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What is known?
Given:

I an arrangement of n hyperplanes in Rd .

I points P = {p1, . . . , pn} ⊆ Rd ,

I consider hyperplanes formed by d-element subsets of P

How many cells are there? Assuming general position.
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Our approach
I Consider an arrangement A of hyperplanes in Rd (in

sufficiently general position).

Theorem (Zaslavsky 1975)

fd(n) = |χA(−1)|.

χA = characteristic polynomial of A.
Def. Complicated.

Theorem (Whitney 1932)

χA(t) =
∑
B⊆A
B central

(−1)|B|td−rank(B) =
∑
B⊆A
B central

(−1)|B|tdim(
⋂
B).

I Def. B is central ⇔
⋂

H∈B H 6= ∅.

⇒ just determine χA.
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Our results

I algorithmic method to compute fd(n) as a polynomial in n for
fixed d ,

I determine fd(n) precisely for d ≤ 6,

I fd(n) is a degree d2 polynomial, and

fd(n) =
1

(d!)d+1
· nd2

+
d2 − d3

2 · (d!)d+1
· nd2−1 + O(nd

2−2),

I the first d − 1 coefficients of Φd

((n
d

))
and fd(n) are equal.

I Φd
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of
(
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d = 2

Distinguish each cell C as one of the following:

I The bottommost point∗ of C is a point of P.
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From d = 2 to d = 3

For d = 3, the same-ish cases apply. . .

but there is one more.
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Open problems
I Find a closed formula for fd(n).

I How many k-faces are there in a hyperplane arrangement (in
sufficiently general position)?

I Improve the running time of our algorithm for determining the
polynomial fd(n) when d = 7.

Kamak workshop

Thank you for your attention!
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