶ Seems optimal [Hunkenschröder, Klein, Koutecký, Lassota, Levin; IPCO 2024, Theorem 1]



Primal Algorithm (Theorem 1) (O(g(∥A∥∞, tdP (A))n∥u − l, b∥∞)-time algorithm)

[Klein, Reuter; SODA 2022]

There is a computable func-
tion g ′ such that

P∞(A) ≤ g ′(tdP(A), ∥A∥∞)

[Eisenbrand, Hunkenschröder, Klein, Koutecký,
Levin, Onn; MOR 2024, Lemma 8]

Each IP instance in the scaling al-
gorithm can be solved in time

O(tdP(A)
2(2Pp(A) + 1)tdP (A)n)

O(g ′′(tdP(A), ∥A∥∞)n log ∥u− l,b∥∞)-time algorithm for IP

O(g ′′(tdP(A), ∥A∥∞)n)-time algorithm IP with small bounds

▶ g ′ is triple exponential in tdP(A).
▶ Seems optimal [Hunkenschröder, Klein, Koutecký, Lassota, Levin; IPCO 2024, Theorem 1]



Dual Algorithm (Theorem 2)

More delicate than Theorem 1:

▶ No analogous result to the proximity result of Klein and
Reuter (P∞(A) ≤ g ′(td(A), ∥A∥∞)).

▶ [Cslovjecsek, Eisenbrand, Hunkenschröder, Rohwedder, Weismantel; SODA 2021, Proposition 4.1]

shows instances of IP with
▶ small tdD(A) + ∥A∥∞
▶ but where integer optima are Ω(n) far in the ℓ∞-norm from

any continuous optimum.



Dual Algorithm (Theorem 2)

More delicate than Theorem 1:

▶ No analogous result to the proximity result of Klein and
Reuter (P∞(A) ≤ g ′(td(A), ∥A∥∞)).

▶ [Cslovjecsek, Eisenbrand, Hunkenschröder, Rohwedder, Weismantel; SODA 2021, Proposition 4.1]

shows instances of IP with
▶ small tdD(A) + ∥A∥∞
▶ but where integer optima are Ω(n) far in the ℓ∞-norm from

any continuous optimum.



Dual Algorithm (Theorem 2)

More delicate than Theorem 1:

▶ No analogous result to the proximity result of Klein and
Reuter (P∞(A) ≤ g ′(td(A), ∥A∥∞)).

▶ [Cslovjecsek, Eisenbrand, Hunkenschröder, Rohwedder, Weismantel; SODA 2021, Proposition 4.1]

shows instances of IP with
▶ small tdD(A) + ∥A∥∞
▶ but where integer optima are Ω(n) far in the ℓ∞-norm from

any continuous optimum.



Dual Algorithm: Reexamine the Scaling
sZ2

x0

(s/2)Z2



Dual Algorithm: Reexamine the Scaling
sZ2

x0

scaling proximity

(s/2)Z2



Dual Algorithm: Reexamine the Scaling
sZ2

x0

scaling proximity

x1

find nearby optimum in (s/2)Z2

(s/2)Z2



Dual Algorithm: Reexamine the Scaling

x0

(s/2)Z×sZ



Dual Algorithm: Reexamine the Scaling

x0

proximity

x1

(s/2)Z×sZ



Dual Algorithm: Reexamine the Scaling

x0

x1

proximity

x2

(s/2)Z× (s/2)Z



Dual Algorithm: Proximity of densifying one by one

Corollary (Informal corollary of Theorem 6)

▶ x⋆: optimum of IP with some (or none) variables densified

▶ if we densify another variable

▶ then the new instance has an optimum x̂

▶ with ∥x⋆ − x̂∥1 ≤ 4g(∥A∥∞, tdD(A)).



Dual Algorithm: Proximity of densifying one by one

Corollary (Informal corollary of Theorem 6)

▶ x⋆: optimum of IP with some (or none) variables densified

▶ if we densify another variable

▶ then the new instance has an optimum x̂

▶ with ∥x⋆ − x̂∥1 ≤ 4g(∥A∥∞, tdD(A)).



Dual Algorithm: Proximity of densifying one by one

Corollary (Informal corollary of Theorem 6)

▶ x⋆: optimum of IP with some (or none) variables densified

▶ if we densify another variable

▶ then the new instance has an optimum x̂

▶ with ∥x⋆ − x̂∥1 ≤ 4g(∥A∥∞, tdD(A)).



Dual Algorithm: Proximity of densifying one by one

Corollary (Informal corollary of Theorem 6)

▶ x⋆: optimum of IP with some (or none) variables densified

▶ if we densify another variable

▶ then the new instance has an optimum x̂

▶ with ∥x⋆ − x̂∥1 ≤ 4g(∥A∥∞, tdD(A)).



Dual Algorithm: Using the corollary
▶ Do the scaling algorithm.

▶ In each iteration
× densify all variables
✓ densify variables one by one

▶ Theorem 6 ⇒ new optimum is ≤ 4g(∥A∥∞, tdD(A)) far
in ℓ1-norm

Densifying a variable ⇒ following IP where x is a given initial
feasible solution.

min{f (x+ h) | Ah = 0, l ≤ x+ h ≤ u, ∥h∥1 ≤ ρ, h ∈ Zn} .
(ℓ1-IP)

▶ ℓ1-IP can be solved in time g(∥A∥∞, tdD(A))n via DP.

▶ Leads to linear time per variable ⇒ quadratic in n overall.

▶ Instead, we “dynamize” the DP table so that densifying a
single variable can be done in time g ′(∥A∥∞, tdD(A)) log n .

▶ Overall dependence on n is n log n .



Dual Algorithm: Using the corollary
▶ Do the scaling algorithm.
▶ In each iteration

× densify all variables
✓ densify variables one by one

▶ Theorem 6 ⇒ new optimum is ≤ 4g(∥A∥∞, tdD(A)) far
in ℓ1-norm

Densifying a variable ⇒ following IP where x is a given initial
feasible solution.

min{f (x+ h) | Ah = 0, l ≤ x+ h ≤ u, ∥h∥1 ≤ ρ, h ∈ Zn} .
(ℓ1-IP)

▶ ℓ1-IP can be solved in time g(∥A∥∞, tdD(A))n via DP.

▶ Leads to linear time per variable ⇒ quadratic in n overall.

▶ Instead, we “dynamize” the DP table so that densifying a
single variable can be done in time g ′(∥A∥∞, tdD(A)) log n .

▶ Overall dependence on n is n log n .



Dual Algorithm: Using the corollary
▶ Do the scaling algorithm.
▶ In each iteration

× densify all variables
✓ densify variables one by one

▶ Theorem 6 ⇒ new optimum is ≤ 4g(∥A∥∞, tdD(A)) far
in ℓ1-norm

Densifying a variable ⇒ following IP where x is a given initial
feasible solution.

min{f (x+ h) | Ah = 0, l ≤ x+ h ≤ u, ∥h∥1 ≤ ρ, h ∈ Zn} .
(ℓ1-IP)

▶ ℓ1-IP can be solved in time g(∥A∥∞, tdD(A))n via DP.

▶ Leads to linear time per variable ⇒ quadratic in n overall.

▶ Instead, we “dynamize” the DP table so that densifying a
single variable can be done in time g ′(∥A∥∞, tdD(A)) log n .

▶ Overall dependence on n is n log n .



Dual Algorithm: Using the corollary
▶ Do the scaling algorithm.
▶ In each iteration

× densify all variables
✓ densify variables one by one

▶ Theorem 6 ⇒ new optimum is ≤ 4g(∥A∥∞, tdD(A)) far
in ℓ1-norm

Densifying a variable ⇒ following IP where x is a given initial
feasible solution.

min{f (x+ h) | Ah = 0, l ≤ x+ h ≤ u, ∥h∥1 ≤ ρ, h ∈ Zn} .
(ℓ1-IP)

▶ ℓ1-IP can be solved in time g(∥A∥∞, tdD(A))n via DP.

▶ Leads to linear time per variable ⇒ quadratic in n overall.

▶ Instead, we “dynamize” the DP table so that densifying a
single variable can be done in time g ′(∥A∥∞, tdD(A)) log n .

▶ Overall dependence on n is n log n .



Dual Algorithm: Using the corollary
▶ Do the scaling algorithm.
▶ In each iteration

× densify all variables
✓ densify variables one by one

▶ Theorem 6 ⇒ new optimum is ≤ 4g(∥A∥∞, tdD(A)) far
in ℓ1-norm

Densifying a variable ⇒ following IP where x is a given initial
feasible solution.

min{f (x+ h) | Ah = 0, l ≤ x+ h ≤ u, ∥h∥1 ≤ ρ, h ∈ Zn} .
(ℓ1-IP)

▶ ℓ1-IP can be solved in time g(∥A∥∞, tdD(A))n via DP.

▶ Leads to linear time per variable ⇒ quadratic in n overall.

▶ Instead, we “dynamize” the DP table so that densifying a
single variable can be done in time g ′(∥A∥∞, tdD(A)) log n .

▶ Overall dependence on n is n log n .



Dual Algorithm: Using the corollary
▶ Do the scaling algorithm.
▶ In each iteration

× densify all variables
✓ densify variables one by one

▶ Theorem 6 ⇒ new optimum is ≤ 4g(∥A∥∞, tdD(A)) far
in ℓ1-norm

Densifying a variable ⇒ following IP where x is a given initial
feasible solution.

min{f (x+ h) | Ah = 0, l ≤ x+ h ≤ u, ∥h∥1 ≤ ρ, h ∈ Zn} .
(ℓ1-IP)

▶ ℓ1-IP can be solved in time g(∥A∥∞, tdD(A))n via DP.

▶ Leads to linear time per variable ⇒ quadratic in n overall.

▶ Instead, we “dynamize” the DP table so that densifying a
single variable can be done in time g ′(∥A∥∞, tdD(A)) log n .

▶ Overall dependence on n is n log n .



Dual Algorithm: Using the corollary
▶ Do the scaling algorithm.
▶ In each iteration

× densify all variables
✓ densify variables one by one

▶ Theorem 6 ⇒ new optimum is ≤ 4g(∥A∥∞, tdD(A)) far
in ℓ1-norm

Densifying a variable ⇒ following IP where x is a given initial
feasible solution.

min{f (x+ h) | Ah = 0, l ≤ x+ h ≤ u, ∥h∥1 ≤ ρ, h ∈ Zn} .
(ℓ1-IP)

▶ ℓ1-IP can be solved in time g(∥A∥∞, tdD(A))n via DP.

▶ Leads to linear time per variable ⇒ quadratic in n overall.

▶ Instead, we “dynamize” the DP table so that densifying a
single variable can be done in time g ′(∥A∥∞, tdD(A)) log n .

▶ Overall dependence on n is n log n .



Dual Algorithm: Using the corollary
▶ Do the scaling algorithm.
▶ In each iteration

× densify all variables
✓ densify variables one by one

▶ Theorem 6 ⇒ new optimum is ≤ 4g(∥A∥∞, tdD(A)) far
in ℓ1-norm

Densifying a variable ⇒ following IP where x is a given initial
feasible solution.

min{f (x+ h) | Ah = 0, l ≤ x+ h ≤ u, ∥h∥1 ≤ ρ, h ∈ Zn} .
(ℓ1-IP)

▶ ℓ1-IP can be solved in time g(∥A∥∞, tdD(A))n via DP.

▶ Leads to linear time per variable ⇒ quadratic in n overall.

▶ Instead, we “dynamize” the DP table so that densifying a
single variable can be done in time g ′(∥A∥∞, tdD(A)) log n .

▶ Overall dependence on n is n log n .



Concluding Remarks & Open Problems

Remarks for Dual Algorithm

▶ Our approach for the dual algorithm cannot be sped up (by
reduction from sorting in the comparison model).

▶ Conjecture. The dependence on n in the running time of the
dual algorithm is optimal.

Open problems

▶ Remove log n factor in the dual algorithm.

▶ Add log n factor to n log ∥u− l∥∞ lower bound.

▶ Remove log n factor at least for some special cases.
E.g. special objective functions such as separable quadratic.



Concluding Remarks & Open Problems

Remarks for Dual Algorithm

▶ Our approach for the dual algorithm cannot be sped up (by
reduction from sorting in the comparison model).

▶ Conjecture. The dependence on n in the running time of the
dual algorithm is optimal.

Open problems

▶ Remove log n factor in the dual algorithm.

▶ Add log n factor to n log ∥u− l∥∞ lower bound.

▶ Remove log n factor at least for some special cases.
E.g. special objective functions such as separable quadratic.



Concluding Remarks & Open Problems

Remarks for Dual Algorithm

▶ Our approach for the dual algorithm cannot be sped up (by
reduction from sorting in the comparison model).

▶ Conjecture. The dependence on n in the running time of the
dual algorithm is optimal.

Open problems

▶ Remove log n factor in the dual algorithm.

▶ Add log n factor to n log ∥u− l∥∞ lower bound.

▶ Remove log n factor at least for some special cases.
E.g. special objective functions such as separable quadratic.



Concluding Remarks & Open Problems

Remarks for Dual Algorithm

▶ Our approach for the dual algorithm cannot be sped up (by
reduction from sorting in the comparison model).

▶ Conjecture. The dependence on n in the running time of the
dual algorithm is optimal.

Open problems

▶ Remove log n factor in the dual algorithm.

▶ Add log n factor to n log ∥u− l∥∞ lower bound.

▶ Remove log n factor at least for some special cases.
E.g. special objective functions such as separable quadratic.



Concluding Remarks & Open Problems

Remarks for Dual Algorithm

▶ Our approach for the dual algorithm cannot be sped up (by
reduction from sorting in the comparison model).

▶ Conjecture. The dependence on n in the running time of the
dual algorithm is optimal.

Open problems

▶ Remove log n factor in the dual algorithm.

▶ Add log n factor to n log ∥u− l∥∞ lower bound.

▶ Remove log n factor at least for some special cases.
E.g. special objective functions such as separable quadratic.



Thank you for your attention!

https://arxiv.org/abs/2505.22212

<tung@iuuk.mff.cuni.cz>

Open problems

▶ Remove log n factor in
the dual algorithm.

▶ Add log n factor
to n log ∥u− l∥∞ lower
bound.

▶ Remove log n factor at
least for some special
cases. E.g. special
objective functions such
as separable quadratic.


