(Near-)Optimal Algorithms for Sparse Separable
Convex Integer Programs

Christoph Hunkenschréder!, Martin Koutecky3, Asaf Levin?,
Tung Anh Vu3

1TU Berlin
2Technion — Israel Institute of Technology

3Charles University

TECHNION
) u Israel Institute
Technische of Technology
Universitat

Berlin

3 CHARLES
UNIVERSITY

IP and ILP

Integer (Linear) Programming problem in standard form:

min{wa|Ax:b,nggu,XEZ”}, and (ILP)
min{f(x) | Ax=b, 1 <x<u,xeZ"} (IP)
with
> Ac men'
» LuweZ" and

» f:R"” — R a separable convex function, i.e. f is expressible
as f(x) = >, fi(x;) with each fi: R — R convex.

IP and ILP

Integer (Linear) Programming problem in standard form:

min{wa|Ax:b,nggu,XGZ”}, and (ILP)
min{f(x) | Ax=b, 1 <x<u,xeZ"} (IP)

with
> Aeczmen,
» LuweZ" and
» f:R"” — R a separable convex function, i.e. f is expressible
as f(x) = >, fi(x;) with each fi: R — R convex.
ILP is already NP-hard

IP and ILP

Integer (Linear) Programming problem in standard form:

min{wa|Ax:b,nggu,er”}, and (ILP)
min{f(x) | Ax=b, 1 <x<u,xeZ"} (IP)
with
> Ae Zmx",
» LuweZ" and
» f:R"” — R a separable convex function, i.e. f is expressible
as f(x) = >, fi(x;) with each fi: R — R convex.

ILP is already NP-hard = focus on tractable subclasses
corresponding to block-structured matrices.

Block Structured Matrices

Multistage-stochastic matrix. Tree-fold matrix.

Block Structured Matrices

Multistage-stochastic matrix.

Tree-fold matrix.

DA

Block Structured Matrices

Multistage-stochastic matrix. Tree-fold matrix.

Block Structured Matrices

Multistage-stochastic matrix. Tree-fold matrix.

Block Structured Matrices

Multistage-stochastic matrix.

,‘ _
1
CJ
—_
—_
(I
—
—_
1
1
—
—
CJ
—_
L —_

Tree-fold matrix.

Block Structured Matrices

- - 7‘ T
0 —
[
i —
Te——
(-
0 =
(-
Multistage-stochastic matrix. Tree-fold matrix.
S i
Small primal treedepth tdp(A). Small dual treedepth tdp(A).

» Treedepth measures the similarity of a graph to a star.

Block Structured Matrices

- - 7‘ T
0 —
[
i —
Te——
(-
0 =
(-
Multistage-stochastic matrix. Tree-fold matrix.
S i
Small primal treedepth tdp(A). Small dual treedepth tdp(A).

» Treedepth measures the similarity of a graph to a star.
» tdp(A): treedepth of the primal graph of A.

Block Structured Matrices

- - " N
0 —
[
i —
Te——
(-
0 =
(-
Multistage-stochastic matrix. Tree-fold matrix.
S i
Small primal treedepth tdp(A). Small dual treedepth tdp(A).

» Treedepth measures the similarity of a graph to a star.
» tdp(A): treedepth of the primal graph of A.
» tdp(A): treedepth of the primal graph of A"

Block Structured Matrices

- - 7‘ T
0 —
[
i —
Te——
(-
0 =
(-
Multistage-stochastic matrix. Tree-fold matrix.
S i
Small primal treedepth tdp(A). Small dual treedepth tdp(A).

» Treedepth measures the similarity of a graph to a star.
» tdp(A): treedepth of the primal graph of A.
» tdp(A): treedepth of the primal graph of A"

Main point. Block structure-ness of A = treedepth.

State of the Art

g.g'.g",...: some computable function.

State of the Art

g.g'.g",...: some computable function.

[Eisenbrand, Hunkenschroder, Klein, Koutecky, Levin, Onn; MOR 2024]
IP can be solved in time

g([|Allsc, d) (n” + min(m, n)nm) log ||u — l|| log fzap

where d = min{tdp(A),tdp(A)}, feap = Maxyy: 1<xy<u f(X) — f(y).

State of the Art

g.g'.g",...: some computable function.

[Eisenbrand, Hunkenschroder, Klein, Koutecky, Levin, Onn; MOR 2024]

IP can be solved in time
g([|Allsc, d) (n” + min(m, n)nm) log ||u — l|| log fzap
where d = min{tdp(A),tdp(A)}, feap = Maxyy: 1<xy<u f(X) — f(y).

[Cslovjecsek, Eisenbrand, Hunkenschroder, Rohwedder, Weismantel; SODA 2021] [Cslovjecsek, Eisenbrand,
Pilipczuk, Venzin, Weismantel; ESA 2021]

ILP can be solved in of

(Al d) nlog®™ n .

State of the Art

g.g'.g",...: some computable function.

[Eisenbrand, Hunkenschroder, Klein, Koutecky, Levin, Onn; MOR 2024]

IP can be solved in time
g([|Allsc, d) (n” + min(m, n)nm) log ||u — l|| log fzap

where d = min{tdp(A),tdp(A)}, feap = Maxyy: 1<xy<u f(X) — f(y).

[Cslovjecsek, Eisenbrand, Hunkenschroder, Rohwedder, Weismantel; SODA 2021] [Cslovjecsek, Eisenbrand,
Pilipczuk, Venzin, Weismantel; ESA 2021]

ILP can be solved in of

o(d)
g(|Alloo, d) nlog® " n .
Our motivation
Is there a algorithm for IP?

State of the Art

g.g'.g",...: some computable function.

[Eisenbrand, Hunkenschroder, Klein, Koutecky, Levin, Onn; MOR 2024]

IP can be solved in time
g([|Allsc, d) (n” + min(m, n)nm) log ||u — l|| log fzap

where d = min{tdp(A),tdp(A)}, feap = Maxyy: 1<xy<u f(X) — f(y).

[Cslovjecsek, Eisenbrand, Hunkenschroder, Rohwedder, Weismantel; SODA 2021] [Cslovjecsek, Eisenbrand,
Pilipczuk, Venzin, Weismantel; ESA 2021]

ILP can be solved in of

g([Alloc; d) nlog” ' n .
Our motivation
Is there a algorithm for IP? No!
min f =) f; < min f; separately < Q(log(u; — /;)) comparisons
by information theory.

Our Results: Matching the Lower Bound

Theorem 1
There is an algorithm which solves IP in time

g(tdp(A), [|Allc) nlog|ju =1, b [|o -

Our Results: Matching the Lower Bound

Theorem 1
There is an algorithm which solves IP in time

g(tdp(A), [|Allc) nlog|ju =1, b [|o -

Theorem 2
There is an algorithm which solves IP in time

g(tdp(A), | Allo) nlog Ju—1, b [l Togn.

Our Results: Matching the Lower Bound

Theorem 1
There is an algorithm which solves IP in time

g(tdp(A), [|Allc) nlog|ju =1, b [|o -

Theorem 2
There is an algorithm which solves IP in time

g(tdp(A), | Allo) nlog Ju—1, b [l Togn.

> finding an initial feasible solution.

Our Results: Matching the Lower Bound

Theorem 1
There is an algorithm which solves IP in time

g(tdp(A), [|Allc) nlog|ju =1, b [|o -

Theorem 2
There is an algorithm which solves IP in time

g(tdp(A), | Allo) nlog Ju—1, b [l Togn.

> finding an initial feasible solution.

» Conjecture: The dependence on n in Theorem 2 is optimal.

Our Results: Matching the Lower Bound

Theorem 1
There is an algorithm which solves IP in time

g(tdp(A), [|Allc) nlog|ju =1, b [|o -

Theorem 2
There is an algorithm which solves IP in time

g(tdp(A), | Allo) nlog Ju—1, b [l Togn.

> finding an initial feasible solution.
» Conjecture: The dependence on n in Theorem 2 is optimal.

» Remark: optimizing dependence on
parameters || A/, tdp(A),tdp(A): NOT focus of this work.

Main Idea: Scaling Algorithm

A s72
[] [)
[[)

v

Main Idea: Scaling Algorithm

A s72
[] [)
[[)

Xo

v

Main Idea: Scaling Algorithm

A

A

s72

(s/2)2?

v

Main Idea: Scaling Algorithm

A

A

s72

(s/2)2?
° ° . ° .
° ° ° ° °
e -—-—-6--—-¢6---¢---9¢
; |
| I
¢ ° ° ° ;
; |
| I
f ° ° ° *
I
I
| / ;
é e X0 o ° °
| |
| I
I
¢ -

——— -~ - — — - — —
_\ »

scaling proximity

Main Idea: Scaling Algorithm
A 72 (s)2)72

»

[
find nearby optimum in (s/2)Z? scaling proximity

Scaling Algorithm Informally (Theorem 3)

(Given an initial feasible solution), W€ CaNn solve IP by SOlVing

Scaling Algorithm Informally (Theorem 3)

(Given an initial feasible solution), W€ CaNn solve IP by SOlVing
» [log||l,ull| + 1 instances of IP

Scaling Algorithm Informally (Theorem 3)

(Given an initial feasible solution), W€ CaNn solve IP by SOlVing
» [log||l,ull| + 1 instances of IP

> with small bounds ||u’ — I'[|o. < 3p where

Scaling Algorithm Informally (Theorem 3)

(Given an initial feasible solution), W€ CaNn solve IP by SOlVing
» [log||l,ull| + 1 instances of IP
> with small bounds ||u’ — I'[|o. < 3p where

> p only depends on A.

Scaling Algorithm Informally (Theorem 3)

(Given an initial feasible solution), W€ CaNn solve IP by soIving
» [log||l,ull| + 1 instances of IP
> with small bounds ||u’ — I'[|o. < 3p where
> p only depends on A.

Question. What is p?

Conformal Proximity Bound (CPB) (v informany)

Pp(A): given A, smallest real r € R such that

» for every relaxation optimum x*

. , ,
X] 23 relaxation optima

Conformal Proximity Bound (CPB) (v informany)

Pp(A): given A, smallest real r € R such that
» for every relaxation optimum x*

> there exists an integer optimum z*

. , ,
X] 23 relaxation optima

z7 5 3 integer optima

’

Conformal Proximity Bound (CPB) (v informany)

Pp(A): given A, smallest real r € R such that
» for every relaxation optimum x*
> there exists an integer optimum z*
> with [[x* — ||, < r.

. , ,
X] 23 relaxation optima

z7 5 3 integer optima

Scaling Proximity Theorem

Theorem (Theorem 4)

> 1<p<+o0

» 7: IP instance with optimum z*

Scaling Proximity Theorem

Theorem (Theorem 4)

> 1<p<+o0
» 7: IP instance with optimum z*

» T': copy of T but require that solutions be in s7."

Scaling Proximity Theorem

Theorem (Theorem 4)

> 1<p<+o0
» 7: IP instance with optimum z*
» T': copy of T but require that solutions be in s7."

» then there exists a solution 2’ of T' with

12" = 2]lp < (s +1)Pp(A),

Scaling Proximity Theorem: Proof ldea

Goal: bound distance between IP optimum and optimum
restricted to sZ"
A

SZ")
IP optimum 4

\j

Scaling Proximity Theorem: Proof ldea

Goal: bound distance between IP optimum and optimum
restricted to sZ"

A < Pp(A) ("reverse” CPB)
. . ° °
SZM '1“”

IP optimum a- relaxation optimum

\j

Scaling Proximity Theorem: Proof ldea

Goal: bound distance between IP optimum and optimum
restricted to sZ"

A < Py(A) (reverse” CPB)
. . . .
Sz IP optimum .4"‘ relaxation optimum
‘

< sP,(A) ("s-CPB")

\j

Scaling Proximity Theorem: Proof ldea

Goal: bound distance between IP optimum and optimum
restricted to sZ"

A < Py(A) (reverse” CPB)
. . o .
Sz IP optimum 'C"‘ relaxation optimum

1Py(A). :
2 oty < 5P, (A) ("s-CPB")

\j

Scaling Algorithm: Practical takeaway

Suppose you have some class of IP’s.

Scaling Algorithm: Practical takeaway

Suppose you have some class of IP’s.

1. Find an upper bound p on Py, (A).

Scaling Algorithm: Practical takeaway

Suppose you have some class of IP’s.
1. Find an upper bound p on Py, (A).

2. Find a way to solve IP with small bounds.

Scaling Algorithm: Practical takeaway

Suppose you have some class of IP’s.
1. Find an upper bound p on Py, (A).
2. Find a way to solve IP with small bounds.

3. Plug these into scaling algorithm.

Scaling Algorithm: Practical takeaway

Suppose you have some class of IP’s.

1. Find an upper bound p on P, (A).

2. Find a way to solve IP with small bounds.
3. Plug these into scaling algorithm.
4

. Profit (=get to solve [log||l,ul|~ | + 1 simple instances
instead of one complicated one).

Scaling Algorithm: Practical takeaway

Suppose you have some class of IP’s.

1. Find an upper bound p on P, (A).

2. Find a way to solve IP with small bounds.
3. Plug these into scaling algorithm.
4

. Profit (=get to solve [log||l,ul|~ | + 1 simple instances
instead of one complicated one).

Remark: Number of IP instances can be reduced
to log[||l, ullsc/p] + 1.

Prlmal Algorithm (Theorem 1) (O(g(||All oo » tdp(A))n]|lu — I, b|| 50)-time algorithm)

Primal Algorithm (Theorem 1) (O(e(|All so» tdp(A))n|lu — 1, b|| oo)-time algorithm)

[Klein, Reuter; SODA 2022]

There is a computable func-
tion g’ such that

Primal Algorithm (Theorem 1) (O(e(|All so» tdp(A))n|lu — 1, b|| oo)-time algorithm)

[Klein, Reuter; SODA 2022] [Eisenbrand, Hunkenschréder, Klein, Koutecky,
Levin, Onn; MOR 2024, Lemma 8]
There is a computable func- Each IP instance in the scaling al-
tion g’ such that gorithm can be solved in time

Poo(A) < g'(tdp(A), | All) O(tdp(A)(2P,(A) + 1)1*Pm)

Primal Algorithm (Theorem 1) (O(e(|All so» tdp(A))n|lu — 1, b|| oo)-time algorithm)

[Klein, Reuter; SODA 2022] [Eisenbrand, Hunkenschréder, Klein, Koutecky,
Levin, Onn; MOR 2024, Lemma 8]
There is a computable func- Each IP instance in the scaling al-
tion g’ such that gorithm can be solved in time
Poo(A) < g'(tdp(A), [|All) O(tdp(A)*(2P5(A) + 1)" W)

O(g"(tdp(A), || Al oo)m)-time algorithm IP with small bounds

Primal Algorithm (Theorem 1) (O(e(|All so» tdp(A))n|lu — 1, b|| oo)-time algorithm)

[Klein, Reuter; SODA 2022] [Eisenbrand, Hunkenschréder, Klein, Koutecky,
Levin, Onn; MOR 2024, Lemma 8]
There is a computable func- Each IP instance in the scaling al-
tion g’ such that gorithm can be solved in time
Poo(A) < g'(tdp(A), [|All) O(tdp(A)*(2P5(A) + 1)" W)

O(g"(tdp(A), || Al oo)m)-time algorithm IP with small bounds

O(g"(tdp(A), ||Allco)mlog ||u — 1, b||)-time algorithm for IP

Primal Algorithm (Theorem 1) (O(e(|All so» tdp(A))n|lu — 1, b|| oo)-time algorithm)

[Klein, Reuter; SODA 2022] [Eisenbrand, Hunkenschréder, Klein, Koutecky,
Levin, Onn; MOR 2024, Lemma 8]
There is a computable func- Each IP instance in the scaling al-
tion g’ such that gorithm can be solved in time
Poo(A) < g'(tdp(A), [|All) O(tdp(A)*(2P5(A) + 1)" W)

O(g"(tdp(A), || Al oo)m)-time algorithm IP with small bounds

O(g"(tdp(A), ||Allco)mlog ||u — 1, b||)-time algorithm for IP

» g’ is triple exponential in tdp(A).

Primal Algorithm (Theorem 1) (O(e(|All so» tdp(A))n|lu — 1, b|| oo)-time algorithm)

[Klein, Reuter; SODA 2022] [Eisenbrand, Hunkenschréder, Klein, Koutecky,
Levin, Onn; MOR 2024, Lemma 8]
There is a computable func- Each IP instance in the scaling al-
tion g’ such that gorithm can be solved in time
Poo(A) < g'(tdp(A), [|All) O(tdp(A)*(2P5(A) + 1)" W)

O(g"(tdp(A), || Al oo)m)-time algorithm IP with small bounds

O(g"(tdp(A), ||Allco)mlog ||u — 1, b||)-time algorithm for IP

» g’ is triple exponential in tdp(A).

> Seems Optlmal [Hunkenschroder, Klein, Koutecky, Lassota, Levin; IPCO 2024, Theorem 1]

Dual Algorithm (Theorem 2)

More delicate than Theorem 1:

Dual Algorithm (Theorem 2)

More delicate than Theorem 1:

» No analogous result to the proximity result of Klein and
Reuter (P (A) < g'(td(A), ||Allx))-

Dual Algorithm (Theorem 2)

More delicate than Theorem 1:

» No analogous result to the proximity result of Klein and
Reuter (Poo(A) < g'(td(A), | All0))-
> [Cslovjecsek, Eisenbrand, Hunkenschroder, Rohwedder, Weismantel; SODA 2021, Proposition 4.1]
shows instances of IP with
» small tdp(A) + || Al
» but where integer optima are Q(n) far in the {s-norm from
any continuous optimum.

Dual Algorithm: Reexamine the Scaling

A

A

s72

(s/2)2?

v

Dual Algorithm: Reexamine the Scaling

A 72 (s)2)72
. ° . ° . . .
° ° ° ° . . °
° ° T————o————o————o————,
0 I
' l
° ° f ° ° ° °
| I
' :
. ° f ° ° ° °
I

I
I / :
° ° é e X0 o ° °
: |
' :
. ° 6———-0——‘—\-0———-0—__-.
scaling proximity

Dual Algorithm: Reexamine the Scaling
A 72 (s)2)72

»

[
find nearby optimum in (s/2)Z? scaling proximity

Dual Algorithm: Reexamine the Scaling
A (s/2)Z x sZ

v

Dual Algorithm: Reexamine the Scaling
A (s/2)Z x sZ

[] [] [) [] [] [) []
[] [] [] [] [] [] []
proximity '~ T T T T T T T T T T T T

[] [) + \—/ﬂ [] +

v

Dual Algorithm: Reexamine the Scaling
A (s/2)Zx (s/2)Z

[] [) [] [] []

° ° o ——9— —— 9—
X2

(] [] L] [] °

proximity

v

Dual Algorithm: Proximity of densifying one by one

Corollary (Informal corollary of Theorem 6)

» x*: optimum of IP with some (or none) variables densified

Dual Algorithm: Proximity of densifying one by one

Corollary (Informal corollary of Theorem 6)

» x*: optimum of IP with some (or none) variables densified

» if we densify another variable

Dual Algorithm: Proximity of densifying one by one

Corollary (Informal corollary of Theorem 6)

» x*: optimum of IP with some (or none) variables densified
» if we densify another variable

» then the new instance has an optimum X

Dual Algorithm: Proximity of densifying one by one

Corollary (Informal corollary of Theorem 6)

» x*: optimum of IP with some (or none) variables densified
» if we densify another variable

» then the new instance has an optimum X

> with [[x* —&||1 < 4g([|Alloc, tdp(A)).

Dual Algorithm: Using the corollary
» Do the scaling algorithm.

Dual Algorithm: Using the corollary

» Do the scaling algorithm.
» In each iteration

% densify at-vartables
v densify variables one by one

Dual Algorithm: Using the corollary

» Do the scaling algorithm.
» In each iteration
% densify at-vartables
v densify variables one by one

» Theorem 6 = new optimum is < 4g(||A||«, tdp(A)) far
in /1-norm

Dual Algorithm: Using the corollary

» Do the scaling algorithm.
» In each iteration
% densify at-vartables
densify variables one by one
» Theorem 6 = new optimum is < 4g(||Al|«, tdp(A)) far
in /1-norm

Densifying a variable = following IP where x is a given initial
feasible solution.

min{f(x+h) [Ah=0,1<x+h<u, |[h|1 < p, heZ} .
(41-1P)

Dual Algorithm: Using the corollary

» Do the scaling algorithm.
» In each iteration
% densify at-vartables
densify variables one by one
» Theorem 6 = new optimum is < 4g(||Al|«, tdp(A)) far
in /1-norm

Densifying a variable = following IP where x is a given initial
feasible solution.

min{f(x+h) [Ah=0,1<x+h<u, |[h|1 < p, heZ} .
(41-1P)

» (1-IP can be solved in time g(||A||oc, tdp(A))n via DP.

Dual Algorithm: Using the corollary

» Do the scaling algorithm.
» In each iteration

% densify at-vartables
v densify variables one by one

» Theorem 6 = new optimum is < 4g(||Al|«, tdp(A)) far
in /1-norm

Densifying a variable = following IP where x is a given initial
feasible solution.

min{f(x+h) [Ah=0,1<x+h<u, |[h|1 < p, heZ} .
(41-1P)

» (1-IP can be solved in time g(||A||oc, tdp(A))n via DP.

P Leads to linear time per variable = quadratic in n overall.

Dual Algorithm: Using the corollary

» Do the scaling algorithm.
» In each iteration
% densify at-vartables
v densify variables one by one

» Theorem 6 = new optimum is < 4g(||A||«, tdp(A)) far
in /1-norm

Densifying a variable = following IP where x is a given initial
feasible solution.

min{f(x+h) [Ah=0,1<x+h<u, |[h|1 < p, heZ} .
(41-1P)

» (1-IP can be solved in time g(||A||oc, tdp(A))n via DP.
P Leads to linear time per variable = quadratic in n overall.

» Instead, we “dynamize” the DP table so that densifying a
single variable can be done in time g'(||A|| o0, tdp(A)) logn .

Dual Algorithm: Using the corollary

» Do the scaling algorithm.
» In each iteration

% densify at-vartables
v densify variables one by one

» Theorem 6 = new optimum is < 4g(||A||«, tdp(A)) far
in /1-norm

Densifying a variable = following IP where x is a given initial
feasible solution.

min{f(x+h) [Ah=0,1<x+h<u, |[h|1 < p, heZ} .
(41-1P)

» (1-IP can be solved in time g(||A||oc, tdp(A))n via DP.

P Leads to linear time per variable = quadratic in n overall.

» Instead, we “dynamize” the DP table so that densifying a
single variable can be done in time g'(||A|| o0, tdp(A)) logn .

» Overall dependence on nis nlogn .

Concluding Remarks & Open Problems

Remarks for Dual Algorithm

» Our approach for the dual algorithm cannot be sped up (by
reduction from sorting in the comparison model).

Concluding Remarks & Open Problems

Remarks for Dual Algorithm
» Our approach for the dual algorithm cannot be sped up (by
reduction from sorting in the comparison model).

» Conjecture. The dependence on n in the running time of the
dual algorithm is optimal.

Concluding Remarks & Open Problems

Remarks for Dual Algorithm

» Our approach for the dual algorithm cannot be sped up (by
reduction from sorting in the comparison model).

» Conjecture. The dependence on n in the running time of the
dual algorithm is optimal.

Open problems

» Remove log n factor in the dual algorithm.

Concluding Remarks & Open Problems

Remarks for Dual Algorithm

» Our approach for the dual algorithm cannot be sped up (by
reduction from sorting in the comparison model).

» Conjecture. The dependence on n in the running time of the
dual algorithm is optimal.

Open problems
» Remove log n factor in the dual algorithm.

» Add log n factor to nlog ||u — l]|s lower bound.

Concluding Remarks & Open Problems

Remarks for Dual Algorithm
» Our approach for the dual algorithm cannot be sped up (by
reduction from sorting in the comparison model).

» Conjecture. The dependence on n in the running time of the
dual algorithm is optimal.

Open problems
» Remove log n factor in the dual algorithm.
» Add log n factor to nlog ||u — l]|s lower bound.

> Remove log n factor at least for some special cases.
E.g. special objective functions such as separable quadratic.

Thank you for your attention!

Open problems

» Remove log n factor in
the dual algorithm.

» Add log n factor

https://arxiv.org/abs/2505.22212 to nlog ||u —]| lower
bound.

» Remove log n factor at
least for some special
cases. E.g. special
objective functions such
as separable quadratic.

<tung@iuuk.mff.cuni.cz>

