On the Arrangement of Hyperplanes Determined by n Points

Michal Opler, Pavel Valtr, Tung Anh Vu

Кด
DEPARTMENT OF APPLIED MATHEMATICS
Faculty of Mathematics and Physics Charles University

FACULTY
OF INFORMATION TECHNOLOGY CTU IN PRAGUE

What is known?

Given:

- an arrangement of n hyperplanes in \mathbb{R}_{d}.

What is known?

Given:

- an arrangement of n hyperplanes in \mathbb{R}_{d}.

How many cells are there? Assuming general position.

What is known?

Given:

- an arrangement of n hyperplanes in \mathbb{R}_{d}.

How many cells are there? Assuming general position.

$$
\Phi_{d}(n)=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{d}
$$

What is known? What are we doing?

Given:

- an arrangement of n hyperplanes in \mathbb{R}_{d}
- points $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$,

What is known? What are we doing?

Given:

- an arrangement of n hyperplanes in \mathbb{R}_{d}
- points $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$,
- consider hyperplanes formed by d-element subsets of P

What is known? What are we doing?

Given:

- an arrangement of n hyperplanes in \mathbb{R}_{d}
- points $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$,
- consider hyperplanes formed by d-element subsets of P How many cells are there? Assuming even more general position.

What is known? What are we doing?

Given:

- an arrangement of n hyperplanes in \mathbb{R}_{d}
- points $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$,
- consider hyperplanes formed by d-element subsets of P How many cells are there? Assuming even more general position.

$$
f_{d}(n)=?
$$

Our approach

- Consider an arrangement \mathcal{A} of hyperplanes in \mathbb{R}^{d} (in sufficiently general position).

Our approach

- Consider an arrangement \mathcal{A} of hyperplanes in \mathbb{R}^{d} (in sufficiently general position).

Theorem (Zaslavsky 1975)

$$
f_{d}(n)=\left|\chi_{\mathcal{A}}(-1)\right| .
$$

Our approach

- Consider an arrangement \mathcal{A} of hyperplanes in \mathbb{R}^{d} (in sufficiently general position).

Theorem (Zaslavsky 1975)

$$
f_{d}(n)=\left|\chi_{\mathcal{A}}(-1)\right| .
$$

$\chi_{\mathcal{A}}=$ characteristic polynomial of \mathcal{A}.
Def. Complicated.

Our approach

- Consider an arrangement \mathcal{A} of hyperplanes in \mathbb{R}^{d} (in sufficiently general position).

Theorem (Zaslavsky 1975)

$$
f_{d}(n)=\left|\chi_{\mathcal{A}}(-1)\right| .
$$

$\chi_{\mathcal{A}}=$ characteristic polynomial of \mathcal{A}.
Def. Complicated.
Theorem (Whitney 1932)

$$
\chi_{\mathcal{A}}(t)=\sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \mathcal{B} \text { central }}}(-1)^{|\mathcal{B}|} t^{d-\operatorname{rank}(\mathcal{B})}=\sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \mathcal{B} \text { central }}}(-1)^{|\mathcal{B}|} t^{\operatorname{dim}(\cap \mathcal{B})}
$$

- Def. \mathcal{B} is central $\Leftrightarrow \bigcap_{H \in \mathcal{B}} H \neq \emptyset$.

Our approach

- Consider an arrangement \mathcal{A} of hyperplanes in \mathbb{R}^{d} (in sufficiently general position).

Theorem (Zaslavsky 1975)

$$
f_{d}(n)=\left|\chi_{\mathcal{A}}(-1)\right| .
$$

$\chi_{\mathcal{A}}=$ characteristic polynomial of \mathcal{A}.
Def. Complicated.
Theorem (Whitney 1932)

$$
\chi_{\mathcal{A}}(t)=\sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \mathcal{B} \text { central }}}(-1)^{|\mathcal{B}|} t^{d-\operatorname{rank}(\mathcal{B})}=\sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \mathcal{B} \text { central }}}(-1)^{|\mathcal{B}|} t^{\operatorname{dim}(\cap \mathcal{B})}
$$

- Def. \mathcal{B} is central $\Leftrightarrow \bigcap_{H \in \mathcal{B}} H \neq \emptyset$.
\Rightarrow just determine $\chi_{\mathcal{A}}$.

Our results

- algorithmic method to compute $f_{d}(n)$ as a polynomial in n for fixed d,

Our results

- algorithmic method to compute $f_{d}(n)$ as a polynomial in n for fixed d,
- determine $f_{d}(n)$ precisely for $d \leq 6$,

Our results

- algorithmic method to compute $f_{d}(n)$ as a polynomial in n for fixed d,
- determine $f_{d}(n)$ precisely for $d \leq 6$,
- $f_{d}(n)$ is a degree d^{2} polynomial, and

$$
f_{d}(n)=\frac{1}{(d!)^{d+1}} \cdot n^{d^{2}}+\frac{d^{2}-d^{3}}{2 \cdot(d!)^{d+1}} \cdot n^{d^{2}-1}+O\left(n^{d^{2}-2}\right)
$$

Our results

- algorithmic method to compute $f_{d}(n)$ as a polynomial in n for fixed d,
- determine $f_{d}(n)$ precisely for $d \leq 6$,
- $f_{d}(n)$ is a degree d^{2} polynomial, and

$$
f_{d}(n)=\frac{1}{(d!)^{d+1}} \cdot n^{d^{2}}+\frac{d^{2}-d^{3}}{2 \cdot(d!)^{d+1}} \cdot n^{d^{2}-1}+O\left(n^{d^{2}-2}\right)
$$

- the first $d-1$ coefficients of $\left.\Phi_{d}\binom{n}{d}\right)$ and $f_{d}(n)$ are equal.
- $\Phi_{d}\left(\binom{n}{d}\right)$: number of cells in an arrangement of $\binom{n}{d}$ hyperplanes in general position.

$d=2$

Distinguish each cell C as one of the following:

$d=2$

Distinguish each cell C as one of the following:

- The bottommost point* of C is a point of P.

$d=2$

Distinguish each cell C as one of the following:

- The bottommost point* of C is a point of P.

- The bottommost point of C exists but is not a point of P.

$d=2$

Distinguish each cell C as one of the following:

- The bottommost point* of C is a point of P.

- The bottommost point of C exists but is not a point of P.

- C is unbounded from below.

$d=2$

Distinguish each cell C as one of the following:

- The bottommost point* of C is a point of P.

$$
n \cdot(n-2)
$$

- The bottommost point of C exists but is not a point of P.

$$
\frac{1}{2} \cdot\binom{n}{2} \cdot\binom{n-2}{2}
$$

- C is unbounded from below.

$$
\binom{n}{2}+1
$$

From $d=2$ to $d=3$

For $d=3$, the same-ish cases apply...

From $d=2$ to $d=3$

For $d=3$, the same-ish cases apply. . . but there is one more.

From $d=2$ to $d=3$

For $d=3$, the same-ish cases apply. . . but there is one more.

From $d=2$ to $d=3$

For $d=3$, the same-ish cases apply. . . but there is one more.

Open problems

- Find a closed formula for $f_{d}(n)$.

Open problems

- Find a closed formula for $f_{d}(n)$.
- How many k-faces are there in a hyperplane arrangement (in sufficiently general position)?

Open problems

- Find a closed formula for $f_{d}(n)$.
- How many k-faces are there in a hyperplane arrangement (in sufficiently general position)?
- Improve the running time of our algorithm for determining the polynomial $f_{d}(n)$ when $d=7$.

Open problems

- Find a closed formula for $f_{d}(n)$.
- How many k-faces are there in a hyperplane arrangement (in sufficiently general position)?
- Improve the running time of our algorithm for determining the polynomial $f_{d}(n)$ when $d=7$.

Kamak workshop

Open problems

- Find a closed formula for $f_{d}(n)$.
- How many k-faces are there in a hyperplane arrangement (in sufficiently general position)?
- Improve the running time of our algorithm for determining the polynomial $f_{d}(n)$ when $d=7$.

Kamak workshop

Thank you for your attention!

