# Generalized k-Center: Distinguishing Doubling and Highway Dimension

Andreas Emil Feldmann, Tung Anh Vu





# Capacitated k-Center

#### Input

- ▶ graph G = (V, E) with edge lengths  $\ell \colon E \to \mathbb{R}^+$ ,
- ▶ integer *k*,
- ightharpoonup capacities  $c: V \to \mathbb{N}$ .

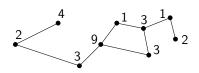


Figure: CKC input with k = 2.

# Capacitated k-Center: Goal

Find  $S \subseteq V$  and an assignment  $\varphi \colon (V \setminus S) \to S$  such that

- $|S| \leq k$
- ▶ for every  $u \in S$ ,  $|\varphi^{-1}(u)| \le c(u)$ , and
- $ightharpoonup \max_{v \in V \setminus S} \operatorname{dist}(v, \varphi(v))$  is minimal.

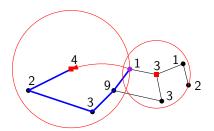


Figure: CKC solution for k = 2.

# Capacitated k-Center: Goal

Find  $S \subseteq V$  and an assignment  $\varphi \colon (V \setminus S) \to S$  such that

- $|S| \leq k$
- ▶ for every  $u \in S$ ,  $|\varphi^{-1}(u)| \le c(u)$ , and
- $ightharpoonup \max_{v \in V \setminus S} \operatorname{dist}(v, \varphi(v))$  is minimal.

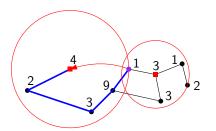


Figure: CKC solution for k = 2.

When c(u) = |V| for every  $u \in V \Rightarrow k$ -CENTER.

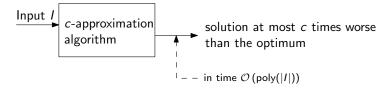
CAPACITATED k-CENTER is NP-hard.

 $\Rightarrow$  cannot solve exactly in polynomial time assuming P  $\neq$  NP.

CAPACITATED k-CENTER is NP-hard.

 $\Rightarrow$  cannot solve exactly in polynomial time assuming P  $\neq$  NP.

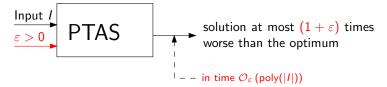
#### c-approximation algorithm



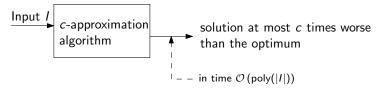
CAPACITATED k-CENTER is NP-hard.

 $\Rightarrow$  cannot solve exactly in polynomial time assuming P  $\neq$  NP.

#### Polynomial-time approximation scheme



#### c-approximation algorithm

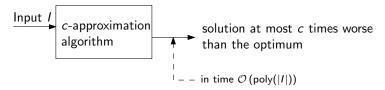


An, Bhaskara, Chekuri, Gupta, Madan, Svensson. 2015 There is a 9-approximation algorithm for  $\rm C\kappa C$ .

Cygan, Hajiaghayi, Khuller. 2012

There is no  $(3 - \varepsilon)$ -approximation algorithm for CKC unless P = NP.

#### c-approximation algorithm



#### Cygan, Hajiaghayi, Khuller. 2012

There is no  $(3 - \varepsilon)$ -approximation algorithm for CKC unless P = NP.

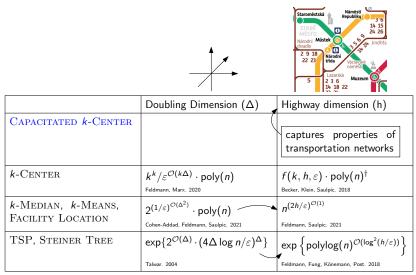
#### Question

Are there settings where we can overcome this lower bound? Planar graphs, Euclidean spaces, real world, ...

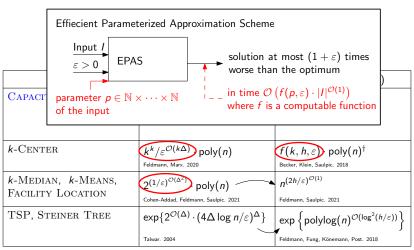




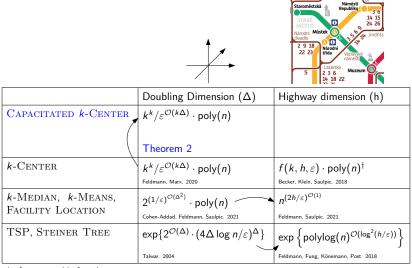
|                                         | Doubling Dimension $(\Delta)$                                                                  |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------|--|
| CAPACITATED k-CENTER                    | generalizes the dimension of $\ell_q$ spaces                                                   |  |
| k-Center                                | $k^k/arepsilon^{\mathcal{O}(k\Delta)}\cdot poly(n)$ Feldmann, Marx. 2020                       |  |
| k-Median, k-Means,<br>Facility Location | $2^{(1/arepsilon)^{\mathcal{O}(\Delta^2)}} \cdot poly(n)$ Cohen-Addad, Feldmann, Saulpic. 2021 |  |
| TSP, STEINER TREE                       | $\exp\{2^{\mathcal{O}(\Delta)}\cdot (4\Delta\log n/\varepsilon)^{\Delta}\}$                    |  |



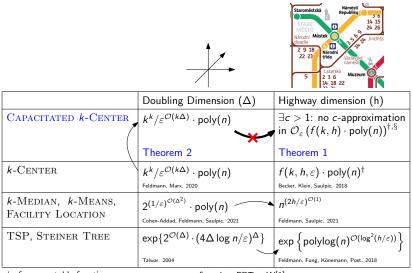
†: f: computable function



†: f: computable function



†: f: computable function



 $\dagger$ : f: computable function

 $\S: unless FPT = W[1]$ 

▶ Let M = (X, dist) be a metric space.

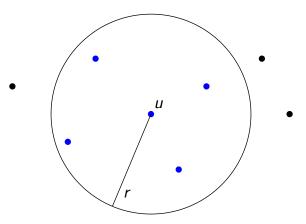
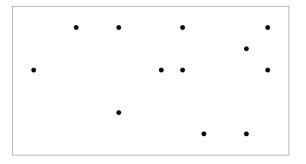


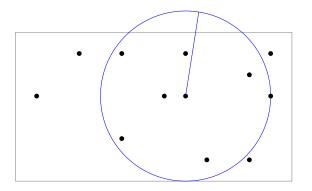
Figure:  $B_r(u)$ : Ball of radius r.

Doubling dimension  $\Delta(M)$ : smallest  $\Delta \in \mathbb{N}$  such that



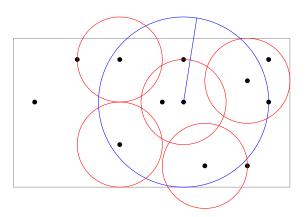
Doubling dimension  $\Delta(M)$ : smallest  $\Delta \in \mathbb{N}$  such that

▶ the ball  $B_r(u)$  for every  $u \in X$  and every  $r \in \mathbb{R}^+$ 



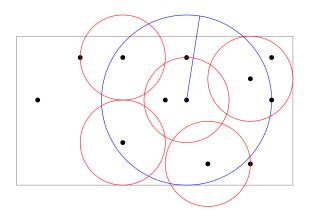
Doubling dimension  $\Delta(M)$ : smallest  $\Delta \in \mathbb{N}$  such that

- ▶ the ball  $B_r(u)$  for every  $u \in X$  and every  $r \in \mathbb{R}^+$
- ▶ is contained in  $\bigcup_{v \in V} B_{r/2}(v)$  for some  $V \subseteq X$  with  $|V| \le 2^{\Delta}$ .



Doubling dimension  $\Delta(M)$ : smallest  $\Delta \in \mathbb{N}$  such that

- ▶ the ball  $B_r(u)$  for every  $u \in X$  and every  $r \in \mathbb{R}^+$
- ▶ is contained in  $\bigcup_{v \in V} B_{r/2}(v)$  for some  $V \subseteq X$  with  $|V| \le 2^{\Delta}$ .



 $\rightsquigarrow$  d-dimensional  $\ell_q$  metrics have doubling dimension  $\mathcal{O}(d)$ .



#### Highway Dimension: Shortest Path Cover

- ▶ Let *G* be an edge-weighted graph and fix a *scale*  $r \in \mathbb{R}^+$ .
- ▶ Let  $\mathcal{P}_r$  be the set of paths of G such that
  - they are a shortest path between their endpoints,
  - ightharpoonup their length is more than r and at most 2r.



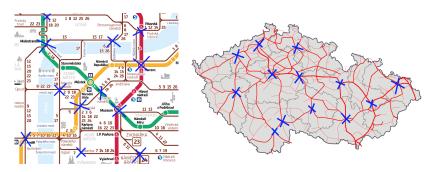
(a) Metro and tram network in Prague city center.



(b) Czech railway network.

# Highway Dimension: Shortest Path Cover

- ▶ Let *G* be an edge-weighted graph and fix a *scale*  $r \in \mathbb{R}^+$ .
- ▶ Let  $\mathcal{P}_r$  be the set of paths of G such that
  - they are a shortest path between their endpoints,
  - ightharpoonup their length is more than r and at most 2r.



The shortest path cover  $SPC_r(G)$  is a hitting set<sup>1</sup> for  $\mathcal{P}_r$ .

<sup>&</sup>lt;sup>1</sup>For every  $P \in \mathcal{P}_r$  we have  $P \cap SPC_r(G) \neq \emptyset$ .

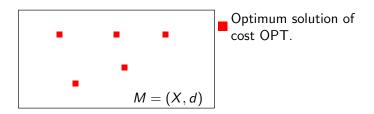
# **Highway Dimension**

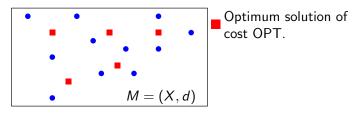
highway dimension of an edge-weighted graph G:

- smallest integer h such that,
- ▶ for any scale  $r \in \mathbb{R}^+$ ,
- ▶ there exists  $H := SPC_r(G)$  so that,
- ▶  $|H \cap B_{2r}(u)| \le h$  for every  $u \in V(G)$ .

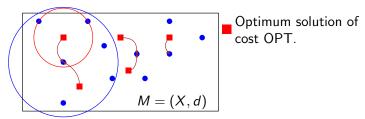




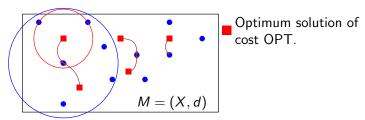




- Net:  $Y \subseteq X$  such that
  - $\forall x \in X \exists y \in Y : d(x,y) \le \varepsilon \text{ OPT, and}$
  - $\forall y_1 \neq y_2 \in Y : d(y_1, y_2) > \varepsilon \text{ OPT}.$

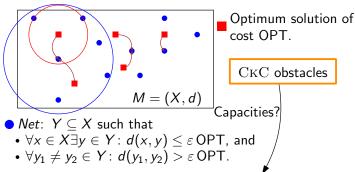


- Net:  $Y \subseteq X$  such that
  - $\forall x \in X \exists y \in Y : d(x,y) \leq \varepsilon \text{ OPT, and }$
  - $\forall y_1 \neq y_2 \in Y : d(y_1, y_2) > \varepsilon \text{ OPT}.$
- Replace every optimum center by its nearest net point.
  - $\Rightarrow$  We get a  $(1+\varepsilon)$ -approximate solution.



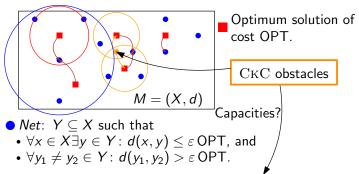
- Net:  $Y \subseteq X$  such that
  - $\forall x \in X \exists y \in Y : d(x,y) \leq \varepsilon \text{ OPT, and}$
  - $\forall y_1 \neq y_2 \in Y : d(y_1, y_2) > \varepsilon \text{ OPT}.$
- Replace every optimum center by its nearest net point.
- $\Rightarrow$  We get a  $(1+\varepsilon)$ -approximate solution.
- It can be shown that  $|Y| \leq k(1/\varepsilon)^{\mathcal{O}(\Delta)}$ .
- $\Rightarrow$  Guess the k-tuple near the optimum centers to get an EPAS with parameters k,  $\varepsilon$ , and  $\Delta$ .

# CKC algorithm obstacles



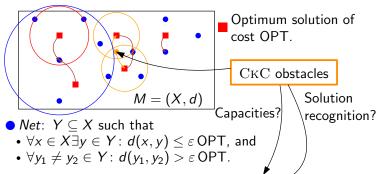
- Replace every optimum center by its nearest net point.
  - $\Rightarrow$  We get a  $(1+\varepsilon)$ -approximate solution.
- It can be shown that  $|Y| \leq k(1/\varepsilon)^{\mathcal{O}(\Delta)}$ .
- $\Rightarrow$  Guess the k-tuple near the optimum centers to get an EPAS with parameters k,  $\varepsilon$ , and  $\Delta$ .

# CKC algorithm obstacles



- Replace every optimum center by its nearest net point.
  - $\Rightarrow$  We get a  $(1+\varepsilon)$ -approximate solution.
- It can be shown that  $|Y| \leq k(1/\varepsilon)^{\mathcal{O}(\Delta)}$ .
- $\Rightarrow$  Guess the k-tuple near the optimum centers to get an EPAS with parameters k,  $\varepsilon$ , and  $\Delta$ .

# CKC algorithm obstacles



- Replace every optimum center by its nearest net point.
  - $\Rightarrow$  We get a  $(1+\varepsilon)$ -approximate solution.
- It can be shown that  $|Y| \leq k(1/\varepsilon)^{\mathcal{O}(\Delta)}$ .
- $\Rightarrow$  Guess the k-tuple near the optimum centers to get an EPAS with parameters k,  $\varepsilon$ , and  $\Delta$ .

#### Conclusion

|                                         | Doubling Dimension $(\Delta)$                                              | Highway dimension (h)                                                                                |
|-----------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| CAPACITATED k-CENTER                    | $k^k/arepsilon^{\mathcal{O}(k\Delta)}\cdot\operatorname{poly}(n)$          | $\exists c>1$ : no $c$ -approximation in $\mathcal{O}_{arepsilon}(f(k,h)\cdot poly(n))^{\dagger,\S}$ |
|                                         | Theorem 2                                                                  | Theorem 1                                                                                            |
| k-Center                                | $k^k/\varepsilon^{\mathcal{O}(k\Delta)}\cdot poly(n)$                      | $f(k, h, \varepsilon) \cdot poly(n)^{\dagger}$                                                       |
|                                         | Feldmann, Marx. 2020                                                       | Becker, Klein, Saulpic. 2018                                                                         |
| k-Median, k-Means,<br>Facility Location | $2^{(1/\varepsilon)^{\mathcal{O}(\Delta^2)}} \cdot poly(n)$                | $n^{(2h/\varepsilon)^{\mathcal{O}(1)}}$                                                              |
| FACILITY LOCATION                       | Cohen-Addad, Feldmann, Saulpic. 2021                                       | Feldmann, Saulpic. 2021                                                                              |
| TSP, STEINER TREE                       | $\exp\{2^{\mathcal{O}(\Delta)}\cdot(4\Delta\log n/\varepsilon)^{\Delta}\}$ | $\exp\left\{polylog(n)^{\mathcal{O}(\log^2(h/\varepsilon))}\right\}$                                 |
|                                         | Talwar. 2004                                                               | Feldmann, Fung, Könemann, Post. 2018                                                                 |
|                                         |                                                                            |                                                                                                      |

 $\dagger$ : f: computable function

 $\S\colon \mathsf{unless}\;\mathsf{FPT} = \mathsf{W[1]}$ 

#### Conclusion

|                      | Doubling Dimension $(\Delta)$                                              | Highway dimension (h)                                                                                |
|----------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| CAPACITATED k-CENTER | $k^k/arepsilon^{\mathcal{O}(k\Delta)}\cdot poly(n)$                        | $\exists c>1$ : no $c$ -approximation in $\mathcal{O}_{arepsilon}(f(k,h)\cdot poly(n))^{\dagger,\S}$ |
|                      | Theorem 2                                                                  | Theorem 1                                                                                            |
| k-Center             | $k^k/arepsilon^{\mathcal{O}(k\Delta)}\cdot poly(n)$                        | $f(k, h, \varepsilon) \cdot \operatorname{poly}(n)^{\dagger}$                                        |
|                      | Feldmann, Marx. 2020                                                       | Becker, Klein, Saulpic. 2018                                                                         |
| k-MEDIAN, k-MEANS,   | $2^{(1/\varepsilon)^{\mathcal{O}(\Delta^2)}} \cdot poly(n)$                | $n^{(2h/\varepsilon)^{\mathcal{O}(1)}}$                                                              |
| FACILITY LOCATION    | Cohen-Addad, Feldmann, Saulpic. 2021                                       | Feldmann, Saulpic. 2021                                                                              |
| TSP, STEINER TREE    | $\exp\{2^{\mathcal{O}(\Delta)}\cdot(4\Delta\log n/\varepsilon)^{\Delta}\}$ | $\exp\left\{polylog(n)^{\mathcal{O}(\log^2(h/\varepsilon))}\right\}$                                 |
|                      | Talwar. 2004                                                               | Feldmann, Fung, Könemann, Post. 2018                                                                 |

†: f: computable function

 $\S: unless FPT = W[1]$ 

# Thank you for your attention!

Questions, comments, ...?