Capacitated k-Center in Low Doubling and Highway Dimension

Andreas Emil Feldmann, Tung Anh Vu

November 14, 2022

$\int_{\text {KAM }}$

FACULTY
OF MATHEMATICS
AND PHYSICS
Charles University

Capacitated k-Center

Input

- graph $G=(V, E)$ with edge lengths $\ell: E \rightarrow \mathbb{R}^{+}$,
- integer k,
- capacities c: $V \rightarrow \mathbb{N}$.

Figure: CkC input with $k=2$.

Capacitated k-Center: Goal

Find $S \subseteq V$ and an assignment $\varphi:(V \backslash S) \rightarrow S$ such that

- $|S| \leq k$,
- for every $u \in S,\left|\varphi^{-1}(u)\right| \leq c(u)$, and
- $\max _{v \in V \backslash S} \operatorname{dist}(v, \varphi(v))$ is minimal.

Capacitated k-Center: Goal

Find $S \subseteq V$ and an assignment $\varphi:(V \backslash S) \rightarrow S$ such that

- $|S| \leq k$,
- for every $u \in S,\left|\varphi^{-1}(u)\right| \leq c(u)$, and
- $\max _{v \in V \backslash S} \operatorname{dist}(v, \varphi(v))$ is minimal.

When $c(u)=|V|$ for every $u \in V \Rightarrow k$-Center.

Capacitated k-Center: Solution Prospects

Capacitated k-Center is NP-hard.
\Rightarrow cannot solve exactly in polynomial time assuming $P \neq N P$.

Capacitated k-Center: Solution Prospects

Capacitated k-Center is NP-hard.
\Rightarrow cannot solve exactly in polynomial time assuming $P \neq N P$.
c-approximation algorithm

Capacitated k-Center: Solution Prospects

Capacitated k-Center is NP-hard.
\Rightarrow cannot solve exactly in polynomial time assuming $P \neq N P$.
Polynomial-time approximation scheme

Capacitated k-Center: Solution Prospects

c-approximation algorithm

An, Bhaskara, Chekuri, Gupta, Madan, Svensson. 2015
There is a 9-approximation algorithm for CkC.
Cygan, Hajiaghayi, Khuller. 2012
There is no $(3-\varepsilon)$-approximation algorithm for CkC unless $P=N P$.

Capacitated k-Center: Solution Prospects

c-approximation algorithm

Cygan, Hajiaghayi, Khuller. 2012
There is no $(3-\varepsilon)$-approximation algorithm for CkC unless $P=N P$.

Question

Are there settings where we can overcome this lower bound?
Planar graphs, Euclidean spaces, real world, ...

Special Settings?

	Doubling Dimension (Δ)	
CAPACITATED k-CENTER	generalizes the dimen- sion of ℓ_{q} spaces	
k-CENTER	$k^{k} / \varepsilon^{\mathcal{O}(k \Delta)} \cdot \operatorname{poly}(n)$ Feldmann, Marx. 2020	
$k-M E D I A N, ~ k-M E A N S, ~$ FACILITY LOCATION	$2^{(1 / \varepsilon)^{\mathcal{O}\left(\Delta^{2}\right)} \cdot \operatorname{poly}(n)}$ Cohen-Addad, Feldmann, Saulpic. 2021	
TSP, STEINER TREE	$\exp \left\{2^{\left.\mathcal{O}(\Delta) \cdot(4 \Delta \log n / \varepsilon)^{\Delta}\right\}}\right.$	

Special Settings?

	Doubling Dimension (Δ)	Highway dimension (h)
Capacitated k-Center		captures properties of transportation networks
k-Center	$k^{k} / \varepsilon_{\mathcal{O}(k \Delta)} \cdot \operatorname{poly}(n)$ Feldmann, Marx. 2020	$\begin{aligned} & f(k, h, \varepsilon) \cdot \operatorname{poly}(n)^{\dagger} \\ & \text { Becker, Klein, Saulpic. } 2018 \end{aligned}$
k-Median, k-Means, Facility Location	$2^{(1 / \varepsilon)^{\mathcal{O}\left(\Delta^{2}\right)}} \cdot \operatorname{poly}(n)$ Cohen-Addad, Feldmann, Saupic. 2021	$n^{(2 h / \varepsilon)^{\mathcal{O}^{(1)}}}$ Feldmann, Saulpic. 2021
TSP, Steiner Tree	$\exp \left\{2^{\mathcal{O}(\Delta)} \cdot(4 \Delta \log n / \varepsilon)^{\Delta}\right\}$ Talwar. 2004	$\exp \left\{\operatorname{polylog}(n)^{\mathcal{O}\left(\log ^{2}(h / \varepsilon)\right)}\right\}$

\dagger : f : computable function

Special Settings?

\dagger : f : computable function

Special Settings?

	Doubling Dimension (Δ)	Highway dimension (h)
Capacitated k-Center	$k^{k} / \varepsilon^{\mathcal{O}(k \Delta)} \cdot \operatorname{poly}(n)$ Theorem 2	
k-Center	$\begin{aligned} & k^{k} / \varepsilon \mathcal{O}(k \Delta) \cdot \operatorname{poly}(n) \\ & \text { Feldmann, Marx. } 2020 \end{aligned}$	$\begin{aligned} & f(k, h, \varepsilon) \cdot \operatorname{poly}(n)^{\dagger} \\ & \text { Becker, Klein, Saulpic. } 2018 \end{aligned}$
k-Median, k-Means, Facility Location	$2^{(1 / \varepsilon)^{\mathcal{O}\left(\Delta^{2}\right)}} \cdot \operatorname{poly}(n)$ Cohen-Addad, Feldmann, Saupicic: 2021	$n^{(2 h / \varepsilon)^{\mathcal{O}(1)}}$ Feldmann, Saulpic. 2021
TSP, Steiner Tree	$\exp \left\{2^{\mathcal{O}(\Delta)} \cdot(4 \Delta \log n / \varepsilon)^{\Delta}\right\}$ Talwar. 2004	$\exp _{\text {Feldmann, Fung, Könemann, Post. } 2018}\left\{\operatorname{polylog}(n)^{\mathcal{O}\left(\log ^{2}(h / \varepsilon)\right)}\right\}$

\dagger : f : computable function

Special Settings?

	Doubling Dimension (Δ)	Highway dimension (h)
Capacitated k-Center	$k^{k} / \varepsilon^{\mathcal{O}(k \Delta)} \cdot \operatorname{poly}(n)$ Theorem 2	$\exists c>1$: no c-approximation in $\mathcal{O}_{\varepsilon}(f(k, h) \cdot \operatorname{poly}(n))^{\dagger, \delta}$ Theorem 1
k-Center	$k^{k} / \varepsilon^{\mathcal{O}(k \Delta)} \cdot \operatorname{poly}(n)$ Feldmann, Marx. 2020	$f(k, h, \varepsilon) \cdot \operatorname{poly}(n)^{\dagger}$ Becker, Klein, Saulpic. 2018
k-Median, k-Means, Facility Location	$2^{(1 / \varepsilon)^{\mathcal{O}\left(\Delta^{2}\right)}} \cdot \operatorname{poly}(n)$ Cohen-Addad, Feldmann, Saulpic. 2021	$n^{(2 h / \varepsilon)^{\mathcal{O}(1)}}$ Feldmann, Saulpic. 2021
TSP, Steiner Tree	$\exp \left\{2^{\mathcal{O}(\Delta)} \cdot(4 \Delta \log n / \varepsilon)^{\Delta}\right\}$ Talwar. 2004	$\exp \left\{\operatorname{polylog}(n)^{\mathcal{O}\left(\log ^{2}(h / \varepsilon)\right)}\right\}$
\dagger : f : computable function	§: unless FPT $=$ W[1]	

Doubling Dimension

- Let $M=(X$, dist $)$ be a metric space.

Figure: $B_{r}(u)$: Ball of radius r.

Doubling Dimension

Doubling dimension $\Delta(M)$: smallest $\Delta \in \mathbb{N}$ such that

Doubling Dimension

Doubling dimension $\Delta(M)$: smallest $\Delta \in \mathbb{N}$ such that

- the ball $B_{r}(u)$ for every $u \in X$ and every $r \in \mathbb{R}^{+}$

Doubling Dimension

Doubling dimension $\Delta(M)$: smallest $\Delta \in \mathbb{N}$ such that

- the ball $B_{r}(u)$ for every $u \in X$ and every $r \in \mathbb{R}^{+}$
- is contained in $\cup_{v \in V} B_{r / 2}(v)$ for some $V \subseteq X$ with $|V| \leq 2^{\Delta}$.

Doubling Dimension

Doubling dimension $\Delta(M)$: smallest $\Delta \in \mathbb{N}$ such that

- the ball $B_{r}(u)$ for every $u \in X$ and every $r \in \mathbb{R}^{+}$
- is contained in $\cup_{v \in V} B_{r / 2}(v)$ for some $V \subseteq X$ with $|V| \leq 2^{\Delta}$.

$\rightsquigarrow d$-dimensional ℓ_{q} metrics have doubling dimension $\mathcal{O}(d)$.

Highway Dimension: Shortest Path Cover

- Let G be an edge-weighted graph and fix a scale $r \in \mathbb{R}^{+}$.
- Let \mathcal{P}_{r} be the set of paths of G such that
- they are a shortest path between their endpoints,
- their length is more than r and at most $2 r$.

(a) Metro and tram network in Prague city center.

(b) Czech railway network.

Highway Dimension: Shortest Path Cover

- Let G be an edge-weighted graph and fix a scale $r \in \mathbb{R}^{+}$.
- Let \mathcal{P}_{r} be the set of paths of G such that
- they are a shortest path between their endpoints,
- their length is more than r and at most $2 r$.

The shortest path cover $\operatorname{SPC}_{r}(G)$ is a hitting set ${ }^{1}$ for \mathcal{P}_{r}.
${ }^{1}$ For every $P \in \mathcal{P}_{r}$ we have $P \cap \operatorname{SPC}_{r}(G) \neq \emptyset$.

Highway Dimension

highway dimension of an edge-weighted graph G :

- smallest integer h such that,
- for any scale $r \in \mathbb{R}^{+}$,
- there exists $H:=\operatorname{SPC}_{r}(G)$ so that,
- $\left|H \cap B_{2 r}(u)\right| \leq h$ for every $u \in V(G)$.

k-CENTER algorithm

- Optimum solution
of cost OPT.

k-CENTER algorithm

k-Center algorithm

- Optimum solution of cost OPT.
- Net: $Y \subseteq X$ such that
- $\forall x \in X \exists y \in Y: d(x, y) \leq$ ε OPT, and
. $\forall y_{1} \neq y_{2} \in Y: d\left(y_{1}, y_{2}\right)>$ ε OPT.
ค Replace every optimum center by its nearest net point.
\Rightarrow We get a $(1+\varepsilon)$-approximate solution.

k-CENTER algorithm

[^0]
Bounding net size

Gupta, Krauthgamer, Lee. 2003
Let M be a metric and $\alpha(M)=\frac{\max _{u, v \in M} \operatorname{dist}(u, v)}{\min u \neq v \in M \operatorname{dist}(u, v)}$. Then for every $M^{\prime} \subseteq M$ we have $\Delta\left(M^{\prime}\right) \leq \Delta(M)$ and $|M| \leq 2^{\mathcal{O}\left(\Delta\left\lceil\log _{2}(\alpha)\right\rceil\right) \text {. }}$

Bounding net size

Gupta, Krauthgamer, Lee. 2003
Let M be a metric and $\alpha(M)=\frac{\max _{u, v \in M} \operatorname{dist}(u, v)}{\min u \neq v \in M \operatorname{dist}(u, v)}$. Then for every $M^{\prime} \subseteq M$ we have $\Delta\left(M^{\prime}\right) \leq \Delta(M)$ and $|M| \leq 2^{\mathcal{O}\left(\Delta\left\lceil\log _{2}(\alpha)\right\rceil\right) \text {. }}$

Bounding net size

Gupta, Krauthgamer, Lee. 2003
Let M be a metric and $\alpha(M)=\frac{\max _{u, v \in M} \operatorname{dist}(u, v)}{\min u \neq v \in M \operatorname{dist}(u, v)}$. Then for every $M^{\prime} \subseteq M$ we have $\Delta\left(M^{\prime}\right) \leq \Delta(M)$ and $|M| \leq 2^{\mathcal{O}\left(\Delta\left\lceil\log _{2}(\alpha)\right\rceil\right) \text {. }}$

CkC algorithm obstacles

$$
c(u)<c(v) \text { ? }
$$

CkC algorithm obstacles

$>c(u)<c(v) ?$

- w: vertex with highest capacity in $B_{\varepsilon \mathrm{OPT}}(u)$.
$-c(w) \geq c(v)$ as v, the optimum center, exists.

CkC algorithm

```
    1: guess OPT
    2: for all \(K \subseteq Y\) with \(|K| \leq k\) do
    3: \(\quad S \leftarrow \emptyset\)
    4: \(\quad\) for all \(v \in K\) do
    5: \(\quad w \leftarrow\) vertex with the highest capacity in \(B_{\varepsilon}\) OPT \((v)\)
    6: \(\quad S \leftarrow S \cup\{w\}\)
    7: if ??? then
    return \(S\)
9: return : (
```


CkC algorithm obstacles

- multiple optimum centers in B_{ε} OPT (v) ?

CkC algorithm obstacles

- multiple optimum centers in B_{ε} OPT (v) ?
- use multisets!

CkC algorithm

```
    1: guess OPT
    2: for all \(K \subseteq\) multiset \(Y\) with \(|K| \leq k\) do
    3: \(\quad S \leftarrow \emptyset\)
    4: \(\quad\) for all \(v \in K\) do
                        \(w \leftarrow\) vertex with the highest capacity in \(B_{\varepsilon}\) OPT \((v) \backslash S\)
                \(S \leftarrow S \cup\{w\}\)
    if ??? then
    return \(S\)
9: return : (
```


Solution verification

- Given $S \subseteq V$,
- \exists assignment of $V \backslash S$ to S
- respecting capacities of S
- of cost $(1+2 \varepsilon)$ OPT?

Solution verification: using network flows

Solution verification: using network flows

Solution verification: using network flows

CkC algorithm

1: guess OPT
2: for all $K \subseteq_{\text {multiset }} Y$ with $|K| \leq k$ do
3: $\quad S \leftarrow \emptyset$
4: \quad for all $v \in K$ do
5: $\quad w \leftarrow$ vertex with the highest capacity in B_{ε} OPT $(v) \backslash S$
6: $\quad S \leftarrow S \cup\{w\}$
7: \quad if \exists flow from $V \backslash S$ to S of size $|V \backslash S|$ then
8: return assignment corresponding to that flow
9: return : (

Conclusion

	Doubling Dimension (Δ)	Highway dimension (h)
Capacitated k-Center	$k^{k} / \varepsilon_{\mathcal{O}(k \Delta)} \cdot \operatorname{poly}(n)$ Theorem 2	$\exists c>1$: no c-approximation in $\mathcal{O}_{\varepsilon}(f(k, h) \cdot \operatorname{poly}(n))^{\dagger, \S}$ Theorem 1
k-Center	$k^{k} / \varepsilon^{\mathcal{O}(k \Delta)} \cdot \operatorname{poly}(n)$ Feldmann, Marx. 2020	$f(k, h, \varepsilon) \cdot \operatorname{poly}(n)^{\dagger}$ Becker, Klein, Saulpic. 2018
k-Median, k-Means, Facility Location	$2^{(1 / \varepsilon)^{0\left(\Delta^{2}\right)}} \cdot \operatorname{poly}(n)$ Cohen-Addad, Feldmann, Saulpic. 2021	$n^{(2 h / \varepsilon)^{\mathcal{O}^{(1)}}}$ Feldmann, Saulpic. 2021
TSP, Steiner Tree	$\exp \left\{2^{\mathcal{O}(\Delta)} \cdot(4 \Delta \log n / \varepsilon)^{\Delta}\right\}$ Talwar. 2004	$\exp \left\{\operatorname{polylog}(n)^{\mathcal{O}\left(\log ^{2}(h / \varepsilon)\right)}\right\}$
\dagger : f : computable function	§: unless FPT $=\mathrm{W}[1]$	

Conclusion

	Doubling Dimension (Δ)	Highway dimension (h)
Capacitated k-Center	$k^{k} / \varepsilon^{\mathcal{O}(k \Delta)} \cdot \operatorname{poly}(n)$ Theorem 2	$\exists c>1$: no c-approximation in $\mathcal{O}_{\varepsilon}(f(k, h) \cdot \operatorname{poly}(n))^{\dagger, \S}$ Theorem 1
k-Center	$\begin{aligned} & k^{k} / \varepsilon^{\mathcal{O}}(k \Delta) \cdot \operatorname{poly}(n) \\ & \text { Feldmann, Marx. } 2020 \end{aligned}$	$f(k, h, \varepsilon) \cdot \operatorname{poly}(n)^{\dagger}$ Becker, Klein, Saulpic. 2018
k-Median, k-Means, Facility Location	$2^{(1 / \varepsilon)^{\mathcal{O}\left(\Delta^{2}\right)}} \cdot \operatorname{poly}(n)$ Cohen-Addad, Feldmann, Saulpic. 2021	$n^{(2 h / \varepsilon)^{\mathcal{O}^{(1)}}}$ Feldmann, Saulpic. 2021
TSP, Steiner Tree	$\exp \left\{2^{\mathcal{O}(\Delta)} \cdot(4 \Delta \log n / \varepsilon)^{\Delta}\right\}$ Talwar. 2004	$\exp \left\{\operatorname{polylog}(n)^{\mathcal{O}\left(\log ^{2}(h / \varepsilon)\right)}\right\}$
\dagger : f : computable function	§: unless FPT $=\mathrm{W}[1]$	

Thank you for your attention!

 Questions, comments, ...?
[^0]: 1: guess OPT
 2: for all $K \subseteq Y$ with $|K| \leq k$ do
 3: if $\bigcup_{u \in K} B_{(1+\varepsilon) \operatorname{OPT}}(u) \supseteq V$ then
 4: return K
 5: return : (

