(Near-)Optimal Algorithms for Sparse Separable Convex Integer Programs

Christoph Hunkenschröder¹, Martin Koutecký³, Asaf Levin², Tung Anh Vu³

¹TU Berlin

²Technion – Israel Institute of Technology

³Charles University

(日) (四) (日) (日) (日)

IP and ILP

Integer (Linear) Programming problem in standard form:

$$\min \left\{ \mathbf{w}^{\mathsf{T}} \mathbf{x} \mid A \mathbf{x} = \mathbf{b}, \, \mathbf{I} \leq \mathbf{x} \leq \mathbf{u}, \, \mathbf{x} \in \mathbb{Z}^n \right\}, \text{ and} \qquad (\mathsf{ILP}) \\ \min \left\{ f(\mathbf{x}) \mid A \mathbf{x} = \mathbf{b}, \, \mathbf{I} \leq \mathbf{x} \leq \mathbf{u}, \, \mathbf{x} \in \mathbb{Z}^n \right\} \qquad (\mathsf{IP})$$

with

- ► $A \in \mathbb{Z}^{m \times n}$,
- ▶ $\mathbf{I}, \mathbf{u}, \mathbf{w} \in \mathbb{Z}^n$, and
- ▶ $f : \mathbb{R}^n \to \mathbb{R}$ a separable convex function, i.e. f is expressible as $f(\mathbf{x}) = \sum_{i=1}^n f_i(x_i)$ with each $f_i : \mathbb{R} \to \mathbb{R}$ convex.

IP and ILP

Integer (Linear) Programming problem in standard form:

$$\min \left\{ \mathbf{w}^{^{\mathsf{T}}} \mathbf{x} \mid A \mathbf{x} = \mathbf{b}, \, \mathbf{l} \le \mathbf{x} \le \mathbf{u}, \, \mathbf{x} \in \mathbb{Z}^n \right\}, \text{ and} \qquad (\mathsf{ILP}) \\ \min \left\{ f(\mathbf{x}) \mid A \mathbf{x} = \mathbf{b}, \, \mathbf{l} \le \mathbf{x} \le \mathbf{u}, \, \mathbf{x} \in \mathbb{Z}^n \right\} \qquad (\mathsf{IP})$$

with

- ► $A \in \mathbb{Z}^{m \times n}$,
- ▶ $\mathbf{I}, \mathbf{u}, \mathbf{w} \in \mathbb{Z}^n$, and

f: ℝⁿ → ℝ a separable convex function, i.e. f is expressible as f(x) = ∑_{i=1}ⁿ f_i(x_i) with each f_i: ℝ → ℝ convex.
ILP is already NP-hard

IP and ILP

Integer (Linear) Programming problem in standard form:

$$\min \left\{ \mathbf{w}^{^{\mathsf{T}}} \mathbf{x} \mid A \mathbf{x} = \mathbf{b}, \, \mathbf{l} \le \mathbf{x} \le \mathbf{u}, \, \mathbf{x} \in \mathbb{Z}^n \right\}, \text{ and} \qquad (\mathsf{ILP}) \\ \min \left\{ f(\mathbf{x}) \mid A \mathbf{x} = \mathbf{b}, \, \mathbf{l} \le \mathbf{x} \le \mathbf{u}, \, \mathbf{x} \in \mathbb{Z}^n \right\} \qquad (\mathsf{IP})$$

A D N A 目 N A E N A E N A B N A C N

with

- ► $A \in \mathbb{Z}^{m \times n}$,
- ▶ $\mathbf{I}, \mathbf{u}, \mathbf{w} \in \mathbb{Z}^n$, and

▶ $f: \mathbb{R}^n \to \mathbb{R}$ a separable convex function, i.e. f is expressible as $f(\mathbf{x}) = \sum_{i=1}^n f_i(x_i)$ with each $f_i: \mathbb{R} \to \mathbb{R}$ convex.

ILP is already NP-hard \Rightarrow focus on tractable subclasses corresponding to block-structured matrices.

Multistage-stochastic matrix.

Tree-fold matrix.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Multistage-stochastic matrix.

Tree-fold matrix.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Multistage-stochastic matrix.

Tree-fold matrix.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Multistage-stochastic matrix.

Tree-fold matrix.

Multistage-stochastic matrix.

Tree-fold matrix.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

イロト 不得 トイヨト イヨト

э

Treedepth measures the similarity of a graph to a star.

Multistage-stochastic matrix.Tree-fold matrix. $\label{eq:matrix}$ $\label{eq:matrix}$ Small primal treedepth td_P(A).Small dual treedepth td_D(A).

- Treedepth measures the similarity of a graph to a star.
- $td_P(A)$: treedepth of the primal graph of A.

Multistage-stochastic matrix.Tree-fold matrix.11Small primal treedepth td_P(A).Small dual treedepth td_D(A).

- Treedepth measures the similarity of a graph to a star.
- $td_P(A)$: treedepth of the primal graph of A.
- $td_D(A)$: treedepth of the primal graph of A^{T} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Multistage-stochastic matrix.Tree-fold matrix. \uparrow \uparrow Small primal treedepth td_P(A).Small dual treedepth td_D(A).Treedepth measures the similarity of a graph to a star.

- $td_P(A)$: treedepth of the primal graph of A.
- $td_D(A)$: treedepth of the primal graph of A^{T} .
- **Main point.** Block structure-ness of $A \approx$ treedepth.

 g, g', g'', \ldots : some computable function.

g, g', g'', \ldots : some computable function.

[Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, Onn; MOR 2024]

IP can be solved in time

 $g(||A||_{\infty},d) \quad (n^{\omega} + \min(m,n)nm) \quad \log ||\mathbf{u} - \mathbf{I}||_{\infty} \log f_{gap} ,$

where $d = \min\{\operatorname{td}_{P}(A), \operatorname{td}_{D}(A)\}, f_{\operatorname{gap}} = \max_{\mathbf{x}, \mathbf{y} \in \mathbf{I} \leq \mathbf{x}, \mathbf{y} \leq \mathbf{u}} f(\mathbf{x}) - f(\mathbf{y}).$

g, g', g'', \ldots : some computable function.

[Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, Onn; MOR 2024]

IP can be solved in time

 $g(||A||_{\infty},d) \quad (n^{\omega} + \min(m,n)nm) \quad \log ||\mathbf{u} - \mathbf{I}||_{\infty} \log f_{gap} ,$

where
$$d = \min\{td_P(A), td_D(A)\}, f_{gap} = \max_{\mathbf{x}, \mathbf{y}: \mathbf{l} \leq \mathbf{x}, \mathbf{y} \leq \mathbf{u}} f(\mathbf{x}) - f(\mathbf{y}).$$

[Cslovjecsek, Eisenbrand, Hunkenschröder, Rohwedder, Weismantel; SODA 2021] [Cslovjecsek, Eisenbrand, Pilipczuk, Venzin, Weismantel; ESA 2021]

ILP can be solved in strongly near-linear time of

$$g(||A||_{\infty},d) n \log^{2^{\mathcal{O}(d)}} n$$
.

g, g', g'', \ldots : some computable function.

[Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, Onn; MOR 2024]

IP can be solved in time

 $g(||A||_{\infty},d) \quad (n^{\omega} + \min(m,n)nm) \quad \log ||\mathbf{u} - \mathbf{I}||_{\infty} \log f_{gap} ,$

where
$$d = \min\{td_P(A), td_D(A)\}, f_{gap} = \max_{\mathbf{x}, \mathbf{y}: \mathbf{l} \leq \mathbf{x}, \mathbf{y} \leq \mathbf{u}} f(\mathbf{x}) - f(\mathbf{y}).$$

[Cslovjecsek, Eisenbrand, Hunkenschröder, Rohwedder, Weismantel; SODA 2021] [Cslovjecsek, Eisenbrand, Pilipczuk, Venzin, Weismantel; ESA 2021]

ILP can be solved in strongly near-linear time of

$$g(\|A\|_{\infty},d) n \log^{2^{\mathcal{O}(d)}} n.$$

Our motivation

Is there a strongly near-linear time algorithm for IP?

g, g', g'', \ldots : some computable function.

[Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, Onn; MOR 2024]

IP can be solved in time

 $g(||A||_{\infty},d) \quad (n^{\omega} + \min(m,n)nm) \quad \log ||\mathbf{u} - \mathbf{I}||_{\infty} \log f_{gap} ,$

where
$$d = \min\{td_P(A), td_D(A)\}, f_{gap} = \max_{\mathbf{x}, \mathbf{y}: \mathbf{l} \leq \mathbf{x}, \mathbf{y} \leq \mathbf{u}} f(\mathbf{x}) - f(\mathbf{y}).$$

[Cslovjecsek, Eisenbrand, Hunkenschröder, Rohwedder, Weismantel; SODA 2021] [Cslovjecsek, Eisenbrand, Pilipczuk, Venzin, Weismantel; ESA 2021]

ILP can be solved in strongly near-linear time of

$$g(\|A\|_{\infty},d) n \log^{2^{\mathcal{O}(d)}} n.$$

Our motivation

Is there a strongly near-linear time algorithm for IP? No! $\min f = \sum f_i \Leftrightarrow \min f_i$ separately $\Leftrightarrow \Omega(\log(u_i - l_i))$ comparisons by information theory.

Theorem 1 There is an algorithm which solves IP in time

$$g(\operatorname{td}_P(A), \|A\|_\infty) \frac{n \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_\infty}{n \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_\infty}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem 1 There is an algorithm which solves IP in time

$$g(\operatorname{td}_P(A), \|A\|_{\infty}) \frac{n \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_{\infty}}{n \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_{\infty}}$$

Theorem 2

There is an algorithm which solves IP in time

 $g(\operatorname{td}_D(A), \|A\|_{\infty}) \frac{n \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_{\infty}}{\log n}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem 1 There is an algorithm which solves IP in time

$$g(\operatorname{td}_P(A), \|A\|_{\infty}) \frac{n \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_{\infty}}{n \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_{\infty}}$$

Theorem 2

There is an algorithm which solves IP in time

$$g(\operatorname{td}_D(A), \|A\|_{\infty}) \frac{n \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_{\infty}}{\log n}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▶ $\log \|\mathbf{b}\|_{\infty} \leftarrow$ finding an initial feasible solution.

Theorem 1 There is an algorithm which solves IP in time

$$g(\operatorname{td}_P(A), \|A\|_{\infty}) \frac{n \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_{\infty}}{n \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_{\infty}}$$

Theorem 2

There is an algorithm which solves IP in time

$$g(\operatorname{td}_D(A), \|A\|_{\infty}) \frac{n \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_{\infty}}{\log n}.$$

▶ $\log \|\mathbf{b}\|_{\infty} \leftarrow$ finding an initial feasible solution.

Conjecture: The dependence on *n* in Theorem 2 is optimal.

Theorem 1 There is an algorithm which solves IP in time

$$g(\operatorname{td}_P(A), \|A\|_{\infty})$$
 $n \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_{\infty}$

Theorem 2

There is an algorithm which solves IP in time

$$g(\operatorname{td}_D(A), \|A\|_{\infty}) \frac{n \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_{\infty}}{\log n}.$$

- ▶ $\log \|\mathbf{b}\|_{\infty} \leftarrow$ finding an initial feasible solution.
- **Conjecture:** The dependence on *n* in Theorem 2 is optimal.
- ▶ Remark: optimizing dependence on parameters ||A||_∞, td_P(A), td_D(A): NOT focus of this work.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

= 990

(Given an initial feasible solution), we can solve IP by solving

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(Given an initial feasible solution), we can solve IP by solving

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

 $[\log \|\mathbf{I}, \mathbf{u}\|_{\infty}] + 1$ instances of IP

(Given an initial feasible solution), we can solve IP by solving

- $| \log \| \mathbf{I}, \mathbf{u} \|_{\infty} | + 1$ instances of IP
- with small bounds $\|\mathbf{u}^i \mathbf{l}^i\|_{\infty} \leq 3\rho$ where

(Given an initial feasible solution), we can solve IP by solving

- $[\log \|\mathbf{I}, \mathbf{u}\|_{\infty}] + 1$ instances of IP
- with small bounds $\|\mathbf{u}^i \mathbf{l}^i\|_{\infty} \leq 3\rho$ where

 \blacktriangleright ρ only depends on A.

(Given an initial feasible solution), We can solve IP by solving

- ▶ $\lceil \log \| \mathbf{I}, \mathbf{u} \|_{\infty} \rceil + 1$ instances of IP
- with small bounds $\|\mathbf{u}^i \mathbf{l}^i\|_{\infty} \leq 3\rho$ where

p only depends on *A*.

Question. What is ρ ?

Conformal Proximity Bound (CPB) (very informally)

 $\mathcal{P}_p(A)$: given A, smallest real $r \in \mathbb{R}$ such that

for every relaxation optimum x*

Conformal Proximity Bound (CPB) (very informally)

 $\mathcal{P}_p(A)$: given A, smallest real $r \in \mathbb{R}$ such that

- for every relaxation optimum x*
- there exists an integer optimum z*

Conformal Proximity Bound (CPB) (very informally)

 $\mathcal{P}_p(A)$: given A, smallest real $r \in \mathbb{R}$ such that

- for every relaxation optimum x*
- there exists an integer optimum z*
- with $\|\mathbf{x}^{\star} \mathbf{z}^{\star}\|_{p} \leq r$.

Scaling Proximity Theorem

Theorem (Theorem 4)

- ▶ $1 \le p \le +\infty$
- ► *I*: IP instance with optimum **z**^{*}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Scaling Proximity Theorem

Theorem (Theorem 4)

- ▶ $1 \le p \le +\infty$
- ► *I*: IP instance with optimum **z**^{*}
- \mathcal{I}' : copy of \mathcal{I} but require that solutions be in \mathbb{SZ}^n

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Scaling Proximity Theorem

Theorem (Theorem 4)

▶ $1 \le p \le +\infty$

I: IP instance with optimum z*

• \mathcal{I}' : copy of \mathcal{I} but require that solutions be in \mathbb{SZ}^n

• then there exists a solution \mathbf{z}' of \mathcal{I}' with

 $\|\mathbf{z}^{\star}-\hat{\mathbf{z}}\|_{p}\leq (s+1)\mathcal{P}_{p}(A),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Goal: bound distance between IP optimum and optimum restricted to $s\mathbb{Z}^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Goal: bound distance between IP optimum and optimum restricted to $s\mathbb{Z}^n$

Goal: bound distance between IP optimum and optimum restricted to $s\mathbb{Z}^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Goal: bound distance between IP optimum and optimum restricted to $s\mathbb{Z}^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Suppose you have some class of IP's.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Suppose you have some class of IP's.

1. Find an upper bound ρ on $\mathcal{P}_{\infty}(A)$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Suppose you have some class of IP's.

- 1. Find an upper bound ρ on $\mathcal{P}_{\infty}(A)$.
- 2. Find a way to solve IP with small bounds.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Suppose you have some class of IP's.

- 1. Find an upper bound ρ on $\mathcal{P}_{\infty}(A)$.
- 2. Find a way to solve IP with small bounds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

3. Plug these into scaling algorithm.

Suppose you have some class of IP's.

- 1. Find an upper bound ρ on $\mathcal{P}_{\infty}(A)$.
- 2. Find a way to solve IP with small bounds.
- 3. Plug these into scaling algorithm.
- Profit (=get to solve ⌈log ||I, u||∞⌉ + 1 simple instances instead of one complicated one).

Suppose you have some class of IP's.

- 1. Find an upper bound ρ on $\mathcal{P}_{\infty}(A)$.
- 2. Find a way to solve IP with small bounds.
- 3. Plug these into scaling algorithm.
- Profit (=get to solve ⌈log ||I, u||∞⌉ + 1 simple instances instead of one complicated one).

Remark: Number of IP instances can be reduced to $\log[\|\mathbf{I}, \mathbf{u}\|_{\infty}/\rho] + 1$.

・ロト・(型ト・(型ト・(型ト))

[Klein, Reuter; SODA 2022]

There is a computable function g' such that

 $\mathcal{P}_{\infty}(A) \leq g'(\mathsf{td}_P(A), \|A\|_{\infty})$

[Klein, Reuter; SODA 2022]

There is a computable function g' such that

 $\mathcal{P}_{\infty}(A) \leq \frac{g'(\operatorname{td}_{P}(A), \|A\|_{\infty})}{g'(\operatorname{td}_{P}(A), \|A\|_{\infty})}$

[Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, Onn; MOR 2024, Lemma 8]

Each IP instance in the scaling algorithm can be solved in time

 $\mathcal{O}(\mathsf{td}_{P}(A)^{2}(2\mathcal{P}_{p}(A)+1)^{\mathsf{td}_{P}(A)}n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

[Klein, Reuter; SODA 2022]

There is a computable function g' such that

$\mathcal{P}_{\infty}(A) \leq \frac{g'(\operatorname{td}_{P}(A), \ A\ _{\infty})}{g'(\operatorname{td}_{P}(A), \ A\ _{\infty})}$
\backslash

[Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, Onn; MOR 2024, Lemma 8]

Each IP instance in the scaling algorithm can be solved in time

 $\mathcal{O}(\mathsf{td}_P(A)^2(2\mathcal{P}_P(A)+1)^{\mathsf{td}_P(A)}n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\mathcal{O}(g''(\mathsf{td}_P(A), \|A\|_{\infty})$)-time algorithm IP with small bounds

[Klein, Reuter; SODA 2022]

There is a computable function g' such that

 $\mathcal{P}_{\infty}(A) \leq \mathbf{g}'(\mathrm{td}_{P}(A), \|A\|_{\infty})$

[Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, Onn; MOR 2024, Lemma 8]

Each IP instance in the scaling algorithm can be solved in time

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\mathcal{O}(g''(\mathrm{td}_P(A), \|A\|_{\infty}))$ -time algorithm IP with small bounds

 $\mathcal{O}(g''(\mathsf{td}_P(A), \|A\|_{\infty})\mathbf{n} \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_{\infty})$ -time algorithm for IP

[Klein, Reuter; SODA 2022]

There is a computable function g' such that

 $\mathcal{P}_{\infty}(A) \leq \mathbf{g}'(\mathrm{td}_{P}(A), \|A\|_{\infty})$

[Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, Onn; MOR 2024, Lemma 8]

Each IP instance in the scaling algorithm can be solved in time

 $\mathcal{O}(g''(\mathrm{td}_P(A), \|A\|_{\infty})n)$ -time algorithm IP with small bounds

 $\mathcal{O}(g''(\mathsf{td}_P(A), \|A\|_{\infty})\mathbf{n} \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_{\infty})$ -time algorithm for IP

• g' is triple exponential in $td_P(A)$.

[Klein, Reuter; SODA 2022]

There is a computable function g' such that

 $\mathcal{P}_{\infty}(A) \leq \mathbf{g}'(\mathrm{td}_{P}(A), \|A\|_{\infty})$

[Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, Onn; MOR 2024, Lemma 8]

Each IP instance in the scaling algorithm can be solved in time

 $\mathcal{O}(g''(\mathrm{td}_P(A), \|A\|_\infty)n)$ -time algorithm IP with small bounds

 $\mathcal{O}(g''(\mathsf{td}_P(A), \|A\|_{\infty})\mathbf{n} \log \|\mathbf{u} - \mathbf{I}, \mathbf{b}\|_{\infty})$ -time algorithm for IP

g' is triple exponential in td_P(A).
Seems optimal [Hunkenschröder, Klein, Koutecký, Lassota, Levin; IPCO 2024, Theorem 1]

Dual Algorithm (Theorem 2)

More delicate than Theorem 1:

Dual Algorithm (Theorem 2)

More delicate than Theorem 1:

No analogous result to the proximity result of Klein and Reuter (P_∞(A) ≤ g'(td(A), ||A||_∞)).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Dual Algorithm (Theorem 2)

More delicate than Theorem 1:

- No analogous result to the proximity result of Klein and Reuter (P_∞(A) ≤ g'(td(A), ||A||_∞)).
- [Cslovjecsek, Eisenbrand, Hunkenschröder, Rohwedder, Weismantel; SODA 2021, Proposition 4.1] shows instances of IP with
 - small $\operatorname{td}_D(A) + \|A\|_{\infty}$
 - but where integer optima are $\Omega(n)$ far in the ℓ_{∞} -norm from any continuous optimum.

A D N A 目 N A E N A E N A B N A C N

590

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

▲ロト▲御ト▲臣ト▲臣ト 臣 の父父

Corollary (Informal corollary of Theorem 6)

x*: optimum of IP with some (or none) variables densified

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Corollary (Informal corollary of Theorem 6)

x*: optimum of IP with some (or none) variables densified

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

if we densify another variable

Corollary (Informal corollary of Theorem 6)

x*: optimum of IP with some (or none) variables densified

- if we densify another variable
- then the new instance has an optimum x̂

Corollary (Informal corollary of Theorem 6)

x*: optimum of IP with some (or none) variables densified

- if we densify another variable
- then the new instance has an optimum $\hat{\mathbf{x}}$
- with $\|\mathbf{x}^{\star} \hat{\mathbf{x}}\|_1 \leq 4g(\|A\|_{\infty}, \operatorname{td}_D(A)).$

Dual Algorithm: Using the corollary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Do the scaling algorithm.

Dual Algorithm: Using the corollary

- ► Do the scaling algorithm.
- In each iteration
 - × densify all variables
 - $\checkmark\,$ densify variables one by one

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Dual Algorithm: Using the corollary

- ► Do the scaling algorithm.
- In each iteration
 - \times densify all variables
 - ✓ densify variables one by one
 - Theorem 6 ⇒ new optimum is ≤ 4g(||A||_∞, td_D(A)) far in ℓ₁-norm

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ
- ► Do the scaling algorithm.
- In each iteration
 - \times densify all variables
 - $\checkmark\,$ densify variables one by one
 - Theorem 6 ⇒ new optimum is ≤ 4g(||A||∞, td_D(A)) far in ℓ₁-norm

Densifying a variable \Rightarrow following IP where **x** is a given initial feasible solution.

$$\min\{f(\mathbf{x} + \mathbf{h}) \mid A\mathbf{h} = \mathbf{0}, \, \mathbf{I} \leq \mathbf{x} + \mathbf{h} \leq \mathbf{u}, \, \|\mathbf{h}\|_1 \leq \rho, \, \mathbf{h} \in \mathbb{Z}^n\} \ . \ (\ell_1 \text{-}\mathsf{IP})$$

- ► Do the scaling algorithm.
- In each iteration
 - \times densify all variables
 - $\checkmark\,$ densify variables one by one
 - Theorem 6 ⇒ new optimum is ≤ 4g(||A||_∞, td_D(A)) far in ℓ₁-norm

Densifying a variable \Rightarrow following IP where ${\bf x}$ is a given initial feasible solution.

$$\min\{f(\mathbf{x} + \mathbf{h}) \mid A\mathbf{h} = \mathbf{0}, \, \mathbf{I} \leq \mathbf{x} + \mathbf{h} \leq \mathbf{u}, \, \|\mathbf{h}\|_1 \leq \rho, \, \mathbf{h} \in \mathbb{Z}^n\} \ . \ (\ell_1 \text{-}\mathsf{IP})$$

▶ ℓ_1 -IP can be solved in time $g(||A||_{\infty}, td_D(A))n$ via DP.

- ► Do the scaling algorithm.
- In each iteration
 - \times densify all variables
 - $\checkmark\,$ densify variables one by one
 - Theorem 6 ⇒ new optimum is ≤ 4g(||A||∞, td_D(A)) far in ℓ₁-norm

Densifying a variable \Rightarrow following IP where ${\bf x}$ is a given initial feasible solution.

$$\begin{split} \min\{f(\mathbf{x} + \mathbf{h}) \mid A\mathbf{h} = \mathbf{0}, \, \mathbf{I} \leq \mathbf{x} + \mathbf{h} \leq \mathbf{u}, \, \|\mathbf{h}\|_1 \leq \rho, \, \mathbf{h} \in \mathbb{Z}^n\} \\ (\ell_1 \text{-}\mathsf{IP}) \end{split}$$

- ▶ ℓ_1 -IP can be solved in time $g(||A||_{\infty}, \operatorname{td}_D(A))n$ via DP.
- Leads to linear time per variable \Rightarrow quadratic in *n* overall.

- Do the scaling algorithm.
- In each iteration
 - × densify all variables
 - \checkmark densify variables one by one
 - Theorem 6 ⇒ new optimum is ≤ 4g(||A||∞, td_D(A)) far in ℓ₁-norm

Densifying a variable \Rightarrow following IP where **x** is a given initial feasible solution.

$$\begin{split} \min\{f(\mathbf{x} + \mathbf{h}) \mid A\mathbf{h} = \mathbf{0}, \, \mathbf{I} \leq \mathbf{x} + \mathbf{h} \leq \mathbf{u}, \, \|\mathbf{h}\|_1 \leq \rho, \, \mathbf{h} \in \mathbb{Z}^n\} \\ (\ell_1 \text{-}\mathsf{IP}) \end{split}$$

- ℓ_1 -IP can be solved in time $g(||A||_{\infty}, td_D(A))n$ via DP.
- Leads to linear time per variable \Rightarrow quadratic in *n* overall.
- Instead, we "dynamize" the DP table so that densifying a single variable can be done in time g'(||A||∞, td_D(A)) log n.

- ► Do the scaling algorithm.
- In each iteration
 - × densify all variables
 - \checkmark densify variables one by one
 - Theorem 6 ⇒ new optimum is ≤ 4g(||A||∞, td_D(A)) far in ℓ₁-norm

Densifying a variable \Rightarrow following IP where **x** is a given initial feasible solution.

$$\begin{split} \min\{f(\mathbf{x}+\mathbf{h}) \mid A\mathbf{h} = \mathbf{0}, \, \mathbf{I} \leq \mathbf{x} + \mathbf{h} \leq \mathbf{u}, \, \|\mathbf{h}\|_1 \leq \rho, \, \mathbf{h} \in \mathbb{Z}^n\} \\ (\ell_1\text{-}\mathsf{IP}) \end{split}$$

- ▶ ℓ_1 -IP can be solved in time $g(||A||_{\infty}, td_D(A))n$ via DP.
- Leads to linear time per variable \Rightarrow quadratic in *n* overall.
- Instead, we "dynamize" the DP table so that densifying a single variable can be done in time g'(||A||∞, td_D(A)) log n.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Overall dependence on n is n log n.

Remarks for Dual Algorithm

Our approach for the dual algorithm cannot be sped up (by reduction from sorting in the comparison model).

Remarks for Dual Algorithm

- Our approach for the dual algorithm cannot be sped up (by reduction from sorting in the comparison model).
- Conjecture. The dependence on *n* in the running time of the dual algorithm is optimal.

Remarks for Dual Algorithm

- Our approach for the dual algorithm cannot be sped up (by reduction from sorting in the comparison model).
- Conjecture. The dependence on *n* in the running time of the dual algorithm is optimal.

Open problems

Remove log n factor in the dual algorithm.

Remarks for Dual Algorithm

- Our approach for the dual algorithm cannot be sped up (by reduction from sorting in the comparison model).
- Conjecture. The dependence on *n* in the running time of the dual algorithm is optimal.

Open problems

- Remove log n factor in the dual algorithm.
- Add $\log n$ factor to $n \log ||\mathbf{u} \mathbf{I}||_{\infty}$ lower bound.

Remarks for Dual Algorithm

- Our approach for the dual algorithm cannot be sped up (by reduction from sorting in the comparison model).
- Conjecture. The dependence on *n* in the running time of the dual algorithm is optimal.

Open problems

- Remove log n factor in the dual algorithm.
- Add log *n* factor to $n \log ||\mathbf{u} \mathbf{I}||_{\infty}$ lower bound.
- Remove log n factor at least for some special cases.
 E.g. special objective functions such as separable quadratic.

Thank you for your attention!

https://arxiv.org/abs/2505.22212

<tung@iuuk.mff.cuni.cz>

Open problems

- Remove log n factor in the dual algorithm.
- ► Add log *n* factor to $n \log ||\mathbf{u} - \mathbf{I}||_{\infty}$ lower bound.
- Remove log n factor at least for some special cases. E.g. special objective functions such as separable quadratic.

・ロト・日本・日本・日本・日本・日本