On the Arrangement of Hyperplanes Determined by *n* Points

Michal Opler, Pavel Valtr, Tung Anh Vu

What is known?

Given:

▶ an arrangement of *n* hyperplanes in \mathbb{R}_d .

What is known?

Given:

▶ an arrangement of *n* hyperplanes in \mathbb{R}_d .

How many cells are there? Assuming general position.

What is known?

Given:

▶ an arrangement of *n* hyperplanes in \mathbb{R}_d .

How many cells are there? Assuming general position.

$$\Phi_d(n) = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{d}$$

Given:

▶ an arrangement of *n* hyperplanes in \mathbb{R}_d

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• points
$$P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$$
,

Given:

- an arrangement of *n* hyperplanes in \mathbb{R}_d
- ▶ points $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$,
- consider hyperplanes formed by *d*-element subsets of *P*

Given:

- an arrangement of *n* hyperplanes in \mathbb{R}_d
- ▶ points $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$,

consider hyperplanes formed by *d*-element subsets of *P* How many cells are there? Assuming even more general position.

Given:

- an arrangement of *n* hyperplanes in \mathbb{R}_d
- ▶ points $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$,

consider hyperplanes formed by *d*-element subsets of *P* How many cells are there? Assuming even more general position.

$$f_d(n) = ?$$

Consider an arrangement A of hyperplanes in R^d (in sufficiently general position).

 Consider an arrangement A of hyperplanes in R^d (in sufficiently general position).

Theorem (Zaslavsky 1975)

$$f_d(n) = |\chi_{\mathcal{A}}(-1)|.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Consider an arrangement A of hyperplanes in R^d (in sufficiently general position).

Theorem (Zaslavsky 1975)

$$f_d(n) = |\chi_{\mathcal{A}}(-1)|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\chi_{\mathcal{A}} = \text{characteristic polynomial of } \mathcal{A}.$ **Def.** Complicated.

Consider an arrangement A of hyperplanes in R^d (in sufficiently general position).

Theorem (Zaslavsky 1975)

$$f_d(n) = |\chi_{\mathcal{A}}(-1)|.$$

 $\chi_{\mathcal{A}} = \text{characteristic polynomial of } \mathcal{A}.$ **Def.** Complicated.

Theorem (Whitney 1932)

$$\chi_{\mathcal{A}}(t) = \sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \mathcal{B} \text{ central}}} (-1)^{|\mathcal{B}|} t^{d-\mathsf{rank}(\mathcal{B})} = \sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \mathcal{B} \text{ central}}} (-1)^{|\mathcal{B}|} t^{\mathsf{dim}(\bigcap \mathcal{B})}$$

• **Def.** \mathcal{B} is central $\Leftrightarrow \bigcap_{H \in \mathcal{B}} H \neq \emptyset$.

Consider an arrangement A of hyperplanes in R^d (in sufficiently general position).

Theorem (Zaslavsky 1975)

$$f_d(n) = |\chi_{\mathcal{A}}(-1)|.$$

 $\chi_{\mathcal{A}} = \text{characteristic polynomial of } \mathcal{A}.$ **Def.** Complicated.

Theorem (Whitney 1932)

$$\chi_{\mathcal{A}}(t) = \sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \mathcal{B} \text{ central}}} (-1)^{|\mathcal{B}|} t^{d-\operatorname{rank}(\mathcal{B})} = \sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \mathcal{B} \text{ central}}} (-1)^{|\mathcal{B}|} t^{\dim(\bigcap \mathcal{B})}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• **Def.** \mathcal{B} is central $\Leftrightarrow \bigcap_{H \in \mathcal{B}} H \neq \emptyset$.

 \Rightarrow just determine $\chi_{\mathcal{A}}$.

• algorithmic method to compute $f_d(n)$ as a polynomial in n for fixed d,

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• algorithmic method to compute $f_d(n)$ as a polynomial in n for fixed d,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• determine $f_d(n)$ precisely for $d \leq 6$,

- algorithmic method to compute $f_d(n)$ as a polynomial in n for fixed d,
- determine $f_d(n)$ precisely for $d \leq 6$,
- $f_d(n)$ is a degree d^2 polynomial, and

$$f_d(n) = \frac{1}{(d!)^{d+1}} \cdot n^{d^2} + \frac{d^2 - d^3}{2 \cdot (d!)^{d+1}} \cdot n^{d^2 - 1} + O(n^{d^2 - 2}),$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- algorithmic method to compute $f_d(n)$ as a polynomial in n for fixed d,
- determine $f_d(n)$ precisely for $d \leq 6$,
- $f_d(n)$ is a degree d^2 polynomial, and

$$f_d(n) = rac{1}{(d!)^{d+1}} \cdot n^{d^2} + rac{d^2 - d^3}{2 \cdot (d!)^{d+1}} \cdot n^{d^2 - 1} + O(n^{d^2 - 2}),$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

the first d − 1 coefficients of Φ_d (ⁿ_d) and f_d(n) are equal.
Φ_d (ⁿ_d): number of cells in an arrangement of ⁿ_d hyperplanes in general position.

Distinguish each cell C as one of the following:

Distinguish each cell C as one of the following:

▶ The bottommost point^{*} of *C* is a point of *P*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Distinguish each cell C as one of the following:

▶ The bottommost point^{*} of *C* is a point of *P*.

▶ The bottommost point of *C* exists but is not a point of *P*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Distinguish each cell C as one of the following:

The bottommost point* of C is a point of P.

▶ The bottommost point of C exists but is not a point of P.

э

Distinguish each cell C as one of the following:

▶ The bottommost point* of *C* is a point of *P*.

For d = 3, the same-ish cases apply...

For d = 3, the same-ish cases apply... but there is one more.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For d = 3, the same-ish cases apply... but there is one more.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For d = 3, the same-ish cases apply... but there is one more.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Find a closed formula for $f_d(n)$.

- Find a closed formula for $f_d(n)$.
- How many k-faces are there in a hyperplane arrangement (in sufficiently general position)?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Find a closed formula for $f_d(n)$.
- How many k-faces are there in a hyperplane arrangement (in sufficiently general position)?
- lmprove the running time of our algorithm for determining the polynomial $f_d(n)$ when d = 7.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Find a closed formula for $f_d(n)$.
- How many k-faces are there in a hyperplane arrangement (in sufficiently general position)?
- lmprove the running time of our algorithm for determining the polynomial $f_d(n)$ when d = 7.

Kamak workshop

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Find a closed formula for $f_d(n)$.
- How many k-faces are there in a hyperplane arrangement (in sufficiently general position)?
- lmprove the running time of our algorithm for determining the polynomial $f_d(n)$ when d = 7.

Kamak workshop

Thank you for your attention!