Capacitated *k*-Center in Low Doubling and Highway Dimension

Andreas Emil Feldmann, Tung Anh Vu

November 14, 2022

FACULTY OF MATHEMATICS AND PHYSICS Charles University

(日) (四) (日) (日) (日)

Capacitated k-Center

Input

- graph G = (V, E) with edge lengths $\ell \colon E \to \mathbb{R}^+$,
- ▶ integer k,

• capacities
$$c: V \to \mathbb{N}$$
.

Figure: CKC input with k = 2.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Capacitated k-Center: Goal

Find $S \subseteq V$ and an assignment $\varphi \colon (V \setminus S) \to S$ such that

- ► $|S| \leq k$,
- ▶ for every $u \in S$, $|\varphi^{-1}(u)| \leq c(u)$, and
- $\max_{v \in V \setminus S} \operatorname{dist}(v, \varphi(v))$ is minimal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Capacitated k-Center: Goal

Find $S \subseteq V$ and an assignment $\varphi \colon (V \setminus S) \to S$ such that

- ► $|S| \leq k$,
- ▶ for every $u \in S$, $|\varphi^{-1}(u)| \leq c(u)$, and
- $\max_{v \in V \setminus S} \operatorname{dist}(v, \varphi(v))$ is minimal.

When c(u) = |V| for every $u \in V \Rightarrow k$ -CENTER.

CAPACITATED *k*-CENTER is NP-hard.

 \Rightarrow cannot solve exactly in polynomial time assuming P \neq NP.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

CAPACITATED *k*-CENTER is NP-hard.

 $\Rightarrow\,$ cannot solve exactly in polynomial time assuming P \neq NP.

c-approximation algorithm

CAPACITATED *k*-CENTER is NP-hard.

 $\Rightarrow\,$ cannot solve exactly in polynomial time assuming P \neq NP.

Polynomial-time approximation scheme

c-approximation algorithm

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

An, Bhaskara, Chekuri, Gupta, Madan, Svensson. 2015 There is a 9-approximation algorithm for $\rm C\kappa C$.

Cygan, Hajiaghayi, Khuller. 2012 There is no $(3 - \varepsilon)$ -approximation algorithm for CKC unless P = NP.

c-approximation algorithm

Cygan, Hajiaghayi, Khuller. 2012

There is no $(3 - \varepsilon)$ -approximation algorithm for CKC unless P = NP.

Question

Are there settings where we can overcome this lower bound? Planar graphs, Euclidean spaces, real world, ...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

†: f: computable function

†: f: computable function

†: f: computable function

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

• Let M = (X, dist) be a metric space.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Doubling dimension $\Delta(M)$: smallest $\Delta \in \mathbb{N}$ such that

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Doubling dimension $\Delta(M)$: smallest $\Delta \in \mathbb{N}$ such that

▶ the ball $B_r(u)$ for every $u \in X$ and every $r \in \mathbb{R}^+$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Doubling dimension $\Delta(M)$: smallest $\Delta \in \mathbb{N}$ such that

- ▶ the ball $B_r(u)$ for every $u \in X$ and every $r \in \mathbb{R}^+$
- ▶ is contained in $\cup_{v \in V} B_{r/2}(v)$ for some $V \subseteq X$ with $|V| \le 2^{\Delta}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Doubling dimension $\Delta(M)$: smallest $\Delta \in \mathbb{N}$ such that

- ▶ the ball $B_r(u)$ for every $u \in X$ and every $r \in \mathbb{R}^+$
- ▶ is contained in $\cup_{v \in V} B_{r/2}(v)$ for some $V \subseteq X$ with $|V| \le 2^{\Delta}$.

 $\sim d$ -dimensional ℓ_q metrics have doubling dimension $\mathcal{O}(d)$.

Highway Dimension: Shortest Path Cover

- Let G be an edge-weighted graph and fix a scale $r \in \mathbb{R}^+$.
- Let \mathcal{P}_r be the set of paths of G such that
 - they are a shortest path between their endpoints,
 - their length is more than r and at most 2r.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Highway Dimension: Shortest Path Cover

- Let G be an edge-weighted graph and fix a scale $r \in \mathbb{R}^+$.
- Let \mathcal{P}_r be the set of paths of G such that
 - they are a shortest path between their endpoints,
 - their length is more than r and at most 2r.

The shortest path cover $SPC_r(G)$ is a hitting set¹ for \mathcal{P}_r .

¹For every $P \in \mathcal{P}_r$ we have $P \cap SPC_r(G) \neq \emptyset$.

Highway Dimension

highway dimension of an edge-weighted graph G:

- smallest integer h such that,
- ▶ for any scale $r \in \mathbb{R}^+$,
- there exists H := SPC_r(G) so that,
- ▶ $|H \cap B_{2r}(u)| \le h$ for every $u \in V(G)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 \Rightarrow We get a $(1 + \varepsilon)$ -approximate solution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1: guess OPT
- 2: for all $K \subseteq Y$ with $|K| \leq k$ do
- 3: **if** $\bigcup_{u \in K} B_{(1+\varepsilon) \text{ OPT}}(u) \supseteq V$ then

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 4: return K
- 5: **return** : (

Bounding net size

Gupta, Krauthgamer, Lee. 2003 Let M be a metric and $\alpha(M) = \frac{\max_{u,v \in M} \operatorname{dist}(u,v)}{\min u \neq v \in M \operatorname{dist}(u,v)}$. Then for every $M' \subseteq M$ we have $\Delta(M') \leq \Delta(M)$ and $|M| \leq 2^{\mathcal{O}(\Delta \lceil \log_2(\alpha) \rceil)}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Bounding net size

Gupta, Krauthgamer, Lee. 2003 Let M be a metric and $\alpha(M) = \frac{\max_{u,v \in M} \operatorname{dist}(u,v)}{\min u \neq v \in M \operatorname{dist}(u,v)}$. Then for every $M' \subseteq M$ we have $\Delta(M') \leq \Delta(M)$ and $|M| \leq 2^{\mathcal{O}(\Delta \lceil \log_2(\alpha) \rceil)}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ⊙へ⊙

Bounding net size

Gupta, Krauthgamer, Lee. 2003 Let M be a metric and $\alpha(M) = \frac{\max_{u,v \in M} \operatorname{dist}(u,v)}{\min u \neq v \in M \operatorname{dist}(u,v)}$. Then for every $M' \subseteq M$ we have $\Delta(M') \leq \Delta(M)$ and $|M| \leq 2^{\mathcal{O}(\Delta \lceil \log_2(\alpha) \rceil)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$\rm C\kappa C$ algorithm obstacles

▶ c(u) < c(v)?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$\rm C\kappa C$ algorithm obstacles

- ▶ c(u) < c(v)?
- w: vertex with highest capacity in B_{eOPT}(u).
- ► c(w) ≥ c(v) as v, the optimum center, exists.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$\rm C\kappa C$ algorithm

1: guess OPT 2: for all $K \subseteq Y$ with $|K| \le k$ do 3: $S \leftarrow \emptyset$ 4: for all $v \in K$ do 5: $w \leftarrow$ vertex with the highest capacity in $B_{\varepsilon \text{OPT}}(v)$ 6: $S \leftarrow S \cup \{w\}$ 7: if ??? then 8: return S 9: return : (

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$\rm C\kappa C$ algorithm obstacles

・ロト・西ト・山田・山田・山口・

$\rm C\kappa C$ algorithm obstacles

・ロト・西ト・西ト・西ト・日・ シック

$\rm C\kappa C$ algorithm

1: guess OPT 2: for all $K \subseteq_{multiset} Y$ with $|K| \le k$ do 3: $S \leftarrow \emptyset$ 4: for all $v \in K$ do 5: $w \leftarrow$ vertex with the highest capacity in $B_{\varepsilon \text{ OPT}}(v) \setminus S$ 6: $S \leftarrow S \cup \{w\}$ 7: if ??? then 8: return S 9: return : (

Solution verification

- Given $S \subseteq V$,
- ▶ \exists assignment of $V \setminus S$ to S
- respecting capacities of S
- of cost $(1+2\varepsilon)$ OPT?

Solution verification: using network flows

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Solution verification: using network flows

Solution verification: using network flows

$\rm C\kappa C$ algorithm

- 1: guess OPT
- 2: for all $K \subseteq_{\text{multiset}} Y$ with $|K| \leq k$ do
- 3: $S \leftarrow \emptyset$
- 4: for all $v \in K$ do
- 5: $w \leftarrow \text{vertex with the highest capacity in } B_{\varepsilon \text{OPT}}(v) \setminus S$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 6: $S \leftarrow S \cup \{w\}$
- 7: **if** \exists flow from $V \setminus S$ to S of size $|V \setminus S|$ **then**
- 8: **return** assignment corresponding to that flow
- 9: return : (

Conclusion

	Doubling Dimension (Δ)	Highway dimension (h)
CAPACITATED <i>k</i> -CENTER	$k^k/\varepsilon^{\mathcal{O}(k\Delta)}\cdot \operatorname{poly}(n)$	$\exists c > 1$: no <i>c</i> -approximation in $\mathcal{O}_{\varepsilon} \left(f(k,h) \cdot \operatorname{poly}(n) \right)^{\dagger, \S}$
	Theorem 2	Theorem 1
k-CENTER	$k^k / arepsilon^{\mathcal{O}(k\Delta)} \cdot poly(n)$	$f(k,h,arepsilon)\cdot poly(n)^\dagger$
	Feldmann, Marx. 2020	Becker, Klein, Saulpic. 2018
<i>k</i> -Median, <i>k</i> -Means, Facility Location	$2^{(1/\varepsilon)^{\mathcal{O}(\Delta^2)}} \cdot poly(n)$	$n^{(2h/\varepsilon)^{\mathcal{O}(1)}}$
FACILITY LOCATION	Cohen-Addad, Feldmann, Saulpic. 2021	Feldmann, Saulpic. 2021
TSP, STEINER TREE	$\exp\{2^{\mathcal{O}(\Delta)} \cdot (4\Delta \log n/\varepsilon)^{\Delta}\}$	$\exp\left\{polylog(n)^{\mathcal{O}(log^2(h/\varepsilon))}\right\}$
	Talwar. 2004	Feldmann, Fung, Könemann, Post. 2018
†: f: computable function	: unless FPT = W[1]	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Conclusion

	Doubling Dimension (Δ)	Highway dimension (h)
CAPACITATED <i>k</i> -CENTER	$k^k/\varepsilon^{\mathcal{O}(k\Delta)}\cdot \operatorname{poly}(n)$	$\exists c > 1$: no <i>c</i> -approximation in $\mathcal{O}_{\varepsilon} \left(f(k,h) \cdot \operatorname{poly}(n) \right)^{\dagger, \S}$
	Theorem 2	Theorem 1
k-CENTER	$k^k / \varepsilon^{\mathcal{O}(k\Delta)} \cdot poly(n)$	$f(k, h, \varepsilon) \cdot poly(n)^{\dagger}$
	Feldmann, Marx. 2020	Becker, Klein, Saulpic. 2018
<i>k</i> -Median, <i>k</i> -Means, Facility Location	$2^{(1/\varepsilon)^{\mathcal{O}(\Delta^2)}} \cdot \operatorname{poly}(n)$	$n^{(2h/\varepsilon)^{\mathcal{O}(1)}}$
FACILITY LOCATION	Cohen-Addad, Feldmann, Saulpic. 2021	Feldmann, Saulpic. 2021
TSP, STEINER TREE	$\exp\{2^{\mathcal{O}(\Delta)} \cdot (4\Delta \log n/\varepsilon)^{\Delta}\}$	$\exp\left\{\operatorname{polylog}(n)^{\mathcal{O}(\log^2(h/\varepsilon))}\right\}$
	Talwar. 2004	Feldmann, Fung, Könemann, Post. 2018
†: f: computable function	§: unless $FPT = W[1]$	

Thank you for your attention!

Questions, comments, ...?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる