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Integer (Linear) Programming problem in standard form:

min{wa|Ax:b,nggu,er”}, and (ILP)
min{f(x) | Ax=b, 1 <x<u,xeZ"} (IP)
with
> Ae Zmx",
» LuweZ" and
» f:R"” — R a separable convex function, i.e. f is expressible
as f(x) = >, fi(x;) with each fi: R — R convex.

ILP is already NP-hard = focus on tractable subclasses
corresponding to block-structured matrices.
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Multistage-stochastic matrix. Tree-fold matrix.
S i
Small primal treedepth tdp(A). Small dual treedepth tdp(A).

» Treedepth measures the similarity of a graph to a star.
» tdp(A): treedepth of the primal graph of A.
» tdp(A): treedepth of the primal graph of A"

Main point. Block structure-ness of A = treedepth.
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g.g'.g",...: some computable function.

[Eisenbrand, Hunkenschroder, Klein, Koutecky, Levin, Onn; MOR 2024]

IP can be solved in time
g([|Allsc, d) (n” + min(m, n)nm) log ||u — l|| log fzap

where d = min{tdp(A),tdp(A)}, feap = Maxyy: 1<xy<u f(X) — f(y).

[Cslovjecsek, Eisenbrand, Hunkenschroder, Rohwedder, Weismantel; SODA 2021] [Cslovjecsek, Eisenbrand,
Pilipczuk, Venzin, Weismantel; ESA 2021]

ILP can be solved in of

g([Alloc; d) nlog” ' n .
Our motivation
Is there a algorithm for IP? No!
min f = ) f; < min f; separately < Q(log(u; — /;)) comparisons
by information theory.
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Our Results: Matching the Lower Bound

Theorem 1
There is an algorithm which solves IP in time

g(tdp(A), [|Allc) nlog|ju =1, b [|o -

Theorem 2
There is an algorithm which solves IP in time

g(tdp(A), | Allo) nlog Ju—1, b [l Togn.

> finding an initial feasible solution.
» Conjecture: The dependence on n in Theorem 2 is optimal.

» Remark: optimizing dependence on
parameters || A/, tdp(A),tdp(A): NOT focus of this work.
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Scaling Algorithm Informally (Theorem 3)

(Given an initial feasible solution), W€ CaNn solve IP by soIving
» [log||l,ull| + 1 instances of IP
> with small bounds ||u’ — I'[|o. < 3p where
> p only depends on A.

Question. What is p?
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Conformal Proximity Bound (CPB) (v informany)

Pp(A): given A, smallest real r € R such that
» for every relaxation optimum x*
> there exists an integer optimum z*
> with [[x* — ||, < r.

. , ,
X] 23 relaxation optima

z7 5 3 integer optima
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Scaling Proximity Theorem

Theorem (Theorem 4)

> 1<p<+o0
» 7: IP instance with optimum z*
» T': copy of T but require that solutions be in s7."

» then there exists a solution 2’ of T' with

12" = 2]lp < (s +1)Pp(A),
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Goal: bound distance between IP optimum and optimum
restricted to sZ"

A < Py(A) ( reverse” CPB)
. . o .
Sz IP optimum 'C"‘ relaxation optimum

1Py(A). :
2 oty < 5P, (A) ("s-CPB")
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Suppose you have some class of IP’s.

1. Find an upper bound p on P, (A).

2. Find a way to solve IP with small bounds.
3. Plug these into scaling algorithm.
4

. Profit (=get to solve [log||l,ul|~ | + 1 simple instances
instead of one complicated one).

Remark: Number of IP instances can be reduced
to log[||l, ullsc/p] + 1.
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[Klein, Reuter; SODA 2022] [Eisenbrand, Hunkenschréder, Klein, Koutecky,
Levin, Onn; MOR 2024, Lemma 8]
There is a computable func- Each IP instance in the scaling al-
tion g’ such that gorithm can be solved in time
Poo(A) < g'(tdp(A), [|All) O(tdp(A)*(2P5(A) + 1)" W)

O(g"(tdp(A), || Al oo )m)-time algorithm IP with small bounds

O(g"(tdp(A), ||Allco )mlog ||u — 1, b||  )-time algorithm for IP

» g’ is triple exponential in tdp(A).

> Seems Optlmal [Hunkenschroder, Klein, Koutecky, Lassota, Levin; IPCO 2024, Theorem 1]



Dual Algorithm (Theorem 2)

More delicate than Theorem 1:



Dual Algorithm (Theorem 2)

More delicate than Theorem 1:

» No analogous result to the proximity result of Klein and
Reuter (P (A) < g'(td(A), ||Allx))-



Dual Algorithm (Theorem 2)

More delicate than Theorem 1:

» No analogous result to the proximity result of Klein and
Reuter (Poo(A) < g'(td(A), | All0))-
> [Cslovjecsek, Eisenbrand, Hunkenschroder, Rohwedder, Weismantel; SODA 2021, Proposition 4.1]
shows instances of IP with
» small tdp(A) + || Al
» but where integer optima are Q(n) far in the {s-norm from
any continuous optimum.
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Corollary (Informal corollary of Theorem 6)

» x*: optimum of IP with some (or none) variables densified
» if we densify another variable

» then the new instance has an optimum X

> with [[x* —&||1 < 4g([|Alloc, tdp(A)).
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Dual Algorithm: Using the corollary

» Do the scaling algorithm.
» In each iteration

% densify at-vartables
v densify variables one by one

» Theorem 6 = new optimum is < 4g(||A||«, tdp(A)) far
in /1-norm

Densifying a variable = following IP where x is a given initial
feasible solution.

min{f(x+h) [ Ah=0,1<x+h<u, |[h|1 < p, heZ} .
(41-1P)

» (1-IP can be solved in time g(||A||oc, tdp(A))n via DP.

P Leads to linear time per variable = quadratic in n overall.

» Instead, we “dynamize” the DP table so that densifying a
single variable can be done in time g'(||A|| o0, tdp(A)) logn .

» Overall dependence on nis nlogn .
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Thank you for your attention!

Open problems

» Remove log n factor in
the dual algorithm.

» Add log n factor

https://arxiv.org/abs/2505.22212 to nlog ||u — ]| lower
bound.

» Remove log n factor at
least for some special
cases. E.g. special
objective functions such
as separable quadratic.
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