Algorithms for Low Highway Dimension Graphs

Tung Anh Vu

22.06.2021

Supervisor: Andreas Emil Feldmann, Dr.

k-Supplier with Outliers

Input

- shortest path metric (V, dist),
- suppliers $V_s \subseteq V$ and clients $V_c \subseteq V$,
- ▶ integers $k, p \in \mathbb{N}_0$.

k-SUPPLIER WITH OUTLIERS $\blacktriangleright B_u(r) := \{ v \in V : \operatorname{dist}(u, v) \le r \}.$ ur

Figure: A ball of radius r centered at vertex u.

k-Supplier with Outliers

Goal

Find a minimum $\varrho \in \mathbb{R}^+$ such that

Parameterized algorithms

Theorem (Hochbaum and Shmoys 1986) *k*-SUPPLIER WITH OUTLIERS *is* NP-*hard*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Parameterized algorithms

Theorem (Hochbaum and Shmoys 1986) *k*-SUPPLIER WITH OUTLIERS *is* NP-*hard*.

Parameterized algorithm

- outputs the exact solution,
- in time $f(q) \cdot n^{O(1)}$ where
 - q is some parameter of the input, and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

f is a computable function.

Choosing a parameter for *k*-SUPPLIER WITH OUTLIERS:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Choosing a parameter for *k*-SUPPLIER WITH OUTLIERS:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

►
$$|V_s| + k + p?$$

Choosing a parameter for *k*-SUPPLIER WITH OUTLIERS:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Choosing a parameter for *k*-SUPPLIER WITH OUTLIERS:

$$\blacktriangleright |V_s| + k + p?$$

Theorem (Feldmann 2019)

It is W[2]-hard to $(2 - \varepsilon)$ -approximate k-Center for parameter k.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Takeaway

Shortest paths pass through a sparse set of access points.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Theorem

For any $\varepsilon > 0$, there exists a $(1 + \varepsilon)$ -approximation algorithm¹ for k-SUPPLIER WITH OUTLIERS running in time $f(h, k, p, \varepsilon) \cdot n^{O(1)}$ for some computable function f.

¹Such an algorithm outputs a solution that is at most $(1 + \varepsilon)$ times worse than the optimum.

Theorem

For any $\varepsilon > 0$, there exists a $(1 + \varepsilon)$ -approximation algorithm¹ for k-SUPPLIER WITH OUTLIERS running in time $f(h, k, p, \varepsilon) \cdot n^{O(1)}$ for some computable function f.

Question

Is it necessary to approximate?

¹Such an algorithm outputs a solution that is at most $(1 + \varepsilon)$ times worse than the optimum.

Theorem

For any $\varepsilon > 0$, there exists a $(1 + \varepsilon)$ -approximation algorithm¹ for k-SUPPLIER WITH OUTLIERS running in time $f(h, k, p, \varepsilon) \cdot n^{O(1)}$ for some computable function f.

Question

Is it necessary to approximate?

Theorem (Feldmann and Marx 2020)

Even on planar graphs of doubling dimension O(1), k-Center is W[1]-hard for the combined parameter k, pathwidth, and highway dimension.

¹Such an algorithm outputs a solution that is at most $(1 + \varepsilon)$ times worse than the optimum.

Overview of results

k-SUPPLIER WITH OUTLIERS:

•
$$tw^2 + \varepsilon$$
: $(1 + \varepsilon)$ -approximation.

• $k + p + hd + \varepsilon$: $(1 + \varepsilon)$ -approximation.

CAPACITATED k-Supplier with Outliers:

•
$$k + p + dd^3 + \varepsilon$$
: $(1 + \varepsilon)$ -approximation.

▶ $k + \text{tw:} (2 - \varepsilon)$ -approximation is W[1]-hard.

NON-UNIFORM k-SUPPLIER:

▶ k + tw + dd + hd: constant approximation is NP-hard

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

²treewidth ³doubling dimension

Thank you for your attention