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» Consider an arrangement A of hyperplanes in RY (in
sufficiently general position).

Theorem (Zaslavsky 1975)

fa(n) = Ixa(=1)|-

x.A = characteristic polynomial of A.
Def. Complicated.

Theorem (Whitney 1932)

xa(t) = Z(_1)|B|td—rank(3) — Z(_l)lB\tdim(ﬂB).

BCA BCA

B central B central

» Def. B is central < (\yeg H # 0.
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Our results

» algorithmic method to compute f4(n) as a polynomial in n for
fixed d,

» determine fy(n) precisely for d < 6,
» fy(n) is a degree d? polynomial, and
1 d2 d2 - d3

d?-1 d?-2
= (dl)id""l -n + W - n + O(n ),

> the first d — 1 coefficients of &4 ((])) and fy(n) are equal.

> ®y((5)): number of cells in an arrangement
of (Z) hyperplanes in general position.
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» The bottommost point® of C is a point of P.
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» The bottommost point of C exists but is not a point of P.
n n—2 C
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» C is unbounded from below.
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Thank you for your attention!



